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Abstract

One of the motivating factors behind the development of the theories
of probability and statistics is to obtain good forecasts for future values
of random variables that appear in many applications. Managers in in-
dustry and business depend heavily on good forecasts of product demand.
History shows many examples of firms benefiting from accurate forecasts
and paying the price for poor forecasting, and we see many managers
complaining about the quality of the forecasts they are getting.

All existing forcasting techniques are based on developing a point es-
timate of the expected value. Questions about the updated distribution
of the random variable under study are rarely raised, but if it arises, it
is commonly assumed to be the normal distribution with the forecasted
value as the expectation and most often the same variance as before.

In this article, we propose a simple but different technique for actually
updating the whole distribution of a random variable, not just its expected
value; based on the ancient tool of the histogram. This technique is likely
to be useful in situations involving random variables whose distributions
undergo frequent changes, for which the normality assumption may be
inappropriate, and there is adequate data on the values of the random
variable.
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1 Introduction

Forecasting has always been an extremely important activity. The theories of
probability and statistics were developed mainly to provide scientific tools for
forecasting, and now forecasting is a very important chapter in statistical theory
and it is a big business. All planning in industry, business, and governments is
based on some type of forecasts.

Forecasting is characterizing the future value of a random variable (RV). The
probability distributions of many RVs encountered in industry, business and
government are subject to changes over time, that’s why forecasting becomes
necessary. It is well recognized that the value of an RV follows a probability
distribution, so the fundamental goal of forecasting is actually to update its
probability distribution based on information contained in its present and past
values. However, most people who depend on and use forecasts are not well
versed in the subtle meanings of statistical terminology, so they misunderstand
the purpose of forecasting to be that of generating a single numerical value. This
misunderstanding is also supported by existing forecasting methods, because all
of them only provide an estimate of the expectation of the RV in the next period
[1, 3]. This misunderstanding is the main reason behind the frequent complaints
by decision makers that the forecasts they are getting are unreliable.

Forecasting methods implicitly assume that the user knows the functional
form of the probability distribution of the RV under study, and that the only
change that may take place in the next period is a change in its expected value.
Their strategy amounts to instructing the user to treat the updated probability
distribution of the RV to be the one with the new expected value substituted
in its known functional form; and use this updated probability distribution in
making any planning decisions. This strategy is useful only when changes in
the probability distribution of the RV can be captured by a single parameter,
the expectation. These methods seem inadequate to capture all the dynamic
changes occurring in the shapes of probability distributions of RVs in a variety
of applications.

A better strategy is to actually update the complete probability distribu-
tion of the RV and present that as the forecast. This eliminates errors due to
normality assumptions, and also forces the users to adopt the whole updated
probability distribution in their calculation for decision making rather than the
expected value only. In this article we present such a method for updating the
whole probability distribution of RVs.

2 The Method

Empirical Distributions and Probability Density Functions



The concept of the probability distribution of an RV evolved from the ancient
practice of drawing histograms for the observed values of the RV. The observed
range of variation of the RV is usually divided into a convenient number of value
intervals (in practice about 10 to 25) of equal length, and the relative frequency
of each interval is defined to be the proportion of observed values of the RV
that lie in that interval. The chart obtained by marking the value intervals on
the horizontal axis, and erecting a rectangle on each interval with its height
along the vertical axis equal to the relative frequency is known as the relative
frequency histogram of the RV, or its discretized probability distribution. The
relative frequency in each value interval Ij is the estimate of the probability pj
that the RV lies in that interval, see Figure 1.
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Figure 1: Relative frequency histogram for daily demand for a major component
at a PC assembling plant in California.

Let Iy, ..., In be the value intervals with u1,...,un as their midpoints, and
p = (p1,...,Pn), the probability vector in the empirical distribution of the RV.
Let
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Then [z, 5 are estimates of the expected value u, standard deviation ¢ of the
RV respectively.

We will use the phrase empirical distribution to denote such a discretized
probability distribution of an RV, obtained either through drawing the his-
togram, or by updating a previously known discretized probability distribution
based on recent data.

When mathematicians began studying RVs from the 16th century onwards,
they found it convenient to represent the probability distribution of the RV by
the probability density function which is the mathematical formula for the
curve defined by the upper boundary of the relative frequency histogram in the
limit as the value interval length is made to approach 0, and the number of
observed values of the RV goes to infinity. So the probability density function
provides a mathmatical formula for the height along the vertical axis of this
curve as a function of the variable corresponding to the horizontal axis. Because
it is a mathematically stated function, the probability density function lends
itself much more nicely into mathematical derivations than the somewhat crude
relative frequency histogram.

In course of time it has become a common practice to assume that the
probability distributions of most RVs encountered in applications can be ap-
proximated by a particular probability density function called the normal dis-
tribution, see Figure 2.
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Figure 2: Normal distribution with mean g and standard deviation o. The
interval p & 3o is associated with a probability of 0.997 in it.



The normal distribution is completely specified by two parameters, the mean
u and the standard deviation o. It is perfectly symmetric around the mean, and
as shown in Figure 2, the probabilities corresponding to the intervals [u—o, p+
ol, [ — 20, u+ 20], [u — 30, u + 30] are 0.68, 0.95. 0.997 respectively.

Now a days the most commonly used probability distribution in models for
decision making is the normal distribution, even though histograms for the RVs
in some applications indicate that their distributions are not symmetric around
the mean. Of course in some areas other distributions are used, for example the
Weibull distribution in reliability studies, etc.

One of the theoretical advantages that the normality assumption confers is
that when the probability distribution of the RV changes, one has to change only
the values of the mean and the standard deviation in the models. In practice,
almost always it is only the value of the mean that is changed; the standard
deviation is usually assumed to remain unchanged.

Why Update the Probability Distribution?

The probability distributions of RVs may change with time. For example in
supply chain management, the important RVs are daily or weekly demands of
various items (raw materials, components, finished goods etc.) that companies
either buy from suppliers are sell to their customers. The important factor in
this area today is the highly competitive environment and the rapid rate of tech-
nological change that is shortening product life cycles, and causing probability
distributions of demand variables to change frequently. The results obtained
and the decisions reached do indeed depend on the probability distributions
used in the decision making model, and unles changes occurring are captured in
the models, the conclusions obtained by them will not be accurate. That’s why
we need to periodically update the probability distributions of the RVs based
on recent data.

It is rare to see empirical distributions used in decision making models these
days. Almost everyone uses mathematically defined density functions charac-
terized by a small number of parameters (typically two or less) to represent
probability distributions. In these decision making models, the only freedom we
have in incorporating changes is to change the values of those parameters. This
may be inadequate to capture all dynamic changes occurring in the shapes of
probability distributions from time to time.

Representing Probability Distributions by the Empirical
Distributions Makes All Changes Possible

We will now see that representing the probability distributions of RVs by



their empirical distributions gives us unlimited freedom in making any type of
change including changes in shape.

Let I, ..., In be the value intervals, and p1,...,pn the probabilities associ-
ated with them in the present empirical distribution of an RV. In updating this
distribution, we have the freedom to change the values of all the pj, this makes
it possible to capture any change in the shape of the distribution.

Changes, if any, will reflect in recent observations on the RV. Following
table gives the present empirical distribution, histogram based on most recent
observations on the RV (for example most recent k observations where k could
be about 50), and the algebraic symbols representing the probabilities in the
updated empirical distribution.

Value Probability vector in the
interval | Present empirical Recent Updated empirical
distribution histogram distribution
I P1 f1 T1
In Pn fn Tn

f=1(f1,..., fn) represents the estimate of the probability vector in the re-
cent histogram, but it is based on too few observations. p = (p1,...,pn) is
the probability vector in the empirical distribution at the previous updating.
x = (x1,...,2n), the updated probability vector, should be obtained by incor-
porating the changing trend reflected in f into p. The weighted least squares
method provides the following model [2] to compute z from p and f.

minimize » (pi — oi)® +1=8) Y (fi —@i)?

i=1 i=1

n
subject to Z:z:i =1 (1)
i=1
zi > 0, i=1,...,n

where [ is a weight between 0 and 1. =z is taken as the optimum solution
of this convex quadratic program. (3 = 0.8 or 0.9 works well, the reason for
choosing the weight for the second term in the objective function to be small
is because the vector f is based on only a small number of observations. Since
the quadratic model minimizes the weighted sum of squared forecast errors over
all value intervals, when used periodically, it has the effect of tracking gradual
changes in the probability distribution of the RV.

The above quadratic program has a unique optimum solution given by the
following explicit formula.



r=pp+(1-8)f (2)

So we take the updated empirical distribution to be the one with the prob-
ability vector given by (2).

The formula (2) for updating the probability vector in the above formula is
exactly analogous to the formula for forcasting the expected value of an RV using
the latest observation in exponential smoothing [3]. Hence the above formula
can be thought of as the extension of the exponential smoothing method to
update the probability vector in the empirical distribution of an RV .

When there is a significant increase or decrease in the mean value of the
RV, new value intervals may have to be opened up at the left or right end. In
this case the probabilities associated with value intervals at the other end may
become very close to 0, and these intervals may have to be dropped from further
consideration at that time.

3 Conclusion

We have shown that representing the probability distribution of an RV by ite
empirical distribution lends itself very nicely to updating its complete probabil-
ity distribution through an exponential smoothing like formula. This updating
formula captures all the changes occurring in the probability distribution.

Forecasting is an essential ingradient for scientific decision making. In ex-
isting theory forecasting is based on the assumption that the RV follows the
probability distribution defined by a mathematical density function that de-
pends on only one parameter, the expectation; and updating the expectation
periodically. This strategy is fine if there is knowledge about the RV that jus-
tifies this assumption as reasonable, or if there is not enough data to draw a
histogram for the RV. Otherwise, the strategy of forecasting the empirical distri-
bution of the RV based on periodic use of the exponential smoothing updating
formula (2) described above is a much better alternative.

This shows that the histogram, an ancient tool that gets no respect today, is
as important as all the mathematical density functions in statistics literature.
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