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Abstract

The Pure Adaptive Search (PAS) algorithm for global optimization yields a sequence
of points, each of which is uniformly distributed in the level set corresponding to its
predecessor. This algorithm has the highly desirable property of solving a large class
of global optimization problems using a number of iterations that increases at most
linearly in the dimension of the problem. Unfortunately, PAS has remained of mostly
theoretical interest due to the difficulty of generating, in each iteration, a point
uniformly distributed in the improving feasible region. In this article, we derive
a coupling equivalence between generating an approximately uniformly distributed
point using Markov chain sampling, and generating an exactly uniformly distributed
point with a certain probability. As an application, we use this equivalence to show
that PAS, using the so-called Random ball walk Markov chain sampling method for
generating nearly uniform points in a convex region, can be used to solve convex
programming problems in polynomial time.

1 Introduction

Consider global optimization problems of the following form:

min
x∈S
f(x) (P )

∗Research and Development Center, General Motors, Warren, Michigan 48090; e-mail:
Daniel Reaume@gmrnotes3.gmr.com.
†Rotterdam School of Management, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR Rotter-

dam, The Netherlands; e-mail: E.Romeijn@fac.fbk.eur.nl.
‡Department of Industrial and Operations Engineering, The University of Michigan, Ann Arbor,

Michigan 48109-2117; e-mail: rlsmith@umich.edu. The work of this author was supported in part by
the Department of Defense Research & Engineering (DDR&E) Multidisciplinary University Research
Initiative (MURI) on “Low Energy Electronics Design for Mobile Platforms” and managed by the Army
Research Office (ARO) under grant ARO DAAH04-96-1-0377; and by the Department of Defense Aug-
mentation Awards for Science and Engineering Research Training (ASSERT) on “Optimization Algo-
rithms for Low Power Mobile Platforms” and managed by the Army Research Office under grant ARO
DAAG55-98-1-0155. The work of this author was also supported in part by a visiting professorship at
the Delft University of Technology during the period January 1 through April 30, 1999.

1



where the objective function f is continuous over the feasible region S ⊂ Rd, which is a
compact, convex body, i.e., S is compact, convex, and its interior is nonempty.

The Pure Adaptive Search (PAS) algorithm was first developed by Patel, Smith and
Zabinsky [14] for convex programming problems, and later extended to a large class of
global optimization algorithms by Zabinsky and Smith [16]. It proceeds by generating a
sequence of points in the feasible region S, with the property that each point is uniformly
distributed in the level set corresponding to its predecessor. Under mild conditions, it
was shown that the expected number of iterations required to obtain a solution with a
given error increases at most linearly in the dimension of the problem. Bulger and Wood
[3] extended this result under even milder conditions as a byproduct of studying a class
of algorithms called Hesitant Adaptive Search.

What has prevented the practical use of PAS is that the problem of generating a
uniformly distributed point in an arbitrary, or even convex, set is an extremely difficult
one. However, progress has been made during the last decade using Markov chain sam-
pling techniques. In particular, it is now possible to generate, in polynomial time, a
point in a convex set that is approximately uniformly distributed. The first link between
these methods and PAS has been made by Gademann [5], who developed a polynomial
implementation of PAS for linear programming problems.

In this paper we first derive a coupling equivalence between generating an approxi-
mately uniformly distributed point with certainty, and an exactly uniformly distributed
point with a certain probability. Next we show that, using PAS, we can find a point that
is approximately optimal with given probability in a linear number of iterations. These
two results are then used to prove the main result of this paper: the computational com-
plexity of finding a solution to (P ) with prespecified probability and error is equal to the
dimension d of the problem times the computational complexity of generating a uniformly
distributed point in a full-dimensional compact set of dimension d with prespecified prob-
ability and error using a Markov chain sampling technique. As an application, we use this
result to show that there exists a polynomial time implementation of the Pure Adaptive
Search algorithm for convex programming.

2 Approximate and exact sampling

Let X = (Xn; n = 0, 1, 2, . . .) be a Markov chain defined on the measurable space (S,B),
where B is the restriction of the Borel σ-field on Rd to S. If the Markov chain has a limiting
distribution π, then we can use this Markov chain to sample approximately from the
distribution π: starting from some arbitrary point x0 ∈ S, we simulate the Markov chain
for a large number of iterations. The last point thus generated is approximately distributed
according to π. Our goal in this section is to convert this result into one regarding the
generation of points distributed exactly according to the limiting distribution π of the
Markov chain.

This goal can be achieved, if we, instead of considering deterministic stopping times,
consider random stopping times. The following example illustrates our motivation. Sup-
pose we start with a point X0 = x0 in an d-dimensional hypercube C and randomly select,
with equal probability, one of the coordinate directions ei (i = 1, . . . , d). We then generate
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X1 uniformly over the line segment in C passing through x0 and parallel to ei. Repeating
this process, we obtain a Markov chain X over C with uniform limiting distribution (see
Berbee et al. [2] and Bélisle, Romeijn and Smith [1]). For any finite deterministic n, Xn

cannot be uniformly distributed over C since there is a positive probability of choosing
the same coordinate direction in the first n iterations. On the other hand, if we have
selected all d coordinate directions by the T -th iteration, then XT is exactly uniformly
distributed over C. Note that we do not have a contradiction since T is a random time,
not a deterministic one.

To study such random times at which a Markov chain attains exactly a particular
distribution, we turn to results from coupling theory. A coupling of two Markov chains
X and X ′ is a random vector (X̂, X̂ ′) such that the distributions of X and X ′ are the

marginal distributions of (X̂, X̂ ′). A coupling time T corresponding to a coupling (X̂,

X̂ ′) of two Markov chains X and X ′ is a random variable T such that X̂n = X̂ ′n for all
n ≥ T (see Lindvall [10]).

Now let us assume that the Markov chain is Harris recurrent with respect to π (or
π-recurrent), which means that, for all sets B ∈ B with positive measure π(B) > 0,

Pr(Xn ∈ B for some n ≥ 1|X0 = x) = 1 for all x ∈ S

and aperiodic, i.e., there exists no k-tuple (A1, . . . , Ak) of k > 1 disjoint sets in B such
that (for all n)

Pr(Xn+1 ∈ Aj+1|Xn = x) = 1 x ∈ Aj, j = 1, . . . , k − 1

Pr(Xn+1 ∈ A1|Xn = x) = 1 x ∈ Ak

(see Orey [13]). It will be convenient to denote the shifted sequence {Xk}∞k=n formed by
discarding the first n iterates of X by θnX.

A generalization of Goldstein’s theorem (see Lindvall [10]) relates coupling times to
the total variation distance between the distribution of the iterates of a Markov chain and
the limiting distribution of the chain.

Definition 2.1 If π1 and π2 are probability measures over a measurable space (E,F),
then the total variation distance between π1 and π2 is equal to

‖π1 − π2‖ ≡ 2 sup
F∈F

(π1(F )− π2(F )).

Theorem 2.2 For Markov chains X = {Xn}∞n=0 and X ′ = {X ′n}∞n=0, the following are
equivalent:

(i) There exists a coupling of X and X ′ with coupling time T such that

‖Pr(θnX ∈ ·)− Pr(θnX
′ ∈ ·)‖ = 2 Pr(T > n)

and
lim
n→∞

Pr(T > n) = 0.

3



(ii) The total variation distance between the distributions of θnX and θnX
′ converges to

zero as n→∞.

Proof:
(i) ⇒ (ii):
This is immediate by definition 2.1.

(ii) ⇒ (i):
Goldstein’s theorem and Lindvall [10] (sections III.14 and III.15) state that (ii) implies
the existence of a coupling and corresponding coupling time with the property that

‖Pr(θnX ∈ ·)− Pr(θnX
′ ∈ ·)‖ ≤ 2 Pr(T > n)

and
lim
n→∞

Pr(T > n) = 0.

Lindvall [10] then strengthens this result to the existence of another coupling with the
property

‖Pr(θnX ∈ ·)− Pr(θnX
′ ∈ ·)‖ = 2 Pr(T > n)

and
lim
n→∞

Pr(T > n) = 0

which proves the desired result. ✷

To be able to apply theorem 2.2, we convert total variation distances between the distri-
butions of iterates of Markov chains to total variation distances between the distributions
of the shifted chains with the following result.

Theorem 2.3 Let X and X ′ be two Markov chains over a measurable space (S,B) having
the same transition kernel, but possibly differing in their initial distribution. Fix δ > 0 and
suppose that the total variation distance between the distributions of the random variables
Xn and X ′n is bounded from above by δ, for some n ≥ 0. Then the total variation distance
between the distributions of the stochastic processes θnX and θnX

′ is bounded from above
by 2δ.

Proof: Consider any set B ∈ B∞. Let µ and λ denote the distributions of Xn and X ′n,

respectively. Let B̂ denote the projection of B onto S equal to the set of n-th elements
of each sequence in B.

Pr(θnX ∈ B)− Pr(θnX
′ ∈ B)

=

∫
S

Pr(θnX ∈ B|Xn = x) dµ−
∫
S

Pr(θnX
′ ∈ B|X ′n = x) dλ

=

∫
B̂

Pr(θnX ∈ B|Xn = x) dµ−
∫
B̂

Pr(θnX
′ ∈ B|X ′n = x) dλ

=

∫
B̂

Pr(θnX ∈ B|Xn = x) dµ−
∫
B̂

Pr(θnX ∈ B|Xn = x) dλ
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where the last equality is due to the chains sharing the same Markov kernel. Now denote
the signed measure µ − λ by ν. By the Hahn decomposition Theorem (see Halmos [8]),

there exists a partition of B̂ into sets B̂1 and B̂2 which are positive and negative with
respect to ν. In other words, ν is a non-negative measure on B̂1 while −ν is a non-negative
measure on B̂2. Hence, we have that

Pr(θnX ∈ B)− Pr(θnX
′ ∈ B)

=

∫
B̂

Pr(θnX ∈ B|Xn = x) dν

=

∫
B̂1

Pr(θnX ∈ B|Xn = x) dν +

∫
B̂2

Pr(θnX ∈ B|Xn = x) dν

=

∫
B̂1

Pr(θnX ∈ B|Xn = x) dν −
∫
B̂2

Pr(θnX ∈ B|Xn = x) d(−ν)

Thus,

|Pr(θnX ∈ B)− Pr(θnX
′ ∈ B)|

=

∣∣∣∣
∫
B̂1

Pr(θnX ∈ B|Xn = x) dν −
∫
B̂2

Pr(θnX ∈ B|Xn = x) d(−ν)
∣∣∣∣

≤
∫
B̂1

Pr(θnX ∈ B|Xn = x) dν +

∫
B̂2

Pr(θnX ∈ B|Xn = x) d(−ν)

= ν(B̂1) + (−ν)(B̂2)

= µ(B̂1)− λ(B̂1) + λ(B̂2)− µ(B̂2).

But then, since
‖Pr(Xn ∈ ·)− Pr(X ′n ∈ ·)‖ ≤ δ

we have from the definition of total variation distance that

µ(B̂1)− λ(B̂1) ≤ 1
2δ

and
λ(B̂2)− µ(B̂2) ≤ 1

2δ.

Hence
|Pr(θnX ∈ B)− Pr(θnX

′ ∈ B)| ≤ δ
and thus, again by definition of total variation distance, we have that

‖Pr(θnX ∈ ·)− Pr(θnX
′ ∈ ·)‖ ≤ 2δ.

✷

The following theorem is an application of theorem 2.2:

Theorem 2.4 Consider an aperiodic Markov chain X that is Harris recurrent with re-
spect to its stationary distribution π. In addition, let X ′ be a Markov chain having the
same transition kernel, but with a possibly different initial distribution. Then there exists
a coupling of X and X ′ with coupling time T such that, for all n = 0, 1, 2, . . .,

‖Pr(θnX ∈ ·)− Pr(θnX
′ ∈ ·)‖ = 2 Pr(T > n).
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Proof: Since X and X ′ are aperiodic and Harris recurrent, the total variation distance
between the distributions of Xn and X ′n converges to zero (as n→∞; see Orey [13]). The-
orem 2.3 then tells us that the total variation distance between θnX and θnX

′ converges
to zero as well (as n→∞). Theorem 2.2 now yields the desired result. ✷

We may now present the main results from this section:

Theorem 2.5 Suppose a Harris chain X over a measurable space (S,B) is such that its
first element, X0, has distribution within δ in total variation distance from its limiting
distribution π. Then, with probability at least 1 − δ, X0 is distributed exactly according
to π.

Proof: Let X ′ be a Harris chain having the same transition kernel as X but whose
initial distribution is its limiting distribution. By hypothesis, the total variation distance
between the distribution of X0 and the limiting distribution for X is less than δ. Now let
T be a random variable such that XT is the first iterate of X distributed exactly according
to π. Applying theorem 2.3 to X, the total variation distance between the distributions
of θ0X = X and θ0X

′ = X ′ is at most 2δ. Since X is a Harris chain, we may apply
theorem 2.4 to X and X ′. There therefore exists a coupling of X and X ′ such that the
first coupling time T satisfies

Pr(T = 0) = 1− Pr(T > 0)

= 1− 1
2‖Pr(θ0X ∈ ·)− Pr(θ0X

′ ∈ ·)‖
≥ 1− 1

2 · 2δ
= 1− δ

But by definition of a first coupling time, XT is the first iterate of X distributed exactly
according to the distribution of the corresponding iterate of X ′. Since X ′ had initial
limiting distribution, this completes the proof. ✷

Corollary 2.6 Suppose a Markov chain X over a measurable space (S,B) is such that
its n-th element, Xn, has distribution within δ in total variation distance from its limiting
distribution π. Then, with probability of at least 1− δ, Xn is distributed exactly according
to π.

3 Pure Adaptive Search

We now return to the global optimization problem

min
x∈S
f(x). (P )

Applied to (P ), the PAS algorithm proceeds as follows:
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Pure Adaptive Search (PAS)

Step 0. Set k = 0 and y0 =∞.

Step 1. Generate a point xk+1 uniformly distributed in {x ∈ S : f(x) < yk}.

Step 2. Set yk+1 = f(xk+1), increment k and return to step 1.

Without loss of generality, we can assume that the range of f on S is equal to [0, 1],
so that the optimal value of (P ) is equal to 0. Moreover, we can define the error of a
feasible solution x to (P ) to be f(x). Now define the number of iterations required for
the convergence of PAS to a solution having an error of ε with probability 1− α as

Kα,ε = min{k : Pr(Yk ≤ ε) ≥ 1− α}

and let the random variable Nε denote the number of iterations needed by PAS to obtain
a solution to (P ) with error at most ε.

Clearly, the problem instance (P ) is characterized by the pair (S, f). A class P
of global optimization problems is then a set P of pairs (S, f), each corresponding to a
particular instance of (P ). In the remainder, let C denote the class of convex programming
problems, i.e., problems where S and f are both convex. Moreover, let C1 denote the class
of convex programming problems having a unique optimum. For this latter class, Patel,
Smith, and Zabinsky [14] derived an upper bound on the number of iterations required
for the convergence of PAS to a solution having at most a given error. Their bound was
improved by Schmeiser and Wang [15], yielding the following result.

Theorem 3.1 Consider a convex programming problem from the class C1. Then

Kα,ε ≤ K(C)
α,ε ≡ (d+ 1) · ln

(
1

αε

)
.

Zabinsky and Smith [16] derived a similar result, which was improved upon by Bulger
and Wood [3], for the class GL of global optimization problems, where the objective
function f is Lipschitz continuous.

Theorem 3.2 Consider a global optimization problem from the class GL. Let the diameter
of the feasible region S be ∆, and the Lipschitz constant of the objective function f be κ.
Then

E(Nε) ≤ E(N (GL)
ε ) ≡ 1 + d · ln

(
κ∆

ε

)
where the random variable Nε denotes the number of iterations needed by PAS to obtain
a solution with error at most ε.

Note that the first result gives a bound on the number of iterations needed to obtain
a point with at most a given error with a certain probability, while the second result gives
a bound on the expected number of iterations needed to obtain a point with at most a
given error. The following result shows a relationship between the two.
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Theorem 3.3 Consider the problem (P ). Let

Kα,ε = min{k : Pr(Yk ≤ ε) ≥ 1− α}.

Then

Kα,ε <
E(Nε)
α

.

Proof: Clearly,
Pr(Yk ≤ ε) = Pr(Nε ≤ k).

Thus,
Kα,ε = min{k : Pr(Nε ≤ k) ≥ 1− α}

which implies that both
Pr(Nε ≤ Kα,ε) ≥ 1− α

and
Pr(Nε ≤ Kα,ε − 1) < 1− α

so that
Pr(Nε ≥ Kα,ε) > α

But then

E(Nε) =
∞∑
k=1

Pr(Nε ≥ k)

≥
Kα,ε∑
k=1

Pr(Nε ≥ k)

≥
Kα,ε∑
k=1

Pr(Nε ≥ Kα,ε)

= Kα,ε · Pr(Nε ≥ Kα,ε)

> αKα,ε

yielding the desired result. ✷

For global optimization problems, this now yields

Corollary 3.4 Consider a global optimization problem from the class GL. Let the diam-
eter of the feasible region S be ∆, and the Lipschitz constant of the objective function f
be κ. Then

Kα,ε ≤ K(GL)
α,ε ≡

1

α
·
(

1 + d · ln
(
κ∆

ε

))
.
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4 Complexity of Pure Adaptive Search for global op-

timization

4.1 Oracles and complexity

An often used way of measuring the complexity of algorithms is using the concept of
oracle calls. An oracle is a “black box” that performs tasks of a predefined type, such
as checking membership of a point in a set or evaluating an objective function. This
informational approach to complexity lends itself aptly to the discussion of optimization
questions since objective and constraint functions may be arbitrarily difficult to compute.

If the the maximum number of oracle calls required by an algorithm to solve a certain
class of problems is bounded by a positive constant times some function γ depending on a
number of problem characteristics, then the algorithm is said to have complexity of order
O(γ) with respect to the oracles employed. If γ is a polynomial function in its parameters,
then the algorithm is said to be polynomial, or the algorithm is said to enjoy polynomial
complexity.

It is possible that for all but a handful of pathological problem instances an algorithm
may perform far better than the worst case complexity measure suggests. However, since
there is no way to easily identify such troublesome problems a priori, much less the
distribution of the frequency of occurrence of problems of varying difficulty, we must
consider the worst case scenario to fairly and theoretically evaluate performance.

For our purposes, we consider three types of oracles. A membership oracle for a set S
takes as input a point x and returns a yes/no answer as to whether or not x is contained
in S. An evaluation oracle for a function f takes as input a point x in the domain of f
and returns the value of f(x). A separation oracle for a convex set S returns, when given
a point x, either the assertion that x ∈ S or a hyperplane h such that S is completely
contained in the halfspace defined by h that does not contain x. For more information on
oracles and complexity, we recommend Grötschel, Lovász and Schrijver [7].

4.2 Complexity of PAS

In section 2 we have defined the concept of a Markov chain sampling algorithm. We can
define the complexity of such a sampling algorithm, on a given measurable space (S,B)
and for a given limiting distribution π, as the number of oracle calls necessary to sample
a point whose distribution is within some prespecified distance to π. When we consider a
class of Markov chain sampling algorithms, we can define the complexity of this class of
sampling algorithms as the maximum of the complexities over each element of the class.

Suppose that we have a class of Markov chain sampling algorithms, sayM(R), for gen-
erating uniformly distributed points in each of the sets in any class of (finite-dimensional)
sets R. Moreover, let the complexity of this class of algorithms be given by γ(d, δ,R), i.e.,
for each d-dimensional set in R, the number of oracle calls necessary to sample a point
whose distribution is within δ in total variation distance of the uniform distribution on
that set is at most equal to γ(d, δ,R).
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Now let G denote a class of global optimization problems, and let

SG = {{x ∈ S : f(x) < y} : y ∈ (0, 1], (S, f) ∈ G}

i.e., SG is the set of all sets that can occur as a level set of a problem in the class G. The
corresponding class of Markov chain sampling algorithms is then M(SG). The following
theorem contains the main result of this section.

Theorem 4.1 Consider global optimization problems of the form (P). Then the PAS
algorithm applied to a problem from the class G provides, with probability at least 1 − α,
a solution with an error of at most ε, using a number of oracle calls that is bounded from
above by

K · γ(d, δ,SG)
if

K ≥ K(G)
α/2,ε

and
δ ≤ α

2K
.

Proof: First note that, by corollary 2.6, the class of Markov chain sampling algorithms
M(SG) yields points that are, with prespecified probability, exactly uniformly distributed.
Now assume that we run the PAS algorithm using the Markov chain sampling algorithm
for K iterations. Failure of this algorithm can have two causes. Firstly, in each of the
iterations of the PAS algorithm, the Markov chain sampler could fail to generate an
exactly uniformly distributed point in the level set under consideration. Secondly, even
with exact uniform samples in each iteration, the PAS algorithm itself may fail to deliver
a solution with error at most ε. Now let E denote the event that the PAS algorithm using
the Markov chain sampler does not yield a solution with error at most ε, and let A denote
the event that the Markov chain sampler yields an exactly uniformly distributed point
in each of the iterations of PAS. Furthermore, let Ac denote the complement of event A.
Then,

P (E) = P (E|A) · P (A) + P (E|Ac) · P (Ac) ≤ P (E|A) + P (Ac).

The probability of error is at most α if we ensure that

P (E|A) ≤ 1
2α (1)

and
P (Ac) ≤ 1

2α. (2)

Inequality (1) follows easily if we choose K ≥ Kα/2,ε. Now consider event A. By the con-
ditions in the theorem, and corollary 2.6, we can sample an exactly uniformly distributed
point in each iteration with at least some prespecified probability 1− δ′. Thus,

P (A) ≥ (1− δ′)K
≥ 1−Kδ′
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(and P (Ac) ≤ Kδ′). Thus, inequality (2) follows if we choose

δ′ ≤ α/2
K
.

✷

For the classes of Lipschitz continuous and convex programming problems introduced
in section 3, we then obtain the following results.

Corollary 4.2 Consider global optimization problems of the form (P). Then the PAS
algorithm applied to a problem from the class GL provides, with probability at least 1− α,
a solution with an error of at most ε, using a number of oracle calls that is bounded from
above by

1

α
·
(

1 + d · ln
(
κ∆

ε

))
· γ(d, δ,SGL)

with
δ ≤ α

2
α
·
(
1 + d · ln

(
κ∆
ε

)) .
Corollary 4.3 Consider convex optimization problems of the form (P). Then the PAS
algorithm applied to a problem from the class C1 provides, with probability at least 1− α,
a solution with an error of at most ε, using a number of oracle calls that is bounded from
above by

(d+ 1) · ln
(

1

αε

)
· γ(d, δ,SC1)

with
δ ≤ α

2(d+ 1) · ln
(

1
αε

) .
5 Complexity of Pure Adaptive Search for convex

programming

In this section we will make the result in corollary 4.3 more concrete by considering
sampling methods that can be used to sample uniformly distributed points in a large
class of convex bodies.

5.1 Polynomial time Markov chain samplers

Markov chain samplers have received a great deal of attention during the last decade, since
it was shown that some of these enjoy polynomial time complexity, not only for sampling
approximately uniformly distributed points, but also, for example, for estimating the
volume of a convex body. We will review the literature on this topic here, and use this to
obtain a polynomial time implementation of PAS for convex programming.
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5.1.1 Rounding convex bodies

In order to ensure that it is possible to find even a single point in the convex set S in finite
time, it is reasonable to assume that this set is well-guaranteed. This means that we know
the centers and radii of two spheres, one contained inside S and the other containing
S. Note that, without the restriction imposed by the outer ball, S could be located
anywhere in Rd, and without the existence of the inner ball, S could be arbitrarily small.
The asphericity or “sandwiching ratio” of S denotes the ratio between the inscribed and
circumscribed balls guaranteeing S, and is a measure of the “roundness” of S.

As we will see below, the complexity of sampling from the convex body S depends
strongly on the asphericity of the set. It is therefore desirable to transform S in such a way
that the asphericity is reduced, preferably to be a polynomial function of the dimension d
of S. (The transformed set is then often called well-rounded.) Hereby we restrict ourselves
to affine transformations, so that an (approximately) uniformly distributed point in the
transformed set, say A(S), is (approximately) uniformly distributed in the original set
S as well. The best known general result is that, for any convex set S, the Löwner-
John ellipsoid (see Grötschel, Lovász, and Schrijver [7]) defines an affine transformation
ALJ, such that B ⊆ ALJ(S) ⊆ dB where B is the unit sphere centered at the origin.
Unfortunately, no efficient algorithm for finding the transformation ALJ exists. With the
ellipsoid algorithm, however, it is possible to find an affine transformation AE such that
B ⊆ AE(S) ⊆ d

√
dB using a number of oracle calls that is polynomial in the dimension

d (see Grötschel, Lovász, and Schrijver [7]).

5.1.2 Random ball walk

The walk is a simple Markov chain first presented by Lovász and Simonovits [11] and
examined in greater depth in [12]. When applied to a convex body S, it has uniform
limiting distribution and proceeds as follows:

Random ball walk

Step 0. Let n = 0 and let x0 ∈ S.

Step 1. Increment n and generate a candidate point zn uniformly over B(xn, ρ), the
d-dimensional ball of radius ρ, centered at xn.

Step 2. If xn ∈ S, then let xn = zn, otherwise let xn = xn−1.

Step 3. Return to step 1.

Kannan, Lovász and Simonovits [9] show that, with appropriate choice of ρ, the Random
ball walk, to generate points with distribution within δ of uniform in total variation
distance in a convex body, has polynomial complexity in the dimension d, the asphericity
R, and the precision δ.

Theorem 5.1 The number of iterations γBW(d, δ,SC) needed by the Random ball walk,
with appropriately chosen parameter ρ, to generate a point with distribution within δ in
total variation distance from the uniform distribution over a set S ∈ SC, where SC is the
set of all finite-dimensional convex bodies, is polynomial in d and δ.

12



Proof: As noted above, an affine transformation A(S) of S having asphericity R = dc for
some constant c can be found in polynomial time. By Kannan, Lovász and Simonovits [9],
a point in A(S) with distribution within δ in total variation of the uniform distribution
can then be found using a polynomial number of oracle calls, which proves the desired
result. ✷

5.2 Complexity of PAS

Combining the results of the previous section with corollary 4.3 yields the following com-
plexity result for PAS applied to convex programming.

Theorem 5.2 Consider convex programming problems, where the feasible region S ⊂ Rd
is a convex body, and the objective function f is convex. Then the PAS algorithm, using
the Random ball walk sampler, provides, with probability at least 1−α, a solution with an
error in value of at most ε, using a number of oracle calls that is polynomial in d, α and
ε.

Proof: By theorem 5.1, and using corollary 2.6 a point that is, with suitably chosen
minimal probability, uniformly distributed in S can be generated using a polynomial
number of oracle calls, using the Random ball walk samping method. Since the same
result holds for subsequent iterations of PAS, an application of theorem 4.3 now yields
that PAS requires a polynomial number of oracle calls to solve a convex programming
problem with probability at least 1− α and with error at most ε. ✷

6 Concluding remarks

We have shown that Pure Adaptive Search can be implemented using Markov chain
samplers for generating its iterates. Since we are assured that the number of iterates of
Pure Adaptive Search grows at most linearly in the dimension of the problem for a large
class of global optimization problems, the overall efficiency of the procedure rests on the
efficiency of the Markov chain sampler used for obtaining each iterate.

Markov chain samplers are currently an extremely active area of research which has
already achieved remarkable results (see e.g. Diaconis and Freedman [4] for an up-to-date
survey.) Although we currently are guaranteed polynomial performance only for convex
regions, the promise of polynomial samplers for more general non-convex regions offers
the potential for polynomial procedures for truly global optimization problems.
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