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Abstract

It is commonly assumed that an acceleration in technological improvement should
result in a more rapid introduction of new technology. Under a simple technological
change model of a constant factor improvement in equipment costs per period, we show
that, paradoxically, the effect is to optimally delay the introduction of new technology.
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1 Introduction

US competitiveness was perceived as in a weakened condition in the early 80’s, resulting in
considerable effort to determine the reasons for this predicament. One explanation offered at
the time was the failure of US Industry to take the long view, thus failing to justify the large
upfront costs of replacing old technology by new. A report commissioned by the National
Association of Accountants and a consortium of high-technology manufacturing companies
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concluded that among the reasons responsible for the failure of American manufacturing
companies to update their factories was their reliance “on old tools to deal with changing,
new and very different manufacturing environments” (International Herald Tribune, March
29, 1987). Among the problems cited was the insistence of many companies on short payback
periods for investment in technology. To excluce the possibility of distortions by such end-of-
study effects, we explore in this note a simple but intuitively appealing model of technological
improvement in the context of an infinite horizon planning model. Nonetheless, as shall see,
our analysis suggests that a reluctance to introduce new technology may not be attributable
to shorter planning horizons alone.

The current literature on equipment replacement models in the presence of technologi-
cal change is predominantly directed toward developing algorithms for determining optimal
replacement decisions. Much of the effort is directed toward establishing the existence and
discovery of so-called forecast horizons that are sufficiently long that the current replacement
decision is unaffected by what transpires past this horizon. See for example Bean, Lohmann
and Smith [1, 2], Sethi and Chand [8], Chand and Sethi [3], Goldstein et al [5]. Since then,
by construction, the current replacement decision is in agreement with an infinite horizon
optimal replacement decision, these nominally finite horizon models also have the potential
to uncover the effect of technological improvement on the rapidity of acquiring new and bet-
ter technology. For example, Niar and Hopp [7] take the forecast horizon approach within
the context of a random lead time to introduction of a new technology. They show that
as the probability increases that the new technology will appear, it is more likely we will
keep our existing machine. However, Hopp and Niar [6] introduced an alternative model
of technological breakthroughs where the tendency can be to replace the current machine
earlier as the probability of a future technological breakthrough increases. Both of these
models are limited to a single type of technological breakthrough and offer no guidance as
to which model is more realistic.

An example of an infinite horizon model of technological improvement is offered in Elton
and Gruber [4] who assume a linear model of technological change. They establish that an
equal life replacement policy is optimal despite the assumption that technology is improving
over time. However they do not explore the effect on this cycle time of an acceleration in
technological change.

We adopt a geometric model of technological change in this paper. Specifically, we assume
that the costs of equipment acquisition as well as maintenance and operating costs drop by
a constant factor after each time period. For example, the costs of computer memory chips
follow the so-called Moore Law of dropping by a factor of 2 every year. Our focus within
this simplest model of technological change is to determine the effect of an acceleration in
technological improvement on the frequency of equipment replacement. We establish the
paradoxical result that we replace less often as technology improves. An important and
perhaps unsettling implication is that rapid technological improvement may not and indeed
should not necessarily lead to more rapid replacement of old technology.
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2 Model Formulation

We begin by modeling the costs of acquiring and maintaining a machine in the absence of
technological improvement. Let C̄i represent the undiscounted cost of acquiring, operating,
maintaining, and salvaging a machine kept for i periods, i = 1, 2, . . .. Let

Ci = C̄i − C̄i−1

represent the incremental cost of keeping a machine for i periods, i = 1, 2, . . . where C̄0 = 0.
We assume that it is never less costly to keep a machine for an additional period, i.e. that
Ci ≥ 0, i = 1, 2, . . .. Setting C̃i(γ) to be the discounted cost of keeping a machine for the
first i periods when the discount factor is γ, we get

C̃i(γ) =
i∑

k=1

γk−1Ck.

Note that we do not attempt to correct for when a cost may be incurred within a period.
Now for our model of technological improvement. We assume that all costs decrease by

a constant factor λ over each period of time where 0 < λ < 1. Hence the incremental cost
Ci of keeping a machine for the first i periods becomes λi−1Ci. Then letting C̃i(γ, λ) be the
discounted cost of keeping a machine for the first i periods, we have

C̃i(γ, λ) =
i∑

k=1

γk−1λk−1Ck =
i∑

k=1

(γλ)k−1Ck = C̃i(α)

where α = γλ. That is , the effect of technological improvement is to reduce the discount fac-
tor within a stationary model without technological change. Therefore we assume henceforth
a time stationary model of equipment costs where the effect of technological improvement
becomes the effect of dropping the prevailing discount factor.

3 The Effect of Technological Improvement on the Rate

of Acquisition of New Technology

Since costs are stationary, our optimal replacement strategy is to keep equipment for a time
τ ∗(α) where

τ ∗(α) = argmini=1,2,...

C̃i(α)

1− αi .

Equivalently, we may find τ ∗(α) as that replacement cycle i that minimizes the equated
annual charge Ai(α) where

Ai(α) =
(1− α)C̃i(α)

1− αi .
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We now explore how Ai(α) changes as α decreases. Our ultimate goal is to see how τ ∗(α)
changes as α decreases.

We begin with an assumption that we make henceforth.

Assumption 1 There exists a positive integer m such that Ci ≥ Ci+1 for 1 ≤ i < m and
Ci ≤ Ci+1 for i ≥ m.

Assumption 1 requires that the undiscounted marginal cost of keeping the equipment initially
drops and then eventually increases as the equipment ages. For example, the assumption
is met with m = 1 if total undiscounted cost C̄i is convex in i. This would correspond to
the case where the rate of decline in undiscounted salvage value is exceeded by a rise in
undiscounted maintainance and operating costs.

To compare equated annual charges when the discount factor drops, let Ai be the equated
annual charge for keeping the machine from period 1 through i when the discounting factor
is α and let Bi be the equated annual charge of keeping the machine from period 1 through
i when the discounting factor is β where α < β. That is,

∑i
k=1 α

k−1Ai =
∑i
k=1 α

k−1Ck where
0 < α < 1 and

∑i
k=1 β

k−1Bi =
∑i
k=1 β

k−1Ck and 0 < α < β < 1.

Lemma 1 If Ai−1 > Ci then Ai−1 > Ai > Ci, i ≥ 2. (This is also true with > replaced by
≥ throughout.)

Proof : Since Ai−1 > Ci,

i∑
k=1

αk−1Ai−1 >
i−1∑
k=1

αk−1Ai−1 + αi−1Ci >
i∑

k=1

αk−1Ci. (1)

By definition of Ai,

i∑
k=1

αk−1Ai =
i∑

k=1

αk−1Ck

=
i−1∑
k=1

αk−1Ck + αi−1Ci.

By definition of Ai−1,

i∑
k=1

αk−1Ai =
i−1∑
k=1

αk−1Ai−1 + αi−1Ci. (2)

From (1) and (2), we have

i∑
k=1

αk−1Ai−1 >
i∑

k=1

αk−1Ai >
i∑

k=1

αk−1Ci.

Therefore, Ai−1 > Ai > Ci. Note that is argument is also true with > replaced by ≥. ✷
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Lemma 2 It is optimal to keep the machine at least m periods.

Proof : By definition, A1 = C1. For i < m, Ci ≥ Ci+1. By Lemma 1 for i = 2, we get
since A1 = C1 ≥ C2 that A1 ≥ A2 ≥ C2 ≥ C3 if 2 < m. Again, by Lemma 1 for i = 3, we
get since A2 ≥ C3 that A2 ≥ A3 ≥ C3 ≥ C4 if 3 < m. In general, for all i < m, we have
Ai ≥ Ai+1. Hence, the discounted cost of keeping the machine for i + 1 periods is less than
keeping it for i periods for i < m. Thus, it is optimal to keep the machine at leastm periods.✷

Let A′γ(k,A, j) be such that paying A′γ(k,A, j) equally from period 1 through k is equiv-
alent to paying A equally from period 1 through j, 1 ≤ j < k, when the discounting factor
is γ. Note that A′(k,A, j) ≤ A for k > j.

Lemma 3 If β > α and k > j ≥ 1, then A′α(k,A, j) ≥ A′β(k,A, j).

Proof : By definition of A′γ(k,A, j),

j∑
i=1

αi−1A =
k∑
i=1

αi−1A′α(k,A, j) and
j∑
i=1

βi−1A =
k∑
i=1

βi−1A′β(k,A, j).

Since incremental costs are assumed to be nonnegative, one of the following two cases
can happen. Case I, A = 0. Then, A′α(k,A, j) = A′β(k,A, j) = 0. Case II, A > 0. Then, we
have

A′α(k,A, j)

(
1 +

∑k
i=j+1 α

i−1∑j
i=1 α

i−1

)
= A = A′β(k,A, j)

(
1 +

∑k
i=j+1 β

i−1∑j
i=1 β

i−1

)
.

Hence,

A′α(k,A, j)

(
1 +

∑k
i=j+1 α

i−1∑j
i=1 α

i−1
· α
−j

α−j

)
= A′β(k,A, j)

(
1 +

∑k
i=j+1 β

i−1∑j
i=1 β

i−1
· β
−j

β−j

)
.

Therefore,

A′α(k,A, j)

(
1 +

∑k−j
i=1 α

i−1∑j
i=1 α

i−j−1

)
= A′β(k,A, j)

(
1 +

∑k−j
i=1 β

i−1∑j
i=1 β

i−j−1

)
.

But 0 < α < β implies
∑k−j
i=1 α

i−1 <
∑k−j
i=1 β

i−1, and i − j − 1 < 0 for all i ≤ j implies∑j
i=1 α

i−j−1 >
∑j
i=1 β

i−j−1. Therefore, if A > 0, then A′α(k,A, j) > A′β(k,A, j). Therefore,
A′α(k,A, j) ≥ A′β(k,A, j). ✷

Lemma 4 Am ≥ Bm.

5



Proof : By rearranging the summation, we get

m∑
i=1

αi−1Ci =
m−1∑
k=1

k∑
i=1

αi−1(Ck − Ck+1) +
m∑
i=1

αi−1Cm. (3)

Since Ck ≥ Ck+1 for all k < m, Ck − Ck+1 ≥ 0 for all k < m. Let Am,k = A′α(m,Ck −
Ck+1, k), which means paying Am,k equally from period 1 through m is equivalent to paying
Ck − Ck+1 equally from period 1 through k, k < m, when the discount factor is α, i.e.,

m∑
i=1

αi−1Am,k =
k∑
i=1

αi−1(Ck − Ck+1).

From (3), we have

m∑
i=1

αi−1Ci =
m−1∑
k=1

m∑
i=1

αi−1Am,k +
m∑
i=1

αi−1Cm.

By again rearranging the summation, we have

m∑
i=1

αi−1Ci =
m∑
i=1

αi−1
m−1∑
k=1

Am,k +
m∑
i=1

αi−1Cm

=
m∑
i=1

αi−1

(
Cm +

m−1∑
k=1

Am,k

)
.

By definition of Am,
∑m
i=1 α

i−1Am =
∑m
i=1 α

i−1Ci. Thus,

m∑
i=1

αi−1Am =
m∑
i=1

αi−1

(
Cm +

m−1∑
k=1

Am,k

)
.

Therefore,

Am = Cm +
m−1∑
k=1

Am,k.

Now apply these arguments to the case where the discount factor is β. Let Bm,k =
A′β(m,Ck − Ck+1, k), then we also have

Bm = Cm +
m−1∑
k=1

Bm,k.

By Lemma 3 and by definition of Am,k and Bm,k, we have for all k < m,

Am,k = A′α(m,Ck − Ck+1, k) ≥ A′β(m,Ck − Ck+1, k) = Bm,k.

We then have Am ≥ Bm. ✷
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Lemma 5 If Ai−1 < Ci for some i > m, then Ai−1 < Aj for all j ≥ i. (This is also true if
we replace < by ≤ throughout.)

Proof : Proof by induction. If for some k > m, Ak−1 < Ck,

k∑
j=1

αj−1Ak−1 <
k−1∑
j=1

αj−1Ak−1 + αk−1Ck <
k∑
j=1

αj−1Ck. (4)

By definition of Ak,

k∑
j=1

αj−1Ak =
k∑
j=1

αj−1Cj

=
k−1∑
j=1

αj−1Cj + αk−1Ck.

By definition of Ak−1,

k∑
j=1

αj−1Ak =
k−1∑
j=1

αj−1Ak−1 + αk−1Ck. (5)

From (4) and (5), we have

k∑
j=1

αj−1Ak−1 <
k∑
j=1

αj−1Ak <
k∑
j=1

αj−1Ck.

Thus, Ak−1 < Ak < Ck. By assumption, Ck ≤ Ck+1 for all k ≥ m. Thus, Ak < Ck ≤
Ck+1. In conclusion, if Ak−1 < Ck for some k > m, then Ak−1 < Ak and Ak < Ck+1.
Since we have assumed that Ai−1 < Ci for some i > m, the result follows by mathematical
induction. ✷

Lemma 6 If α < β and Aj−1 ≥ Bj−1 ≥ Cj for some j, 2 ≤ j, then Aj ≥ Bj.

Proof : By definition of Ai and Ai−1, and since Aj−1 ≥ Bj−1 ≥ Cj,

j∑
i=1

αi−1Aj =
j−1∑
i=1

αi−1Aj−1 + αj−1Cj

≥
j−1∑
i=1

αi−1Bj−1 + αj−1Cj

=
j∑
i=1

αi−1Cj +
j−1∑
i=1

αi−1(Bj−1 − Cj). (6)
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Let A′′ = A′α(j, Bj−1 − Cj, j − 1). That is, paying A′′ equally from period 1 through j is
equivalent to paying Bj−1−Cj equally from period 1 through j−1 when the discount factor
is α, i.e.,

j∑
i=1

αi−1A′′ =
j−1∑
i=1

αi−1(Bj−1 − Cj). (7)

From (6) and (7), we have

j∑
i=1

αi−1Aj ≥
j∑
i=1

αi−1Cj +
j∑
i=1

αi−1A′′ =
j∑
i=1

αi−1(Cj +A′′).

Thus, Aj ≥ Cj + A′′. By definition of Bi and Bi−1, and since Bj−1 ≥ Cj,

j∑
i=1

βi−1Bj =
j−1∑
i=1

βi−1Bj−1 + βj−1Cj

=
j∑
i=1

βi−1Cj +
j−1∑
i=1

βi−1(Bj−1 − Cj). (8)

Let B′′ = A′β(j, Bj−1 − Cj, j − 1). Then we also have,

j∑
i=1

βi−1B′′ =
j−1∑
i=1

βi−1(Bj−1 − Cj). (9)

From (8) and (9), we have

j∑
i=1

βi−1Bj =
j∑
i=1

βi−1Cj +
j∑
i=1

βi−1B′′ =
j∑
i=1

βi−1(Cj +B′′).

Thus, Bj = Cj +B′′. By Lemma 3 and by definition of A′′ and B′′,

A′′ = A′α(j, Bj−1 − Cj , j − 1) ≥ A′β(j, Bj−1 − Cj , j − 1) = B′′.

Thus, Aj ≥ Cj + A′′ ≥ Cj +B′′ = Bj. ✷

We finally come to our main result.

Theorem 1 For α ≤ β, τ ∗(α) ≥ τ ∗(β), i.e. the optimal time between equipment replace-
ments increases as technology improves.
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Proof : Since we can model the effect of technological improvement by adopting a smaller
discounting factor, it is sufficient to show that the optimal time for keeping the machine
increases as the discounting factor decreases.

From Lemma 2, it is optimal to keep the machine at least m periods. If Ak ≥ Bk, for
some k, m ≤ k, then one of the following three cases occurs.

Case I: Ck+1 ≥ Ak ≥ Bk. Then it is optimal in period k to replace in both cases, by
Lemma 5.

Case II: Ak ≥ Bk ≥ Ck+1. By Lemma 1, it is not optimal to replace at k in both cases.
Morever, by Lemma 6, we have Ak+1 ≥ Bk+1.

Case III: Ak > Ck+1 > Bk. By Lemma 1, it is optimal to keep the machine in period k
in the α-case. By Lemma 5 (replace α with β and A with B), it is optimal to replace the
machine in period k in the β-case.

By Lemma 4 Am ≥ Bm. In addition, Ak ≥ Bk, for some k, m ≤ k, either implies
a) we never keep the machine in period k in the β-case while replacing in the α-case, or b)
Ak+1 ≥ Bk+1 and we inductively conclude the same result for subsequent periods. Therefore,
the optimal time for keeping the machine increases as the discounting factor decreases. ✷

From the above theorem, we conclude that the optimal response to an acceleration of
technological improvement is to keep our current equipment longer, thus delaying introduc-
tion of the new technology.
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