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Abstract

In [4, 1] gravitational methods for linear programming (LP) have been
introduced. Several versions exist, the three main versions discussed there
use a ball of (a): 0 radius, (b): small positive radius, and (c): the ball of
largest possible radius with the given center that will completely fit within
the polytope, with the option of changing its radius as the algorithm
progresses.

In versions (a), (b), after the first move, the center of the ball always
remains very close to the boundary (because the ball hugs the boundary),
and hence these versions behave like other boundary algorithms such as
the simplex algorithm in terms of exponential complexity in the worst
case [3].

Here we discuss a gravitational method of type (c) that behaves like
an interior point method. To guarantee that the ball used has the largest
possible radius, it uses a new centering strategy that moves any interior
feasible solution x0 to the center of the intersection of the feasible region
with the objective hyperplane through x0 before beginning each gravi-
tational descent move. Also, using this centering strategy we discuss a
method that can obtain an approximate optimum solution for an LP by
a very efficient method without using any matrix inversions.

Key words: Linear programming (LP), gravitational method, in-
terior point method, avoiding zigzagging, approximate optimum without
matrix inversions.
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1 The Importance of Linear Programming

Linear algebra dealing with methods for solving systems of linear equations is
the classical subject that initiated the study of mathematics in prehistoric times.
The most effective methods for solving systems of linear equations have been
discovered over 2500 years ago, these methods are still the leading algorithms
in use today.

Even though linear equations have been conquered thousands of years ago,
systems of linear inequalities remained inaccessible to humans until the middle
of the 20th century. Linear Programming (LP) is the branch of mathematics
developed in the 20th century as an extension of linear algebra to solve systems
of linear inequalities. The development of LP is a landmark event in the
history of mathematics and its applications that brought our ability to solve
general systems of linear constraints (including linear equations, inequalities) to
a state of completion.

Soon after its development, LP has become the dominant subject in the
development of efficient computational algorithms, study of convex polyhedra,
and in algorithms for decision making. But for a short time in the beginning,
its potential was not well recognized. Dantzig tells the story of how when he
gave his first talk on LP and his simplex method for solving it at a professional
conference, Hoteling dismissed it as unimportant since everything in the world
is nonlinear. But Von Neuman defended Dantzig saying that the subject will
bercome very important. See Page xxvii of [Dantzig, Thappa, 2, 1997]. The
preface in this book contains an excellent account of the early history of LP
from the inventor of the most successful method in OR and in the mathematical
theory of polyhedra.

Von Neuman’s early assessment of the importance of LP turned out to be
astonishingly correct. Today, the applications of LP in almost all areas of science
are so numerous, so well known and recognized that I do not have to repeat them
here. Also, LP seems to be the basis for most of the efficient algorithms for many
problems in other areas of mathematical programming. Many of the successful
approaches in nonlinear programming, discrete optimization, and other branches
of optimization are based on LP in their iterations.

2 Algorithms Used for Solving LPs Today

The simplex method developed by Dantzig in the 1940s is still the dominant al-
gorithm in use for solving LPs. The simplex method exhibits exponential growth
in the worst case, but its performance in practice has been outstanding, and is
being improved continuously by developments in implementation technologies.
It is a one-dimensional boundary method in the sense that it follows a path
along the edges (one-dimensional boundary faces) of the set of feasible solutions
of the LP. In each iteration it needs either updating the inverse, or computing

2



the inverse of a matrix of order m (number of constraints in the LP not counting
the bounds on individual variables).

In the late 1900s a variety of interior point methods (IPMs) have been de-
veloped for LP [7, 11]. These IPMs follow a path through the interior of the
set of feasible solutions. Among them the ones that give the best performance
try to follow the central path (path through a mathematically defined center
of the set of feasible solutions) approximately. They are based on very elegant
theory, and converge to a near optimum in polynomial time. In practice the
number of iterations needed by them is much smaller than that for the sim-
plex method, but each of these steps is much harder and more complex as it
needs the inversion of a matrix of order larger than m. Also taking advantage
of sparcity in their implementations is a much more complex task than that in
implementations of the simplex method. The IPMs have been observed to give
slightly better performance than the simplex method only on large scale sparce
problems.

All these methods in use today need either the updating of a matrix inverse,
or inversion of a matrix in each step, this is the hard part of solving LPs in spate
of all the improvements that have occurred so far. It seems that practitioners
are quite content with obtaining a solution not necessarily optimal, but close to
being so, but they want a method that can obtain such a solution much faster
than existing methods. Problems in all areas of optimization can be solved
much more efficiently if faster and more efficient algorithms can be developed
for obtaining solutions close to the optimum for LPs.

3 The Gravitational Method for LP

Starting about 20 years ago, Murty[4, 1983], Chang and Murty[1, 1989] devel-
oped a new method for LP based on the principle of the gravitational force. We
consider the LP in the form

maximize πb (1)

subject to πA = c, π ≥ 0
where A is a matrix of orderm×n, π ∈ Rm is the row vector of primal variables.
Its dual is

minimize z(x) = cx (2)

subject to Ax ≥ b

where x ∈ Rn is the column vector of dual variables.
For any matrix D, we use the symbols Di.,D.j to denote the i-th row, j-

th column of D. If D is of order m × n, and S ⊂ {1, . . . ,m}, DS. denotes
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the submatrix of D consisting of rows Di. for all i ∈ S. We denote the cone
consisting of all the nonnegative combinations of row vectors of D by Rpos(D).
For any vector y, ||y|| denotes its Euclidean norm.

The method is applied on (2) and needs an initial interior point x0 of its
feasible region K (i.e., satisfying Ax0 > b). It introduces a spherical drop (we
will refer to it as the drop or the ball) of small radius with center x0 lying
completely in the interior of K, and traces the path of its center as the drop
falls under a gravitational force pulling it in the direction −cT . The drop cannot
cross the boundary of K, so after an initial move in the direction −cT it will
be blocked by the face of K that it touches; after which it will start rolling
down along the faces of K of varying dimensions. Hence the center of the drop
will follow a piecewise linear descent path completely contained in the interior
of K, but since the drop’s radius is small, the center remains very close to
the boundary of K after the first change in direction in its path. Therefore
the method is essentially a boundary method. However, unlike the simplex
method which follows a path strictly along the one dimensional boundary of K,
this method is a higher dimensional boundary method in which the path
followed remains very close to faces of K of varying dimensions.

After a finite number of changes in the direction of movement, the drop will
reach the lowest possible point in the direction −cT that it can reach within K
and halt. If the radius of the drop is sufficiently small, the touching constraints
(i.e., those whose corresponding facets of K are touching the ball) in (2) at this
final halting position will determine an actual optimum solution of the LP (1).
If its radius is not small enough, the direction finding step in the method at the
final halting position with center x∗ yields a feasible solution π̃ of (1) and the
optimum objective value in (1) lies in the interval [π̃b, cx∗]. Then the radius
of the drop is reduced and the method continues the same way. In [1] finite
termination of the method to find an optimum solution has been proved.

[Morin, Prabhu, and Zhang, 3, 2001] have shown that this version of the
gravitational method using point drops (i.e., drops of radius 0) has exponential
growth in the worst case like the simplex method.

4 How to Make the Gravitational Method Effi-
cient?

It is clear that in order to make the gravitational method efficient, it is necessary
to keep the center of the drop from hugging the boundary ofK all along its path,
i.e., make the method a truely interior point method. This can be achieved by
making the radius of the drop as large as possible by moving its center to the
center of the set of feasible solutions. For this we develop a new centering
strategy that is very different from centering strategies used in other IPMs. Its
biggest advantage is that it needs no matrix inversion, and hence is lot simpler
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than other centering strategies. We will describe this centering strategy next.

5 The Centering Strategy

We assume that ||Ai.|| = 1 for all i. K denotes the set of feasible solutions
of (2), and K0 its interior. We assume that an initial interior feasible solution
x0 ∈ K0 for (2) is available. If such an initial point is not avilable, we modify
the problem using the usual big-M augmentation with one artificial variable as
follows

minimize cx+Mxn+1

subject to Ax+ exn+1 ≥ b, xn+1 ≥ 0

where e = (1, ..., 1)T ∈ Rm and M is a positive number significantly larger
than any other number in the problem. Let x0n+1 > max{0, b1, ..., bm}. Then
(0, ..., 0, x0n+1)

T is a strict interior feasible solution of the modified problem which
is in the same form as (2).

So, we assume that a strict interior feasible solution x0 of (2) is available.
We also assume that c W= 0, as otherwise 0 is already an optimum solution of
(1). We normalize c, so that ||c|| = 1.

Without any loss of generality we assume that each constraint in (2) deter-
mines a facet of K. Let Hi = {x : Ai.x = bi} be the i-th facetal hyperplane for
K. Let H0 = {x : cx = cx0} be the objective hyperplane through the current
point x0.

Since x0 is in the interior of K, Ai.x
0 > bi for all i = 1 to m. Then

δ0i = Ai.x
0 − bi is the distance (Euclidean) of x0 from Hi. With x

0 as center,
the largest sphere we can construct within K has a radius min{δ0i : i = 1 to
m}. This may be too small. To construct even larger drops inside K, we need
to move the center of the drop from x0 to a better interior point. Starting with
x0, the centering strategy tries to find a new position for the center of the drop
inside K0 that maximizes the radius of the drop that can be constructed within
K. It does this while keeping the objective value at the new center the same as
that at x0, by including cx = cx0 as a constraint that the new center x has to
satisfy.

So the new center x is chosen from K0∩H0 and maximizes min{Ai.x− bi : i
= 1 to m}. The model for this choice is:

Maximize δ

subject to δ ≤ Ai.x− bi, i = 1 to m (3)

cx = cx0
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This is another LP, and if (x̄, δ̄) is its optimum solution, x̄ is the new center,
and δ̄ is the maximum radius for the drop within K0 subject to the constraint
that its center lie on K0 ∩H0.

But this itself is another LP, perhaps as difficult to solve as the original LP
(1), or (2) itself. Also, this type of model may have to be solved several times
before we get a solution for our original LP, so solving this model (3) exactly
will be counterproductive. For this reason we use the following procedure to get
an approximate solution for (3).

Procedure for Getting an Approximate Solu-
tion for (3)

In this procedure, for finding the new center x ∈ K0 ∩H0, we only consider
moves in directions perpendicular to the facetal hyperplanes of K, since our
goal is to increase the minimum distance of x from a facetal hyperplane. These
directions (with positive or negative step lengths) are: ATi. for i = 1 to m.
However since x has to lie on H0, the actual directions of movement considered
are: P.i = A

T
i. + c

T (cx0− cATi.), where P.i is the orthogonal projection of ATi. on
H0, for i = 1 to m.

So, this procedure consists of a series of moves beginning with x0, generating
a sequence of points xr in K0 ∩H0. When at xr look for an i between 1 to m
such that fir(α) = min{At.(xr + αP.i) − bt : t = 1, . . . ,m} is increasing as α
changes from 0 to positive or negative values.

If such an i does not exist, terminate this step with xr as the position for
the center of the next ball, and fix that ball to be the one with xr as the center
and radius as min{Ai.xr − bi : i = 1, . . . ,m}.

If such indices i exist, select one of them. Keep changing α in the direction
from 0 that keeps on increasing fir(α), until it reaches a value αr where fir(α)
stops increasing as α changes beyond αr. If θr = fir(αr), then (θr,αr) is the
optimum solution of the following 2-variable LP in which the variables are θ,α.

Maximize θ

subject to θ − αAt.P.i ≤ At.x
r − bt t = 1, . . . ,m

which can be found with at most O(m) effort.
Then take the next point in the sequence to be xr+1 = xr + αrP.i. Repeat

the same process, until moves of this type are not possible any more, or when
improvements in the values of fir(α) become small.

If x∗ is the final point, take the ball to be the one with x∗ as center and
min{Ai.x∗ − bi : i = 1, . . . ,m} as the radius. It is the ball of largest possible
radius that can be fixed inside K with its center on the current objective plane
by the simple process used in this step.
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As can be seen, the procedure used in this centering strategy does not need
any matrix inversion, and only solves a series of 2-variable LPs which can be
solved very efficiently. Hence this centering strategy can be expected to be
efficient.

We define the central path to be the path of the center of the drop in its
descent to the optimal face of (2).

6 Stage 1, Repititions of Iteration 1 in the Grav-
itational Interior Point Method to Solve (1),
(2)

By fixing the initial drop as the largest possible ball with its center in K0 ∩H0,
the centering strategy pushes the center of the ball close to the center ofK0∩H0.
Stage 1 of the overall method consists of repitions of a special iteration that
exploits this property to get as much reduction in the objective value of (2) as
possible using cheap effort cosisting of the following two steps repeatedly. These
steps in this iteration are described below, some changes in the second step to
accelerate convergence will be discussed later. This iteration begins with x0 as
the initial interior feasible solution.

Iteration 1

BEGIN

Step 1.1: Centering: LetH0 = {x : cx = cx0}. Starting with x0 apply the
centering strategy of Section 5 to get the largest ball B(x∗, δ) with x∗ ∈ K0∩H0

as center and δ as radius. Go to Step 1.2.

Step 1.2: Descent Move Following Centering: This move does not use
the ball B(x∗, δ) constructed in Step 1.1 at all, it only uses its center x∗ and its
property of being close to the center of K0 ∩H0. It takes a maximum possible
step from x∗ in a descent direction for cx.

If this is the first time this step is being carried out, the only descent direction
that we have readily available at this time is −cT , and we use that as the
direction to move from x∗.

If this is not the first time this step is being carried out, besides −cT we
have another descent direction for cx, the direction of the central path at the
current point x∗, which can be approximated by x∗− x̃ where x̃ is the center of
the drop in the previous time Step 1.2 is carried out.

If d ∈ {−cT , x∗−x̃} is the direction selected for moving from x∗, we will move
in this direction the maximum distance possible while still remaining inside K0.
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A small tolerance 6 > 0, is selected and a move to the farthest point satisfying
Ai.x ≥ bi + 6 for i = 1 to m is made. This gives

x̄ = x∗ + γd

γ = min{−Ai.x
∗ + bi + 6

Ai.d
: i such that Ai.d < 0}

The decrease in the objective value in this move is |γcd|. Select the direction
d from {−cT , x∗ − x̃} to be the one which yields the maximum decrease in the
objective value in this move. Make x̄ obtained after the move the new x0, and
go back to Step 1.1 for another repeat of this Iteration 1.

END

Zigzagging

Repitions of this Iteration 1 may encounter zigzagging (a phenomenon
commonly discussed in nonlinear programming) if the direction to move from
x∗ is always taken to be −cT . Ziczagging occurs when the center of the ball
gets trapped in a narrow cone like region, with successive balls having the same
touching set of constraints repeatedly. If this occurs (likely when the center
nears the optimal face, if the optimal face is of low dimension) each successive
repitition of Iteration 1 makes progressively decreasing improvements. Taking
the direction to move in each repitition of Iteration 1 to be the best one among
{−cT , x∗ − x̃} helps to prevent zigzagging from occurring.

We continue repeating applications of Iteration 1 until the improvement in
the objective value in each application becomes small. Let x̄ denote the interior
feasible solution in this final repition of Iteration 1 in Stage 1.

If the centering strategy performs well, this final solution x̄ in Stage 1 can be
expected to be such that cx̄ is quite close to the minimum objective value in (2)
(i.e., x̄ can be expected to be a near optimum to (2)). Several efficient strategies
developed in LP theory are available to get an approximate optiumum to (1)
(2) from x̄.

Stage 1 has the aim of getting as close to the optimum as possible without
matrix inversions. The final point obtained in Stage 1 may itself be a reasonable
approximation to the optimum in some practical applications.

If a true optimum solution of (1), (2) is needed, strating from the final point
x̄ obtained at the end of Stage 1 as the current point we go to Stage 2 which
carries out applications of the general iteration, Iteration 2, that consists of the
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following steps besides the centering step: Gravitational direction finding step,
Step length determination and the main move, Additional move of the center,
What to do if the ball halts. There are several possible options for selecting the
gravitational direction along which the ball will move, we will first discuss these
in detail.

7 The Gravitational Direction Finding Step

In the versions of the gravitational methods discussed in [1, 4], the initial ball
is always selected to have a very small radius so that it is completely inside
K0 without any of the boundary faces of K touching it, so the initial move in
the method always takes place in the direction −cT , and could be of very short
length depending on the location of the center of the initial ball. But here, the
centering step in Section 5 used for selecting the initial ball makes sure that it
is already touching some facets of K, these are called the touching facets, and
the constraints that define them are called the touching constraints. Let:

B(x∗, δ) = the current ball inside K with center x∗ and radius δ
J(x∗, δ) = {i : Ai.x∗ = bi + δ}, the index set of touching constraints for

B(x∗, δ)
G(x∗, δ) = {y :cy < 0, Ai.y≥ 0 for all i ∈ J(x∗, δ)}, the set of descent

feasible directions for B(x∗, δ).

The gravitational direction at x∗ is a direction selected from G(x∗, δ) along
which the current ball B(x∗, δ) will be moved. Various options for selecting this
direction are given below.

The Steepest Descent Gravitational Direction (SDGD)

Defined in [1] and used in the SDGM (Steepest Descent Gravitational Method)
discussed there, this is the steepest descent direction among all those in G(x∗, δ).
So, the SDGD is the optimum solution of

Minimize cy

subject to AJ(x∗,δ).y ≥ 0 (4)

1− yT y ≥ 0

In [1] it has been proved that this problem is equivalent to the problem

Minimize (c− ηAJ(x∗,δ).)(c− ηAJ(x∗,δ).)T
subject to η ≥ 0 (5)
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which is a nearest point problem (finding nearest point to c in Rpos(AJ(x∗,δ).)
= the nonnegative hull of row vectors in the matrix AJ(x∗,δ).).

If η̄ is an optimum solution of (5), then ȳ = 0 if ξ̄ = (c− η̄AJ(x∗,δ).) = 0, or
−ξ̄T /||ξ̄|| otherwise, is an optimum solution of (4).

Also, if ξ̄ = 0, G(x∗, δ) = ∅, i.e., the ball B(x∗, δ) cannot move from its
present position in gravitational descent, hence it halts in its present position.
If this happens, let π̄ = (π̄i) where π̄i = η̄i if i ∈ J(x∗, δ), 0 otherwise. Then
π̄ is feasible to (1), and the optimum objective value in (1) lies in the interval
[π̄b, cx∗]. In this case the method goes to the step to carry out when the ball
halts, discussed in Section 8.

If ξ̄ W= 0, go to the Main move step with ȳ as the gravitational direction
for the move. Now the method goes to the main move discussed in Step 2.5 of
Section 8.

Modified Gravitational Directions MGD1, MGD2

Computing the SDGD becomes simplified if the cone Rpos(AJ(x∗,δ).) is sim-
plicial, i.e., if AJ(x∗,δ). is of full row rank, which may not be the case always. So,
in [1], simplified versions of gravitational directions MGD1, MGD2 are discussed.
In these versions, the nearest point problem (5) for finding the gravitational di-
rection is modified by replacing the matrix AJ(x∗,δ). by a submatrix D of it
consisting of a maximal linearly independent subset of row vectors of AJ(x∗,δ)..
So, computing MGD1 requires the solution of the nearest point problem

Minimize (c− ηD)(c− ηD)T
subject to η ≥ 0 (6)

which is the problem finding the nearest point in Rpos(D) to c.
So, MGD1 is the direction obtained as in the SDGD, with η̄ being the

optimum solution of (6) instead of (5). (6) can be solved very efficiently by
geometric methods discussed in [5, 6, 8, 9, 10] using the concept of projection
faces of the simplicial cone Rpos(D).

MGD2 simplifies the effort needed to find the gravitational direction even
further by taking the vector η̄ to be not the optimum solution of (6), but the
one corresponding to a projection face of Rpos(D) that is closer than the initial
one.

The Gradient Projection Direction (GPD)

Define y0 = −cT , and T = J(x∗, δ). Computing this direction defined in [4]
involves the following steps:
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Define J(y0) = {i : i ∈ T,Ai.y0 < 0}. Each of the constraints Ai.x ≥ bi for
i ∈ J(y0) is currently blocking the movement of the ball in the direction y0, so
J(y0) is called the index set of blocking constraints.

If J(y0) = ∅, take the GPD to be y0.
If J(y0) W= ∅, . Let E be a submatrix of A consisting of rows Ai. which form a

maximal linearly independent subset of {Ai. : i ∈ J(y0)}, and let P ⊂ J(y0) be
{i : Ai. is a row of E}. Let ξ be the orthogonal projection of y0 in the subspace
{x : Ex = 0}, so ξ = ((I − ET (EET )E)y0.

If ξ W= 0, the GPD is ξ.
If ξ = 0, let µ = −(EET )−1Ey0 = (µi : i ∈ P ). Then µTE = c. So if µ ≥ 0,

then π̄ = (π̄i) defined by π̄i = 0 if i W∈ P , = µi if i ∈ P , is a BFS of (1). In this
case the ball B(x∗, δ) halts in its present position and cannot move any further
under the gravitational force. In this case the method goes to the step to carry
out when the drop halts (Step 2.5), discussed in Section 8.

If ξ = 0 and µ W≥ 0, then delete the i corresponding to the most negative µi
from the set T , and repeat all this work with the new T .

8 The Gravitational Interior Point Method for
LP

Here we state the whole method.

Stage 1: This stage consists of repeated applications of Iteration 1.

Iteration 1: Initial Iteration: Starting with the initial interior feasible
solution x0, apply Iteration 1 (Steps 1.1, 1.2) described in Section 6 repeatedly
until the improvement in the objective value cx in each application becomes
small.

Let x̄ denote the interior feasible solution obtained at the end of Stage 1.
With x̄ go to Stage 2.

Stage 2: This stage consists of repeated applications of Iteration 2 starting
with the point obtained at the end of Stage 1.

Iteration 2: General Iteration: The first application of this iteration
begins with x̄, the interior feasible solution obtained at the end of Stage 1.

BEGIN

Step 2.1: Centering: Let H̄ = {x : cx = cx̄}. Starting with x̄, apply the
centering strategy discussed in Section 5 to get the largest ball B(x∗, δ) with
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x∗ ∈ K0 ∩ H̄ as center and δ as radius. Go to Step 2.2.

Step 2.2: Gravitational Direction Finding: Find the gravitational di-
rection at x∗ along which the current ball will be moved, using one of the options
described in Section 7 (the options discussed there are: SDGD, MGD 1, MGD 2,
and GPD). If the ball halts, go to Step 2.5. Otherwise denote the gravitational
direction selected by ȳ, go to Step 2.3 with it.

Step 2.3: Step Length Determination and the Main Move: Let ȳ
denote the gravitational direction selected for the move of the ball B(x∗, δ). The
step length is the maximum distance the ball can move in this direction while
still remaining completely within K. So, this step length in the direction ȳ is:

θ = min{Ai.x
∗ − bi − δ
−Ai.y : i ∈ J(y)}

where J(y) = {i : Ai.y < 0}, the blocking set of constraints corresponding to
the direction y.

If θ = ∞, the objective function is unbounded below in (2), and (1) is
infeasible, terminate the algorithm.

If θ is finite, move the present ball B(x∗, δ) to B(x∗ + θy, δ) and go to Step
2.4.

Step 2.4: The Addional Move: Suppose the main move in this iteration
has moved the ball to the new position B(x∗ + θȳ, δ). The center of this ball
x∗ + θȳ, is strictly in the interior of K. Now get rid of this ball, and take a
maximum possible step from its center x∗ + θȳ in the direction −cT while still
remining inside K0.

Let 6 > 0, a small positive value, denote a selected tolerance for interiorness.
Then the maximum step length in this move is:

γ = min{Ai.(x
∗ + θȳ)− bi − 6
Ai.cT

: i such that Ai.c
T > 0}

So, now we move from x∗ + θȳ to the point x̄ = x∗ + θȳ − γcT .
With this x̄ as the new interior point solution, go back to Step 2.1 to repeat

this Iteration 2.

Step 2.5: When the Ball Halts: Since the ball B(x∗, δ) has halted, it
cannot move from its present position under the gravitational force, because
its movement is blocked by the blocking constraints among the touching con-
straints. In this case we obtain a feasible solution π̄ for (1) as described in
Section 7. Let F = {i : π̄i > 0}, and E ⊂ F such that {Ai. : i ∈ E} is a
maximal linearly independent subset of {Ai. : i ∈ F}, and d = (bi : i ∈ E).
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Let x̂ = x̄ + ET (EET )−1(d − Ex̄), the orthogonal projection of x̄ on the flat
{x : Ai.x = bi, i ∈ E}. If x̂ is feasible to (2), then it is optimal to (2), and π̄ is
optimal to (1), terminate the algorithm.

Suppose x̂ is not feasible to (2). Here the center x∗ of B(x∗, δ) is at the
center of K on the present objective plane. Make the additional move at x∗ as
in Step 2.4, and continue.

END

Finite convergence of this algorithm follows from the results in [1]. However,
being a truely interior point method, it is expected to have superior computa-
tional performance. We are planning to carry out a computational experiment
comparing this algorithm with other methods on test problems available in the
literature.

9 Intelligent Modeling

If an LP model is appropriate in a real world application, practitioners may be
able to use the many flexible options usually available in real world applications,
to model the problem in the form (2) directly with a feasible set of full dimension.
In this case it may be possible to get an approximate optimum for it using just
Stage 1 described in Section 6, which may be satisfactory for the application.

Even if there are some equality constraints, by using each equation to elimi-
nate a variable from the problem, it may be possible to transform it easily into
form (2), and then use the approach in Section 6 to obtain an approximate
optimum for it.

If the centering strategy performs well, the approximate method discussed
in Section 6 combined with intelligent modeling offers many potential benefits
for practical problem solving.
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