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Abstract

We discuss infeasibility analysis (study of changes needed to make an infeasible

system feasible) for systems of linear constraints.
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1 Infeasibility Analysis for Systems of Linear Equa-

tions

Mathematical models for real world problems often involve systems of linear equations

of the form “Ax = b”. Some of these models may contain more equations than variables.

Consider such a model in which the coefficient matrix A is of order m×n. Then the

vector of right hand side constants in the model (RHS constants vector) b ∈ Rm.

In such models, the coefficients in the A matrix come from things like properties of

materials which are combined, etc., which are very hard to change. The RHS constants

vector usually comes from requirements that are to be met, or targets to be achieved,

etc., which are easier to modify if a need arises.

Suppose it turns out that the model is inconsistent, i.e., it has no solution. Math-

ematically there is nothing more that can be done on the current model. But the real

world problem does not go away, it has to be solved somehow. In this situation we are

forced to investigate what practically feasible changes can be carried out on the model

to modify it into a consistent or feasible system. Infeasibility analysis is a study of such

changes (see [1, 3, 5, 7, 8, 10]).

Since it is very hard to change the coefficient vectors of the variables, changes in

them are rarely considered in applications. In most cases, it is the RHS constants which

are changed, this is what we consider in this paper.

Historically, before the advent of linear programming (Dantzig [4]), if the system

“Ax = b” is infeasible, people used to find an approximate solution for it using the

method of least squares, which is reported to have been developed by the 19th century

mathematician Carl Friedrich Gauss while studying linear equations for approximating

the orbit of the asteroid Ceres. In this method, the approximate solution is taken as an

optimum solution of the unconstrained minimization problem in the variables x

Minimize ||Ax − b||2.

Let x̄ be an optimum solution of this problem. x̄ is known as a least squares solution
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of the inconsistent system “Ax = b”. Accepting x̄ as an approximate solution of the

system, is equivalent to changing the RHS constants vector b to b̄ = Ax̄, to make the

system feasible. This b̄ is unique, it is the point in the linear hull of the columns of A

that is nearest by Euclidean distance to b.

The disadvantage of this method of least squares is that the user has no control on

which RHS constants bi are changed to make the system feasible. Normally, there are

costs associated with changing the values of bi, and these are different for different i.

The least squares method does not take this information into account to find a least

costly modification of the b-vector to make the system feasible.

1.1 How is Infeasibility Detected?

Our original system is

Ax = b (1)

where A is an m × n matrix, b ∈ Rm, and x = (x1, . . . , xn)T is the column vector of

decision variables. The alternate system for (1) based on the same data as in (1) is

πA = 0, πb = 1 (2)

where π = (π1, . . . , πm) is the vector of variables in the alternate system. The clasical

theorem of alternatives states that (1) has no solution x iff (2) has a solution π.

Both these systems can be processed simultaneously by the Gauss-Jordan (GJ)

method applied on system (1) (see [6]). For this, it is convenient to record (1) in the

form of a detached coefficient tableau. The GJ method tries to carry out a GJ pivot step

in each row of this tableau with the aim of creating a unit submatrix of order m on its

left hand side. In this process, at each stage, each row in the current tableau will always

be a linear combination of rows in (1). For each row vector in the current tableau, the

coefficients in this linear combination will be denoted by a row vector μ = (μ1, . . . , μm).

These μ-vectors for the various rows in the current tableau are stored and updated under
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a “memory matrix”. These μ-vectors for the various rows in the original tableau are

the unit vectors in Rm. These are recorded in the original tableau before beginning the

application of the GJ method.

Memory matrix∗ Original tableau

π1 π2 . . . πm x1 x2 . . . xn

1 0 . . . 0 a11 a12 . . . a1n b1

0 1 . . . 0 a21 a22 . . . a2n b2

...
...

...
...

...
...

...

0 0 . . . 1 am1 am2 . . . amn bm

∗Coeff. vector for expressing the row on the right

of this memory matrix as a linear combination

of rows in the original tableau.

Carrying out all the computations involved in the pivot steps, also on the columns

of the memory matrix, updates it. Here is a summary of the method.

1. Select the order in which rows 1 to m in the tableau are to be chosen as pivot

rows.

2. General Step: Suppose row r is the pivot row for the pivot step in the present

tableau. Let ār1, . . . , ārn, b̄r be the coefficients of the variables and the updated

RHS constant in row r in the present tableau.

2.1. If (ār1, . . . , ārn) �= 0 select a variable xj for a j such that ārj �= 0 as the basic

variable in row r, and the column of xj in the present tableau as the pivot

column, and perform the GJ pivot step. If row r is the last pivot row in the

selected order, go to 3 if 2.3 given below has never occurred so far, or to 4

otherwise. If row r is not the last pivot row in the selected order, with the

resulting tableau go back to 2 to perform a pivot step with the next pivot

row in the selected order.
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2.2. If (ār1, . . . , ārn) = 0 and b̄r = 0, this row is called the “0 = 0” equation. This

indicates that the constraint in the original system (1) corresponding to this

row is a redundant constraint and can be eliminated without changing the

set of solutions.

If row r is the last pivot row in the selected order, go to 3 if 2.3 given below

has never occurred so far, or to 4 otherwise. If row r is not the last pivot

row in the selected order, with the present tableau go back to 2 to perform a

pivot step with the next pivot row in the selected order.

2.3. If (ār1, . . . , ārn) = 0 and b̄r �= 0, this row is called the “0 = α” equation for

α = b̄r �= 0, or an inconsistent or infeasible equation. In this case the original

system (1) has no solution.

If (μ̄1, . . . , μ̄m) is the row in the memory matrix in row r in the present

tableau, then π̄ = (1/b̄r)(μ̄1, . . . , μ̄m) is a solution of the alternate system (2).

If it is only required to either find a solution to (1) or determine that it is

inconsistent, the method can terminate here.

But to carry out infeasibility analysis, the method moves to 4 if row r is

the last pivot row in the selected order, or to 2 with the present tableau to

perform a pivot step with the next pivot row in the selected order.

3. Make all the nonbasic variables in the final tableau equal to 0, and the basic

variable in each row equal to the updated RHS constant in that row in the final

tableau. This is a basic solution to (1), terminate.

4. Infeasibility Analysis: In this case the original system (1) is infeasible.

One possible way to make the system (1) feasible is:

for each i = 1 to m such that the ith equation in the final tableau is

“0 = b̄i” for some b̄i �= 0, change bi in the original system (1) to bi−b̄i = b′i
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and leave the other bi in the original system (1) unchanged. This change of b to

b′ in (1) converts all inconsistent equations “0 = b̄t” for b̄t �= 0 in the final tableau

into redundant equations “0 = 0”.

A basic solution of the modified system Ax = b′ is obtained by making all the

nonbasic variables in the final tableau equal to 0, and the basic variable in each

row equal to the updated RHS constant in that row in the final tableau. Terminate.

As a numerical example, we consider the following system.

Original system

x1 x2 x3 x4 x5 x6 x7 b b′

1 0 1 −1 1 1 0 −7 −7

0 −1 2 1 −1 0 1 8 8

1 −2 5 1 −1 1 0 9 9

1 1 0 2 1 0 0 10 10

3 0 5 5 1 1 2 35 29

0 0 1 3 1 0 0 15 15

3 0 7 11 3 1 2 55 59

b′ is the modified RHS vector found under the

method to make original system feasible.

The method is carried out by choosing rows 1 to 7 in natural order as pivot rows.

The following final tableau is obtained.

Memory matrix Final tableau

μ1 μ2 μ3 μ4 μ5 μ6 μ7 BV x1 x2 x3 x4 x5 x6 x7 b̄

−3 −4 0 4 0 −5 0 x1 1 0 0 0 −8 −3 4 18

5 4 0 −5 0 7 0 x2 0 1 0 0 13 5 −6 −38

−1 −2 1 0 0 0 0 0 0 0 0 0 0 0 0

3 3 0 −3 0 4 0 x3 0 0 1 0 7 3 −3 −15

−1 2 0 −2 1 0 0 0 0 0 0 0 0 0 6

−1 −1 0 1 0 −1 0 x4 0 0 0 1 −2 −1 1 10

−1 2 0 −2 0 −2 1 0 0 0 0 0 0 0 −4

“BV” is basic variable selected in row
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The first inconsistent equation to be obtained in the method is the one in row 5 of

the final tableau, “0 = 6”, it leads to the solution

π = (−1, 2, 0,−2, 1, 0, 0)/6

of the alternate system. The second inconsistent equation to be obtained is “0 = −4”

in the last row of the final tableau, it leads to the solution

π = (1,−2, 0, 2, 0, 2,−1)/4

of the alternate system.

One way of making the original system feasible that is revealed by the informa-

tion in the final tableau is to change b to b′ (i.e., change b5 from 35 to 29, and b7

from 55 to 59). This leads to a modified system for which a basic solution is x =

(18,−38,−15, 10, 0, 0, 0)T .

Here we changed the values of two RHS constants to make the system feasible, we

decreased b5 from 35 to 29, and increased b7 from 55 to 59. This is only one possible

modification of the original b vector to make the system feasible, not necessarily the

best. Models for determining the best possible change in the RHS constants vector to

make the original infeasible system into a feasible one are discussed next.

1.2 Models for Finding Optimal Changes in RHS Constants

Vector to Make System Feasible

In the example discussed above, we processed the rows in the order from top to bottom as

pivot rows, and ended up with two inconsistent equations “0 = b̄t” for some b̄t �= 0, and

one redundant equation “0 = 0” in the final tableau. Does the number of inconsistent

equations in the final tableau depend on the order in which the rows of the tableau are

selected as pivot rows? It does. Consider the following example.
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Original system

x1 x2 x3 b Eq. no.

1 0 0 1 1

0 1 0 1 2

0 0 1 1 3

1 1 1 2 4

1 1 1 3 5

1 1 1 3 6

Here are the final tableaus under different orders of selection of rows in the tableau

as pivot rows.

Final tableau when eqs. used

as pivot rows in order 1 to 6

x1 x2 x3 RHS Eq. no.

1 0 0 1 1

0 1 0 1 2

0 0 1 1 3

0 0 0 −1 4

0 0 0 0 5

0 0 0 0 6

No. inconsistent equations found = 1
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Final tableau when eqs. used as

pivot rows in order 4, 1, 2, 3, 5, 6

x1 x2 x3 RHS Eq. no.

1 0 0 1 4

0 1 0 1 1

0 0 1 0 2

0 0 0 1 3

0 0 0 1 5

0 0 0 1 6

No. inconsistent equations found = 3

So, if we selected the equations in this system in the order 1 to 6 as pivot rows in the

GJ method, we have to decrease just one RHS constant (the 4th in original system) by

one to make system feasible by above procedure. Changing the pivot row order to 4, 1,

2, 3, 5, 6, requires decreasing three RHS constants (the last three) each by one to make

system feasible by the same procedure.

What is the Maximum Number of Inconsistent Equations That

Can Be Discovered?

When system (1) is solved by the GJ method, and system (1) is infeasible, the method

will find at least one inconsistent equation of the form “0 = b̄t” for some b̄t �= 0 before

it terminates. Also, we have seen that the total number of such inconsistent equations

found under the method may depend on the order in which rows of the system are

selected as pivot rows. What is the maximum possible number of such inconsistent

equations?

In the GJ method, each time a new inconsistent equation of the form “0 = b̄t” for

some b̄t �= 0 is encountered, the method generates a new solution for the alternate system

(2) from this row. If this equation is from row r of the current tableau, then the variable
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πr in (2), which was 0 in all the solutions of (2) generated in the method in the past,

has a nonzero value in the solution generated from this row. This implies that the set

of all solutions of (2) generated in the method, which is the same as the number of

inconsistent equations discovered in the method, is ≤ 1 + the dimension of the set of

solutions of (2) = 1 + m− rank(A
...b) = m− rank(A).

Models for Optimum Modification of the b-vector

In practical applications, each equation in the model represents a constraint that

is expected to be satisfied, it usually corresponds to a contractual obligation agreed

upon. In American business, contractual obligations can only be broken at the expense

of paying a certain penalty. The amount of this penalty can vary from a small amount

to an enormous sum depending on the importance of the contractual obligation.

As an example, in 1999, a cable TV company, Mediaone, signed a contract to merge

with another company, Comcast. After the signing of this contract, Mediaone received

another merger proposal from AT&T on better terms, but in order to break the agreed

upon merger contract with Comcast, it had to pay Comcast a penalty of more than

a billion dollars. In American business culture, such penalties for breaking all types

of contracts are already an established business practice, and this practice is becoming

widely adopted all over the world.

We consider models for changing the inconsistent system Ax = b where A is of order

m × n, by changing the b-vector.

The Smallest Changes Model: This model for modifying the inconsistent system

“Ax = b”, seeks a modification of the RHS constants vector b = (bi) to b′ = (b′i) to make

the system feasible with the smallest number of changes, i.e., to minimize the number

of i for which bi �= b′i.

The Smallest Penalty Model: If the cost of changing bi is the penalty (or fixed

cost) fi, which is known for all i, this model seeks to find the set of bi to change to make
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the system feasible to minimize the associated sum of penalties. Actually the smallest

changes model is a special case of this model obtained by taking fi = 1 for all i. These

two models are suitable to use if the penalties are fixed costs that only depend on the

number of changes and not on the amount of each change.

The Smallest Variable Cost Model: In some applications, the cost of change

may be a variable cost depending on the amount of each change, but not on the number

of changes. In this case let:

0 ≤ c+
i = cost per unit increase in the value of bi

0 ≤ c−i = cost per unit decrease in the value of bi.

This model seeks to change bis to make the system feasible so as to minimize the

total variable cost of all the changes. It leads to the linear program (LP)

Minimize
m∑

i=1

(c−i u+
i + c+

i u−
i )

subject to Ax + u+I − u−I = b

u+, u− ≥ 0

where u+ = (u+
1 , . . . , u+

m)T , u− = (u−
1 , . . . , u−

m)T , and I is the unit matrix of order m.

This model was introduced under the name elastic programming by G. Brown and G.

Graves in a talk they gave at an ORSA-TIMS Conference in 1977, and discussed more

fully by Chinnek and Dravineks [3]. They call the variables u+
i , u−

i elastic variables

since they allow the constraints to “stretch” to make the feasible region nonempty. This

LP has an optimum solution. If (x̄, ū+, ū−) is an optimum solution of this LP, then

b′ = b − ū+ + ū− is the optimum modification of b under this model; and x̄ is a feasible

solution of the modified model.

So, this variable cost model can be solved very efficiently by linear programming

techniques only.
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The Smallest Variable Cost Model with Bounds: This is the same as the

above model, except that bounds are imposed on the changes. For i = 1 to m, let

pi ≥ 0 denote the maximum possible increase allowed in the

value of the RHS constant bi

qi ≥ 0 denote the maximum possible decrease allowed in the

value of the RHS constant bi.

If some of the RHS constants bi cannot be increased (decreased) from their present

values, then we set pi = 0 ( qi = 0), and if the value of bi cannot be changed at all, we

set both pi, qi equal to zero, for those i. This model seeks to change bis subject to the

bounds given above, to make the system feasible so as to minimize the total variable

cost of all the changes. It leads to the linear program (LP)

Minimize
m∑

i=1

(c−i u+
i + c+

i u−
i )

subject to Ax + u+I − u−I = b

0 ≤ u+
i ≤ qi, 0 ≤ u−

i ≤ pi, for i = 1 to m

where I is the unit matrix of order m.

If this LP is infeasible, it means that the bounds specified for the changes are too

tight to make the original syatem of equations consistent.

On the other hand, if (x̄, ū+, ū−) is an optimum solution of this LP, then b′ =

b − ū+ + ū− is the optimum modification of b under this model; and x̄ is a feasible

solution of the modified model.

1.3 Results on the Smallest Penalty Models

In order to find the change of b to b′ that makes the inconsistent system Ax = b feasible

with the smallest number of changes, we need to determine the order in which the rows

in the system have to be chosen as pivot rows in the GJ method, to get the smallest
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number of inconsistent equations in the final tableau. We will prove that this problem

is NP-hard.

Theorem 1: Consider the inconsistent system of linear equations, Ax = b. Deter-

mining the smallest number of changes in the b-vector that will make this system feasible

is NP-hard.

Proof: We review some definitions first. Let D be a matrix of order m×n and rank

r such that the system

Dx = d (3)

is feasible. Let D.j denote the jth column vector of the matrix D. A solution x̄ = (x̄j)

of this system is said to be a basic solution if {D.j : j such that x̄j �= 0} is linearly

independent. So, the number of basic solutions of (4) is ≤
⎛
⎜⎝

n

r

⎞
⎟⎠.

A basic solution of (3) is said to be a

nondegenerate basic

solution

if the number of nonzero variables in it is r

degenerate basic so-

lution

if this number is ≤ r − 1.

The solutions of (3) with the smallest number of nonzero variables are always basic

solutions of (3).

Let M ≥ 2, N ≥ 2 be positive integers. Let {a1, . . . , aM}, {b1, . . . , bN} be two sets of

positive integers satisfying the balance condition a1 + . . .+aM = b1 + . . .+ bN . Consider

the following system of M +N−1+MN constraints in MN double subscripted variables

xij , i = 1 to M , j = 1 to N .
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∑N
j=1 xij = ai, i = 1, . . . , M

∑M
i=1 xij = bj , j = 1, . . . , N − 1

⎫⎪⎬
⎪⎭ (4)

xij = 0, i = 1, . . . , M ; j = 1, . . . , N } (5)

(4) is the system of equality constraints in a balanced transportation problem, it is

of full row rank. When (4) is solved by the GJ method, the final tableau will have a

basic variable selected in each row, and the updated RHS constant in it becomes the

value of that basic variable in the corresponding basic solution for (4).

Since (5) requires all the variables xij to be zero, the combined system (4), (5) is

inconsistent. Also, it is clear that (4), (5) can be made consistent by changing M +N−2

or less RHS constants iff (4) has a degenerate basic solution. However, it has been shown

in (CKM [2]) that checking whether (4) has a degenerate basic solution is NP-hard. So

checking whether (4), (5) can be made consistent by changing the values of M + N − 2

or less RHS constants is NP-hard. This implies that the problem of finding the smallest

number of RHS constants in a general inconsistent system of linear equations to make

it consistent is NP-hard. •

Even though the smallest changes model is NP-hard, quite often, optimum solutions

of the smallest variable cost model turn out to be also optimal to the smallest changes

model. So, a reasonable heuristic approach to solve the smallest penalty model is to

take as an approximate solution for it the optimum solution of the smallest variable cost

model with both c+
i , c−i equal to fi/si, where si is an estimate of the range of change of

bi to achieve feasibility.
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2 Infeasibility Analysis for Systems of Linear Con-

straints Including Inequalities

For the same reasons as mentioned in Section 1, it is hard to make changes in the

coefficient matrix of the constraints in systems including inequalities. Hence, here also,

we will only consider changes in the RHS constants that will modify an infeasible system

into a feasible one.

Models of systems of linear constraints including linear inequalities, usually involve

nonnegativity constraints on variables. Nonnegativity constraints appear naturally in

models involving economic activities, since these can only occur at nonnegative levels.

These nonnegativity constraints of the form: x ≥ 0, have the important property that

it is impossible to decrease the RHS constants in them. Hence, in trying to modify

an infeasible model involving linear inequalities into a feasible one by changing some

RHS constants, the following features may be specified: some RHS constants cannot be

decreased, some others cannot be increased, while some others cannot be changed at all.

Also, any possible change may be limited by a practical bound.

Let Ai., bi denote the row vector of the coefficients of the variables, and the RHS

constant in the ith constraint. We consider the system in the following general form

(clearly, all the inequality constraints can be expressed in the ≥ form).

Ai.x

⎧⎪⎨
⎪⎩

= bi, i = 1, . . . , m

≥ bi, i = m + 1, . . . , m + p
(6)

Any nonnegativity constraints on individual variables are included among the p in-

equalities in the above model. Let b = (bi).

First we consider the simple case when all changes in the value of any bi are possible.

The alternate system for (6) is
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∑m+p
i=1 πiAi. = 0

∑m+p
i=1 πibi > 0

πi ≥ 0 i = m + 1, . . . , m + p

(7)

where π = (π1, . . . , πm+p) is the vector of variables in the alternate system. The theorem

of alternatives for (6) states that (6) has no feasible solution x iff (7) has a feasible

solution π.

To find a feasible solution for (6), we solve a Phase I problem that has additional

variables u+ = (u+
1 , . . . , u+

m)T , u− = (u−
1 , . . . , u−

m)T , t = (tm+1, . . . , tm+p)
T called artificial

variables; which is a linear program.

Minimize w =
m∑

i=1

(u+
i + u−

i ) +
m+p∑

i=m+1

ti

subject to Ai.x + u+
i − u−

i = bi, i = 1, . . . , m

Ai.x + ti ≥ bi, i = m + 1, . . . , m + p

u+
i , u−

i , ti ≥ 0 for all i

If (x̄, t̄, ū+, ū−) is an optimum solution, and w̄ is the optimum objective value in the

Phase I problem, then x̄ is a feasible solution for (6) if w̄ = 0.

If w̄ > 0, then (6) is infeasible. In this case one possible way to make the system (6)

feasible is

for each i = 1, . . . , m, define b′i = bi − (ū+
i − ū−

i )

for each i = m + 1, . . . , m + p, define b′i = bi − t̄i

and let b′ = (b′i). Changing the original RHS constants vector b to b′ converts (6) into

a feasible system, and x̄ is a feasible solution of the modified system. This is only one

possible modification of the original b-vector to make the system feasible, not necessarily

the best.

If w̄ > 0, let π̄ = (π̄1, . . . , π̄m+p) be an optimum dual solution for the Phase I problem.

Then, π̄b > 0, and therefore π̄ is a feasible solution of the alternate system (7).
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Finding All (Minimal) Infeasible Subsystems

When (6) is infeasible, there is often a mathematical interest in identifying a subset

of constraints in (6) which by itself is infeasible. Such an infeasible subset can be found

from any feasible solution π = (π1, . . . , πm+p) for the Phase I dual satisfying πb > 0 ,

Murty [8]. For any such dual feasible π = (πi) satisfying πb > 0, the set of constraints

with indices in the set {i : 1 ≤ i ≤ m+p is such that πi �= 0} is infeasible. Using this and

the Phase I dual, one can generate all subsets of constraint indices that are infeasible.

Also, when (6) is infeasible, the subset of indices of nonzero variables in an extreme

point π of the Phase I dual satisfying πb > 0, is a minimal infeasible (or irreducibly

inconsistent) subset of constraints of (6) (a set of constraints constitutes a minimal

infeasible or irreducibly inconsistent system if it is itself infeasible, but every proper

subsystem of it is feasible). Hence from the Phase I dual, we can also derive all minimal

infeasible subsets of constraints in (6)

When (6) is infeasible, the problem of finding the smallest cardinality subset of

constraints in (6) which is infeasible is also of mathematical interest. By the above, this

is equivalent to the problem of finding the most degenerate basic solution of the Phase

I dual satisfying πb > 0, which is NP-hard from the results in [ 2, 9 ].

Optimum Modification of the b Vector to Make An Infeasible

System Feasible

Every linear equation can be expressed as a pair of linear inequalities. Using this

and the result in Theorem 1, we can conclude that when (6) is infeasible, the problem of

making the smallest number of changes in (bi) that will modify (6) into a feasible system

is NP-hard.

Suppose (6) is infeasible. We will now consider the most practically useful model for

modifying the b-vector in it optimally to make the system feasible. It is the smallest

variable cost model with bounds, that leads to a type of Phase I problem with bounds.
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For i = 1 to m, let

pi ≥ 0 denote the maximum possible increase allowed in the

value of the RHS constant bi

qi ≥ 0 denote the maximum possible decrease allowed in the

value of the RHS constant bi

0 ≤ c+
i denote the cost per unit increase in the value of bi

0 ≤ c−i denote the cost per unit decrease in the value of bi.

If some of the RHS constants bi for 1 ≤ i ≤ m cannot be decreased (increased) from

its present values we set qi = 0(pi = 0), and we set both qi = pi = 0 if the value of bi

cannot be changed at all.

For i = m + 1 to m + p, notice that the ith constraint in (6) becomes tighter as

bi is increased, so the modification in bi that is needed to make the system feasible is

to reduce it as defined by Chinnek and Dravineks [3]. So, for these i we only consider

decreasing these bi. Hence, for m + 1 ≤ i ≤ m + p, let

qi ≥ 0 denote the maximum possible decrease allowed in the

value of the RHS constant bi (qi is set at 0 if bi cannot

be decreased)

0 ≤ c−i denote the cost per unit decrease in the value of bi.

This model leads to the linear program

Minimize w =
m∑

i=1

(c+
i u−

i + c−i u+
i ) +

m+p∑
i=m+1

c−i ti

subject to Ai.x + u+
i − u−

i = bi, i = 1, . . . , m

Ai.x + ti ≥ bi, i = m + 1, . . . , m + p

0 ≤ u+
i ≤ qi, 0 ≤ u−

i ≤ pi, 0 ≤ ti ≤ qi for all i

If this LP is infeasible, it means that the bounds specified for the changes are too

tight to make the original syatem feasible.
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On the other hand, if (x̄, ū+, ū−, t̄) is an optimum solution of this LP, then b′ = (b′i)

where

b′i =

⎧⎪⎨
⎪⎩

bi − ū+
i + ū−

i , for i = 1 to m

bi − t̄i, for i = m + 1 to m + p

is an optimum modification of b under this model; and x̄ is a feasible solution of the

modified model.

3 Other Mathematical Results

1. Consider the smallest changes model of making the infeasible system “Ax = b”

into a feasible one. Let A be of order m × n and rank r. Clearly r < m. When the

GJ method discussed in Section 1.1 is applied on the system “Ax = b”, exactly r pivot

steps can be carried out, by the end of which all the remaining m − r row vectors in A

would become 0-vectors. So, the smallest number of changes in the b-vector needed to

make the system “Ax = b” feasible is ≤ m − r.

For i = 1 to m, let ti denote the change in bi to make the system feasible. Let

t = (t1, . . . , tm). Then x, a feasible solution of the modified system, and t together

satisfy

Ax − It = b (8)

where I is the unit matrix of order m. The smallest changes model is equivalent to finding

a feasible solution (x̄, t̄) with t̄ having the smallest number of nonzero components.

Consider the case in which b is nondegenerate in (8). Then any sequence of pivot

steps performed on (8) will always keep every component of the updated RHS vector

nonzero. Hence, in every basic solution of (8) corresponding to a basic vector with the

maximum possible number, r, of xj variables as basic variables, exactly m− r variables

from the vector t will be nonzero. This implies that in every solution of (8), at least

m − r variables from t will be nonzero. These facts imply the following in this case:
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(i) When b is nondegenerate in (8), the number of inconsistent equations of the form

0 = α for some α �= 0 discovered in the GJ method applied on “Ax = b” is always

m − r, independent of the order in which the rows are selected as pivot rows.

(ii) In this case the smallest number of changes to be made in the b-vector to make the

system “Ax = b” feasible is m − r.

(iii) The infeasibility analysis step in the GJ method discussed in Section 1.1 always

leads to a modification of the RHS vector in “Ax = b” to make the system feasible

with the smallest number of changes, independent of the order in which rows are

selected as pivot rows in the method.

It is well known that in a probabilistic sense, most of the column vectors b ∈ Rm

will be nondegenerate in system (8). Thus even though in the worst case the smallest

number of changes model is hard, for most of the systems the solution found by the

GJ method of Section 1.1 will be optimum for it. Unfortunately, practical use of this

argument is made difficult because checking whether a given b-vector is nondegenerate

in (8) is possibly a hard problem itself.

2. When a system of linear constraints is infeasible, a problem of mathematical

interest is to find a smallest cardinality subset of constraints whose deletion from the

system will make the remaining system feasible. Chakravarti [1] shows that this problem

is NP-hard even when all the constraints in the system are equations (actually our

Theorem 1 in Section 1.3 also follows from the elegant proof of this result of Chakravarti,

through 0 − 1 integer programming). In [5] it has been shown that this problem can be

solved in polynomial time if the number of variables in the system, n, is fixed; however

the complexity of this algorithm grows exponentially with n.

3. Consider the system of linear constraints (6) containing m + p constraints num-

bered 1, . . . , m + p. Let M = {1, . . . , m + p}, the index set of all the constraints in the
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system. Let b ∈ Rm+p be the RHS constants vector in the system. Suppose system (6)

is infeasible. Let

IS(b) = Class of all subsets of M which form infeasible

subsystems,

FS(b) = Class of all subsets of M which form feasible sub-

systems.

In Section 2 we have seen how the class IS(b) can be completely determined from

the Phase I dual. The class IS(b) is closed under the operation of taking supersets (i.e.,

if D ∈ IS(b), then any E satisfying D ⊂ E ⊂ M is also in IS(b)). Similarly, the class

FS(b) is closed under the operation of taking subsets.

The classes IS(b), FS(b) are related. For example, if D is a minimal set in the class

IS(b), then all proper subsets of D are in the class FS(b); and if E is a maximal set in

the class FS(b), then all strict supersets of E (i.e., sets G �= E satisfying E ⊂ G ⊂ M)

are in IS(b). Using these properties, one can derive the class FS(b) from the class IS(b)

by the following: it is the union of the classes of all proper subsets of minimal sets in

the class IS(b). Therefore, if

α = smallest cardinality of a subset in the class IS(b)

β = largest cardinality of a subset in the class FS(b)

then we have β ≥ α − 1, and in fact

β = −1 + maximum cardinality among minimal sets in the class IS(b).

It is interesting to study how the class IS(b) varies as b varies over the nonconvex

set K = set of all RHS constants vectors in (6) for which (6) is infeasible, while the

confficient matrix in (6) remains unchanged.

4. When a system of linear constraints is infeasible, another problem of mathemat-

ical interest is to find a partition of the constraints in it into the smallest number of
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subsystems such that each subsystem is feasible. Let us consider two special cases of

this problem, one dealing with equality constraints only, and the other dealing with

inequalities only.

Problem 1: Given an infeasible system of constraints

Ai.x = bi, i = 1, . . . , m (9)

find a partition M1, . . . , Mr of M = {1, . . . , m} into the smallest number r of subsets

such that

Ai.x = bi, i ∈ Mk

is feasible for all k = 1 to r.

Problem 2: Given an infeasible system of constraints

Di.x ≥ di, i = 1, . . . , p (10)

find a partition P1, . . . , Ps of P = {1, . . . , p} into the smallest number s of subsets such

that

Di.x ≥ di, i ∈ P�

is feasible for all � = 1 to s.

A heuristic approach for solving these problems is the following greedy scheme.

The greedy scheme: Find a maximum cardinality (or at least a maximal) feasible

subset of the constraints. Make this one of the subsets in the partition. Peel it off and

repeat the same process with the remaining system of constraints.

Even if a maximum cardinality feasible subset of constraints is identified in each stage

of this greedy scheme, we cannot guarantee that the partition generated is optimal, as
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the following example involving 8 equality constraints in two variables x1, x2 illustrates.

The original system is

Constraint Constraint Constraint constraint

number number

x1 = 1 1 x1 + x2 = 10 5

x1 = 2 2 x1 + 2x2 = 15 6

x1 = 3 3 2x1 + x2 = 15 7

x1 = 4 4 x1 + 3x2 = 20 8

The maximum cardinality feasible subset of constraints in the original system is

{5, 6, 7, 8}, and the greedy scheme generates the partition {5, 6, 7, 8}, {1}, {2}, {3}, {4}
consisting of 5 feasible subsystems. However, the optimal partition {1, 5}, {2, 6}, {3, 7}, {4, 8}
consists of only 4 subsystems.

We have the following result.

Lemma: Problem 1 is NP-hard.

Proof: Let a1, . . . , an, β be positive integers satisfying β �= (a1+. . .+an)/2. Consider

SSP (subset sum problem) of finding a solution to

n∑
j=1

ajxj = β

xj ∈ {0, 1} for all j

which is a well known NP-hard problem. Let α =
∑n

j=1 aj −β. Now consider the system

of 2n + 2 equations
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n∑
j=1

ajxj = β

n∑
j=1

ajxj = α

xj = 0 j = 1, . . . , n

xj = 1 j = 1, . . . , n

This system can be partitioned into exactly two subsystems both of which are feasible

iff SSP has a solution. Since SSP is NP-hard, this shows that Problem 1 is NP-hard too.

•

It is well known that the system of equality constraints (9) is equivalent to the

following system of inequality constraints (11).

Ai.x ≥ bi i = 1, . . . , m

−Ai.x ≥ −bi i = 1, . . . , m.

⎫⎪⎬
⎪⎭ (11)

However Problem 1 is not equivalent to Problem 2 applied to the inequality system

(11). To see this, let a �= 0, a ∈ Rn be a row vector, and let b1 < b2 < . . . < bk be scalars.

Consider the following systems of constraints

ax = b1

ax = b2

...

ax = bk

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(12)
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ax ≥ b1

ax ≥ b2

...

ax ≥ bk

−ax ≥ −b1

−ax ≥ −b2

...

−ax ≥ −bk

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(13)

Systems (12) and (13) are equivalent. Problem 1 for the infeasible system of equations

(12) leads to an optimum partition with k subsystems each one containing exactly one

constraint from (12). However, Problem 2 for the infeasible system of inequalities (13)

leads to an optimum partition of (13) into exactly two feasible subsystems.

It is not known whether Problem 1 can be posed as a special case of Problem 2. Also

not known is whether Problem 2 is NP-hard.

It is interesting to study whether Problems 1, 2 can be solved efficiently for systems

involving two variables only.
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