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Statement of scope and purpose

In engineering and science, it is often necessary to estimate functions based
on a small number of evaluation points. We provide an estimation procedure
that bounds a function using a Lipschitz bracket. We prove that the best
sampling strategy is to sample at the midpoint of a specific interval.

Abstract

A procedure to estimate a univariate Lipschitz continuous func-
tion and provide upper and lower bounds is given in this paper. The
procedure evaluates the function at the midpoint of the interval with
the largest bracket. We provide a worst case analysis that proves this
procedure is optimal in the sense that it maximizes the minimal re-
moval region on each iteration, thus providing the tightest bounds in
the least number of iterations possible.

Key words: Lipschitz functions, function estimation, interpolation,
sampling strategy.



1 Introduction

Estimation of functions is an important topic in engineering. Interpo-
lation (e.g. polynomial interpolation, splines, Bézier curves) has been
used extensively [3, 4, 9] to create an estimating function based on
a relatively small number of evaluation points. Interpolation is typi-
cally used when the function values are free of error. Interpolation or
estimation is also useful when a function evaluation for a given point
can be calculated, but the computation time may be significant.

In contrast to function evaluations that are free of error, function
evaluations that contain errors due to random variation are often ap-
proximated by using regression analysis (e.g. least squares). Function
evaluations containing error would include experimental data where
different function evaluations are returned by the experiment at a
given data value. In this paper, we restrict our consideration to the
first category of functions that are free of error, sometimes referred to
as black-box functions.

In estimating black-box functions, the large computation time mo-
tivates gaining as much information about the function with as few
sample points as possible. The objective of this paper is to determine
which points should be evaluated in order to maximize the information
gained. Specifically, we prove a sampling algorithm that minimizes the
maximum error.

Several authors have in particular looked at interpolation of Lip-
schitz continuous functions. In [8] a review of shape preserving ap-
proximation methods and algorithms is given. The primary focus is
on interpolation methods by polynomials and splines. In [1] shape-
preserving approximations and interpolation of function by box spline
surfaces is studied. Other methods where the Lipschitz constant is
used for function interpolation are discussed in [2] and [14]. In [2], the
Lipschitz constant is used to get a linear approximation to a function
and deriving a worst case error bound. In [14] the Lipschitz condi-
tion is used to create an octree representation that accelerates volume
rendering.

The theory of Lipschitz continuous functions has also been used
in global optimization, and is based on the fundamental work of [11]
and [13]. More recent work involving Lipschitz methods for global
optimization include [5, 6, 7, 10, 15, 16]. The emphasis of this paper is
on estimation of the function, rather than optimization, and to provide
tight bounds of the entire function based on only a few sample points.



In this paper the objective is to determine the best location of the
sample points. The method used in this paper is to derive upper and
lower bounds on a function f(x) that is Lipschitz continuous. The
data points and function evaluations, together with the Lipschitz con-
stant can be used to bracket the function. As the upper and lower
bounds get closer together, the area of the bracket is reduced, thus
providing a better estimate of the function. In this paper, we obtain
the location of sample points that minimizes the area of the bracket.
This is equivalent to minimizing the maximum possible error for any
function with that Lipschitz constant, as is explained in detail in the
paper. We prove that the best estimate is obtained by sampling the
midpoint of the interval with maximum volume. Although the Lips-
chitz constant is needed to provide the exact upper and lower bounds,
the result that the optimal location of the sample point is at the mid-
point of an interval is true, independent of the value of the Lipschitz
constant. The benefits of estimating a function using the Lipschitz
constant is that, in addition to the sample points, there exists an es-
timation function and a bracket that gives upper and lower bounds
on the function. It is therefore guaranteed that the function can not
have points outside these bounds.

2 Methodology

The function f(z) that we want to estimate is a real valued function
where x € IR and f(z) : IR — IR. We assume that f(x) satisfies the

Lipschitz condition with a Lipschitz constant L, i.e.

[f(x) = f(y)] < Lz —yl| for all z,y.

The Lipchitz condition assumes a bound on the rate of change of a
function. When such a bound for a function exists, it is said to be
Lipschitz continuous.

Given a Lipschitz continuous function f(z) with a Lipschitz con-
stant L over an interval [a,b], we construct an estimating function

f(x), and lower and upper bounding functions F(z) and F(x) respec-

tively, such that F(z) < f(x) < F(z) for any x € [a,b] with the

following procedure:

Step 1 Initialize 1 = a and 2 = b and evaluate f(x1) and f(x2) to
create an initial parallelogram. Set k = 3 and let z3 = (a +b)/2
the midpoint of the interval. Evaluate f(x3).
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Step 2 Update a list of parallelograms P = {vi,v9,...,vx} where
v; is the leftmost coordinate for each parallelogram. Order the
elements in the list by area, such that the first parallelogram
has the maximum area. The area of a parallelogram with left
z-coordinate v; is calculated by:

(Lz(vi — U 1)2 — (f(vi) = f(v; 1))2)
= 5L e (1)

Step 3 Check a termination criterion. if the first parallelogram has
an area larger than ¢, set k = k4 1, evaluate the next iterate x
at the midpoint of the first parallelogram (with maximum area)
in the list P and go to Step 2. Otherwise, stop. The estimating
function f (z) can be constructed from the sample points, for

i=1,...,k:
f(vz) for Ui§$<vi+di
fo)={ Lo+ L(Ui+Ui+l)+§(’Ui)+f(’Ui+l) for v; +d; < x < vig1 — d;
f(vit1) for viy1 —di <o <wipr

(2)

i) The upper and lower bounds

where d; = L(”i+1_vi)+§(vi+l)_f(v
for f(x) are:

F{@)= min [(e;) + Ll — i 3)
Fo) = max f(;) — Ll — i (4)

Figure 1 shows f (z) and the upper and lower bounding functions
after two iterations with function evaluations at z1, z2, x3 and 4. The
bounding functions form three dark gray parallelograms and guarantee
that the function will lie within this shaded bracket. The estimation
function f (x) always lies equidistant between the bounding functions.

In step 2 a list of parallelograms is maintained, ordered by area.
To illustrate using Figure 1, after the point x3 is sampled we have
two parallelograms. The left parallelogram with left coordinate x
has a larger area than the right parallelogram (with left coordinate
x3) because the difference in function values, f(x1)— f(x3), is smaller

than f(z3) — f(z):

L2(%5°)* = (f(21) — f(x3))” - L2(%5°)* = (f(x3) — f(x2))”
2L 2L '

()



Figure 1: Successive bracketing of a function f(x) using the Lipschitz con-

stant.
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Notice in this case the ordering of the parallelograms is determined
solely by the function evaluations because the length of both intervals
is the same (“T_b) It is also interesting that the smaller the difference
in function values, the larger the area of the parallelogram. In the
extreme, if a function evaluation happened to land on the bounding
function (the largest possible difference in function values), then the
area of the parallelogram would be zero because the function must
travel along the bounding function. This provides an intuitive ex-
planation as to why it is less desirable to sample in that interval.
Following the procedure with regard to Figure 1, the next point x4 to
be evaluated would be in the middle of the left interval, z4 = %
The corresponding parallelograms would be added to the list. As more
iterations are performed, the bracket tightens and provides a better
estimate of the function. When the largest parallelogram is small
enough, we terminate the method.

When selecting the next iteration point z 1 it is not obvious which
point is going to give the best approximation in the fastest way. Work
done in global optimization [7] indicates that selecting the deepest
point of some interval, but not necessarily the interval with the lowest
bound, will give the fasted convergence of the optimization algorithms.
This analysis uses an “average case” which is based on the assumption
that possible points are uniformly distributed in the bracket. In the
following section we use a worst case analysis to prove that, in fact,
it is best to choose the midpoint (not necessarily the deepest point)
of the interval with the largest parallelogram as the next iterate to
remove the most area and hence tighten the bound and speed the
approximation of the bracket.

3 Midpoint sampling

Performing successive bracketing of a function f(x) results in a series
of parallelograms as illustrated in Figure 1 and previously discussed.
We now prove that the tightest bracket is obtained by sampling the
midpoint of the interval with the largest parallelogram.

The objective of minimizing the area of the bracket is equivalent to
minimizing the maximum possible estimation error. The error at any
given point is the difference between the function estimate and the
actual function value. The error could be as great as the difference
between the values at the bracket, or function bounds. We choose



our estimate as the midway point between the function bounds, which
yields the estimation function given in equation 2. This function is flat
until the first point of the parallelogram, which is equidistant between
the upper and lower bounds. Then the function has a slope L until
the peak, and then it is flat again. The estimation function is always
half the distance between the Lipschitz bounds, and thus minimizes
the maximum possible error. An estimate of the total possible error is
one-half of the area of the parallelogram. As we continue to sample we
tighten the Lipschitz bounds, generating more parallelograms with less
total area than the original parallelogram. As we reduce the total area
of the parallelograms, we reduce the worst case error of our estimate.

The proof is based on a worst case analysis. We first consider a
single interval [z1, z2] and characterize the area of the region that will
be removed from the parallelogram if the function evaluated at point
a in the interval is f(a). This area is stated in Theorem 1. The next
step in the analysis is to find the optimal location of point a in the
interval. For any point a, there is a range of possible values for f(a) in
the bracket, and we want to perform a worst case analysis, i.e. maxi-
mize the minimal removal region. Theorem 2 states that the midpoint
of the interval is the optimal place to sample. During the estimation
procedure, a collection of intervals and corresponding parallelograms
are generated. The final step in the analysis is to determine which
interval should be sampled to provide the best estimate. It is shown
in Theorem 3 and Corollary 1 that the interval with the largest paral-
lelogram should be chosen to maximize the minimum removal region.
Hence the procedure as stated in section 2 selects the best sample
points to evaluate to obtain the tightest bracket on the function to be
estimated.

Consider a parallelogram as illustrated in Figure 2. This parallelo-
gram is formed by the upper and lower bounding functions generated
by the function evaluated at x; and x2. These create two pairs of
parallel lines with absolute value slope of L and length [ and h. We
will consider the effect of evaluating the function at point a, where
r1 < a < xo. The removal regionis defined as the regions above and
below the point (a, f(a)) bounded by lines parallel to h and [ as shown
in figure 2. We can remove this region because by the Lipschitz con-
dition, we know that f cannot lie in this region. We also let x4 denote
the deepest point in the lower bounding function.

Let the angle whose tangent is 1/L be « as shown in Figure 2. We
will also make use of the following relationships:



Figure 2: Removal region.
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1

sina = — 6
V14 L? ©)
- g
cosq = ——
V1+ L2
2L
sin2a = 2cosasina:m. (8)

We now state in Theorem 1 an expression for the area of the re-
moval region, based on (z1, f(x1)), (z2, f(z2)) and the sample point

(a, f(a)).

Theorem 1 Given points (1, f(x1)), (z2, f(z2)) and (a, f(a)), the
area of the Total Removal Region, TRR(a, f(a)) is

2(a—m1)(z2—a)—(f(a)—f(z zo)—f(a
TRR(a, f(a)) = ZL0=2)(@2 )(ﬂ£ f@)(f@)=f@)

where, x1,T2,a and f(z1), f(z2) and f(a) are shown in Figure 2.

Proof.

To represent the area of the total removal region, we use the lower
envelope function F(x) = f(z;) — | — ;| to express two lines; y, =
f(z1)+ L(zx1 —2) and y; = f(x2)+ L(z —x2) as illustrated in Figure 2.
Similarly, the line y,, that is parallel to y; and goes through the point
(a, f(a)) can be expressed as y,, = f(a) + L(z — a).

We determine «x; by finding where y; and y,, intersect, yielding:

_ L +a) + f(z1) — fla)

(2 2L .
Similarily x4 the deepest point, is determined by finding where y;, and
1 intersect;

L(z1 + z2) + f(21) — f(22)
2L )

From z; and x4, we can also express the distance from z1 to the
first peak, which equals the distance from the deepest point to s,
d=x; — 11 = 22 — x4. This is used in Step 3 of the algorithm.

We can now derive the lengths k, m,l and h (see Figure 2). Using
ksino = z4—x; = xj—a and equation 7 we have k = (zq—z;)V1 + L?,
which gives

Td =

(L(xz —a) = f(x2) + fl@)V1+L*

k=
2L
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Similarily msina = x; — x4 = a — x; and therefore m = (a —

x;)V'1+ L?, which gives

(L(a—x1) + f(a) — f(z1))V1+ L?
2L '

m =

Similarily Isina = x9 — 24 and therefore | = (9 — x4)V 1+ L2,
which gives

| = (L(zg — x1) + f(x2) — f(z1))V1+ L2
2L .

Similarily hsina = x4 — x1 and therefore h = (xg — x1)V1 + L?,
which gives

o Llza —a1) + f(a1) - Flaa))W1+ L2
2L -
This gives
h g Lla—21) = fla) + fla)Vi+ I
- 2L
o (E(ea—a) + f(@2) — f@)VI+I?
2L :

The area of the total removal region is TRR = kmsin 2« + (h —
E)(I —m)sin2a = (km + (h— k)(l — m))(liLB), see figure 2.
Substituting for k,m, h,l and simplifying gives:

TRR(a, f(a)) = Lz(a—m)(a:z—a)—(f(z)—f(xl))(f(xz)—f(a))_

Using the expression for the total removal region given in Theo-
rem 1, we next show that the midpoint is the best place to sample
between x; and x2 to maximize the minimal removal region.

Theorem 2 The best place to sample in the interval [x1,x2] in order

to mazimize the minimal area of the total remowval region, is a* =
%2“, the mid point.
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Proof. For a given sample point a the function f(a) can take any
value on the line x = a within the parallelogram. We first find f(a)*
that gives the minimum total removal region for a fixed a, and then
we find a* that maximizes that minimal area (max worst case). For a
fixed a, we minimize the removal region

L2(a — z1) (22 — a) — (f(a) = f(21))(f(z2) — f(a))

TRR(a, f(a)) = i3

by taking the partial derivative with respect to f(a) and simplifying,

ITRR(a, f(a)) _ %(2]0(&) — f(z1) = f(22))-

9f(a)
Setting the above equation to zero and solving for f(a) gives:
. flx)+ f(z
f(a) _ (1)2 (2)

To check if this is the minimum, we take the second partial deriva-
tive,
O’TRR(a, f(a))
9 f(a)

which is positive. Therefore TRR(f(a)) is convex and f(a)* = w
i (xl);rf (z2)

=2,

gives the minimum removal region as long as is in the in-
terval defined by the upper and lower envelopes for z = a.

When %ﬂm) is not within the parallelogram then f(a)* must
be at either one of the bounding functions over which f(a) can range
within the parallelogram for a given a.

As illustrated in Figure 3, the bold line indicates the worst possible
value f(a)* for a in the interval [z, z2] that minimizes the removal
region. Given this worst case f(a)*, we now find the value for a that
maximizes the worst case removal region. We again consider two cases;
the first case is when f(a)* = W is inside the parallelogram
for a given a, the second case is when f(a)* is on the envelope.

Consider the first case where f(a)* = W is inside the par-
allelogram. The minimum removal region for a given a at f(a)* is

_AL*(a— 1)(z2 — a) — (f(w2) — f(z1))?

TRR(a, f(a)*) = = . (10)
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Figure 3: For a € [z1,x2], the thick line indicates the value of f(a)* that is
the worst case, i.e. has minimal removal region.
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Taking the partial derivative with respect to a gives

OTRR(a, f(a)*)
da

= L(—2a+ z1 + z2)

and setting equal to zero and solving for a gives

«  T1t+ X2
a g
2

This is the midpoint of the interval [zy, z2].

In the second case when f(a)* is on the envelope, it is clear that
the removal region for a in these intervals is smaller than the removal
region at the midpoint. In fact, the removal region decreases as a* is
further from the midpoint. Hence it is clear that the midpoint will
give the maximum removal region. [

The following theorem expresses the area of a parallelogram, and
Corollary 1 states that the best parallelogram to sample is the one
with the largest area.

Theorem 3 The area of a parallelogram defined over the interval
[x1, 2] with function values f(x1) and f(x2) can be expressed as

(L2(901 - 372)2 — (f(z1) - f($2))2)
2L '

Proof. Consider a parallelogram over the interval [z, 22|, where the
leftmost corner has the coordinates (z1, f(z1)) and the rightmost cor-
ner has the coordinates (z2, f(z2)). The area of the parallelogram (see
Figure 4) can be expressed as

2Lhl

hlsin 2a = m

Using several identities given in equations (3), (4) and (8) we can
express h and [ in terms of the coordinates (z1, f(x1)), (x2, f(z2))
and the Lipschitz constant.

The lower bracketing function that goes through points (x1, f(x1))
and (x4, f(x4)) has the representation y;, = f(z1) — Lz —x1| = L(x; —
x) + f(x1) for x € [x1,24). Similarly the lower bracketing function
that goes through points (z4, f(z4)) and (z2, f(z2)) can be written as
y1 = f(x2) — L|lz — 22| = L(x — x2) + f(x2) for = € [xq4, z2].
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The two lines intersect at x4, and we find the intersection point by
letting yn, = y; and solving for x, which gives:

L(x1 + x2) + f(21) — f(22)
2L '

Td —

Using that h = (z4 — 21)V1 + L? and using the expression for x4
just derived gives

(—L(z1 — 22) + (f(21) — f(22))) V1 + L
2L .

Similarily, for I we get | = (zo — z4)V/1+ L2, or

j_ (L@ — @) = (f(wn) = flw)))VI+ L2
2L

h =

after simplifying, the area of the parallelogram can be expressed as

2Lhl_ (L2(21 — 22)” — (f(21) — f(22))?)
1412 2L '

Corollary 1 Given a sequence of points vi,ve,...,Up+1 and n par-
allelograms, the next parallelogram to use for sampling to mazrimize
the mainimal total removal region is the parallelogram with the largest
area.

Proof. For a given interval [z, z2], the midpoint, a* = % max-
imizes the minimal removal region and gives the worst case removal
region as

L2(502 - 961)2 — (f(z2) — f(961))2
4L '

The area of any parallelogram is L2(12_901)2_2%(932)_][(“))2, and there-

fore the total removal region is maximized by picking the interval with
the largest parallelogram. [ |

TRR(a™, f(a)*) =

14



Figure 4: Calculating the area of a parallelogram.
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4 Conclusions

The procedure presented in section 2 provides an estimate and bounds
for a Lipschitz continuous function by sampling the midpoint of the
interval with the largest bracket. Section 3 presents a worst case anal-
ysis that proves this procedure is optimal in the sense that, on each
iteration, the choice of point to be evaluated maximizes the minimal
removal region. This is equivalent to minimizing the maximum pos-
sible error of the estimate. This single procedure provides an efficient
and effective means to provide a tight bracket to estimate a Lipschitz
function.

5 Acknowledgements

This work has been funded in part by an NSF collaborative grant,
numbers DMI-9820878 and DMI-9820744. The authors want to ac-
knowledge Ivone Sasmitra for her early work during her masters the-
sis [12]. We also thank Jana Littleton and Jennifer Temple for their
assistance during the revision of this paper.

References

[1] C.K. Chui, H. Diamond, L. Raphael. Shape-preserving quasi-
interpolation and interpolation by box spline surfaces. Journal
of Computational and Applied Mathematics 1989; 25: 169-198.

[2] D.A. Cooper. Learning Lipschitz Functions. International Journal
of Computer Mathematics 1995; 59: 15-26.

[3] P. Dierckx. Curve and Surface Fitting with Splines. Oxford Sci-
ence Publications. New York. 1993.

[4] P. Lancaster, K. Salkauskas. Curve and Surface Fitting: An In-
troduction. Academic Press. London. 1986.

[5] P. Hansen, B. Jaumard, S-H. Lu. Local optimization of univari-
ate Lipschitz functions: 1. Survey and properties. Mathematical
Programming 1992; 55: 251-272.

[6] P. Hansen, B. Jaumard, S-H. Lu. Global optimization of univari-
ate Lipschitz functions: II. New algorithms and computational
comparison. Mathematical Programming 1992; 55: 273-292.

16



[7]

[10]

[11]

P. Hansen, B. Jaumard, S-H. Lu. On Timonov’s Algorithm for
Global Optimization of Univariate Lipschitz Functions. Journal
of Global Optimization 1991; 1: 47-64.

L.M. Kocic, G.V. Milovanovic. Shape-preserving Approximations
by Polynomials and Splines. Computers and Mathematics with
Applications, 1997; 33(11): 59-97.

D. Kahaner, C. Moler, S. Nash. Numerical Methods and Software.
Prentice Hall Series in Computational Mathematics. Prentice-
Hall, 1989.

J.D. Pinter. Global Optimization in Action, Continuous and Lip-
schitz Optimization: Algorithms, Implementations and Applica-
tions. Kluwer Academic Publishers, 1996.

S.A. Piyavskii. An Algorithm for Finding the Absolute Extreme
of a Function. USSR Computational Mathematics and Mathe-
matical Physics 1972; 12: 57-67.

I. Sasmitra. Empirical and Analytical Comparisons of Deepest
Point with Stochastic Lipschitz Optimization. Masters Thesis,
University of Washington, 1995.

B.O. Shubert. A Sequential Method Seeking the Global Maxi-
mum of a Function. STAM Journal on Numerical Analysis, 1972;
9: 379-388.

B.T. Stander, J.C. Hart. A Lipschitz Method for Accelerated
Volume Rendering. Proceedings of 1994 Symposium on Volume
Visualization. IEEE, New York, NY, USA. 1995. p 107-114.

R.J. Vanderbei. Extension of Piyavskii’s Algorithm to Continuous
Global Optimization. Journal of Global Optimization, 1999; 14:
205-216.

G.R. Wood. The Bisection Method in Higher Dimensions. Math-
ematical Programming. 1992; 55: 319-337.

17



