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PREFACE

INTRODUCTION

I am grateful for the enthusiastic reception given to my book Linear and Combinatorial

Programming published in ����� Many readers from all over the world commented that

they liked Chapter �� on the Linear Complementarity Problem �LCP� in this book	 but

found it too brief	 and suggested that a new up
to
date book devoted exclusively to this

topic	 covering all aspects of linear complementarity would be worthwhile� This book is

the result of the encouragement I have received from all these suggestions�

An important class of applications for the LCP stems from the fact that the neces


sary optimality conditions for a Quadratic Programming Problem �QP� lead to an LCP�

Until recently	 a practitioner of mathematical programming could have brushed o� QP as

an academically interesting generalization of linear programming which is not very use


ful� But the recent development of recursive quadratic programming methods for solving

Nonlinear Programming Problems �NLP� has changed all that� These methods solve an

NLP through a sequence of quadratic approximations	 and have become extremely popu


lar� They have suddenly made QP and thereby LCP an important topic in mathematical

programming with a large number of practical applications� Because of this	 the study of

LCP is attracting a great deal of attention both in academic curricula and in the training

of practitioners�

THE OBJECTIVES

�� To provide an in
depth and clear treatment of all the important practical	 technical	

computational	 geometric	 and mathematical aspects of the LCP	 QP	 and their various

applications�

�� To discuss clearly the various algorithms for solving the LCP	 to present their ecient

implementation for the Computer	 and to discuss their computational complexity�

�� To present the practical applications of these algorithms and extensions of these al


gorithms to solve general nonlinear programming problems�

�� To survey new methods for solving linear programs	 proposed subsequently to the

publication of �������

BACKGROUND NEEDED

The background required to study this book is some familiarity with matrix algebra and

linear programming �LP�� The basics of LP are reviewed in Chapters � and ��
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SUMMARY OF CHAPTER CONTENTS

The book begins with a section titled �notation� in which all the symbols and several terms

are de�ned� It is strongly recommended that the reader peruse this section �rst at initial

reading	 and refer to it whenever there is a question about the meaning of some symbol or

term�

Chapter � presents a clear geometric interpretation of the LCP through the de�nition

of the system of complementary cones as a generalization of the set of orthants in Rn�

Applications to LP	 QP	 and nonzero sum game problems are discussed� There is a complete

discussion of positive de�niteness and positive semide�niteness of square matrices	 their

relationship to convexity	 together with ecient pivotal methods for checking whether

these properties hold for a given matrix� Various applications of QP are discussed	 as well

as the recursive quadratic programming method for solving NLP models�

Chapter � presents a complete discussion of the many variants of the complemen


tary pivot method and proofs of its convergence on di�erent classes of LCPs� Section

��� contains a very complete	 lucid	 but elementary treatment of the extensions of the

complementary pivot method to simplicial methods for computing �xed points using tri


angulations of Rn	 and various applications of these methods to solve a variety of general

NLP models and nonlinear complementarity problems�

Chapter � covers most of the theoretical properties of the LCP� There is extensive

treatment of the various separation properties in the class of complementary cones	 and

a complete discussion of principal pivot transforms of matrices� In this chapter we also

discuss the various classes of matrices that arise in the study of the LCP� Chapter �

provides a survey of various principal pivoting methods for solving the LCP� Algorithms

for parametric LCP are presented in Chapter ��

Chapter � contains results on the worst case computational complexity of the com


plementary and the principal pivoting methods for the LCP� Chapter � presents a special

algorithm for the LCP associated with positive de�nite symmetric matrices	 based on or


thogonal projections	 which turned out to be very ecient in computational tests� Chapter

� presents the polynomially bounded ellipsoid methods for solving LCPs associated with

positive semide�nite matrices	 or equivalently convex QPs�

Chapter � presents various iterative methods for LCPs� In Chapter �� we present

an extensive survey of various descent methods for unconstrained and linearly constrained

minimization problems� these techniques provide alternative methods for solving quadratic

programming problems� In Chapter �� we discuss some of the newer algorithms proposed

for solving linear programming problems and their possible extensions to solve LCPs	 and

we discuss several unsolved research problems in linear complementarity�

To make the book self
contained	 in the appendix we provide a complete treatment

of theorems of alternatives for linear systems	 properties of convex functions and convex

sets	 and various optimality conditions for nonlinear programming problems�
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EXERCISES

Each chapter contains a wealth of various types of exercises� References are provided

for theoretical exercises constructed from published literature� A new sequence of exercise

numbers begins with each chapter �e�g� Exercise ��� refers to Exercise number � of Chapter

���

HOW TO USE THE BOOK IN A COURSE

This book is ideally suited for �rst year graduate level courses in Mathematical Program


ming� For teaching a course in nonlinear programming	 the best order for presenting the

material may be the following� Section ���� �formulation example�	 ���� �types of solutions

in NLP�	 ���� �types of nonlinear programs and what can and cannot be done eciently by

existing methods�	 ���� �can we at least compute a local minimum eciently�	 ���� �pre


cision in computation�	 ���� �rates of convergence�	 Appendix �theorems of alternatives

for linear systems of constraints� convex sets and separating hyperplane theorems� convex	

concave functions and their properties� optimality conditions�	 Chapters � to � in serial

order� remaining portions of Chapter ��� and some supplemental material on algorithms

for solving nonlinearly constrained problems like the GRG	 penalty and barrier methods	

and augmented Lagrangian methods� For teaching a course in linear complementarity us


ing the book	 it is best to cover the Appendix �rst	 and then go through Chapters � to ��

in serial order�

The material contained in Chapters ��	 ��	 ��	 �� of ������ can be combined with that

in Appendices �	 �	 Chapter � and Section ���� of this book to teach an advanced course

in linear programming�

Since the book is so complete and comprehensive	 it should prove very useful for

researchers in LCP	 and practitioners using LCP and nonlinear programming in applied

work�
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Notation xv

NOTATION

SuperscriptT Denotes transposition� AT is the transpose of the

matrix A� If x is a column vector	 xT is the same

vector written as a row vector and vice versa� Col


umn vectors are printed as transposes of row vec


tors to conserve space in the text�

w	 z w � �w�� � � � � wn�T 	 z � �z�� � � � � zn�T are the col


umn vectors of variables in a linear complementar


ity problem of order n�

�q�M� A linear complementarity problem in wich the data

is the column vector q � �q�� � � � � qn�T 	 and square

matrix M � �mij� of order n�

Rn Real Euclidean n
dimensional vector space� It is

the set of all ordered vectors �x�� � � � � xn�	 where

each xj is a real number	 with the usual operations

of addition and scalar multiplication de�ned on it�

� Approximately equal to�

�� � � tends to zero�

�� �� � tends to zero through positive values�

J	 K	 H	 E	 Z	 U	 P	 A

���	 I	 ���	 S	 W	 D

These bold face letters usually denote sets that are

de�ned in that section or chapter�

P
Summation sign�

P
�aj � j � J� Sum of terms aj over j contained in the set J�

�
�	 �	 � Given two vectors x � �xj�	 y � �yj� in Rn	 x �

� y

means that xj �� yj 	 that is	 xj�yj is nonnegative	

for all j� x � y means that x �� y but x �� y	 that is	

xj � yj is nonnegative for all j and strictly positive

for at least one j� x � y means that xj � yj � �	

strictly positive	 for all j� The vector x is said to

be nonnegative if x �
� �	 semipositive if x � �	 and

positive if x � ��

Ai� The ith row vector of the matrix A�



xvi Notation

A�j The jth column vector of the matrix A�

Superscripts We use superscripts to enumerate vectors or ma


trices or elements in any set� When considering

a set of vectors	 in Rn	 xr may used to denote

the rth vector in the set	 and it will be the vector

�xr�� � � � � x
r
n�T � In a similar manner	 while consider


ing a sequence of matrices	 the symbol P r may be

used to denote the rth matrix in the sequence� Su


perscripts should not be confused with exponents

and these are distinguished by di�erent type styles�

Exponents In the symbol �r	 r is the exponent� �r � �� �� � � �

��	 where there are r ��s in this product� Notice the

di�erence in type style between superscripts and

exponents�

log�x De�ned only for positive numbers x� It is the log


arithm of the positive real number x	 with � as the

base �or radix��

jjxjj Euclidean norm of a vector x � Rn� If x � �x�� � � � �

xn�	 jjxjj � �
p
x
� � � � �� x
n�

d�e De�ned only for real numbers �� It represents the

smallest integer that is greater than or equal to �	

and is often called the ceiling of �� For example

d����e � ��	 d���e � ��

b�c De�ned only for real numbers �� It represents the

larg


est integer less than or equal to �	 and is often

called the �oor of �� For example b����c � ��	

b���c � ��

	 In�nity�

� Set inclusion symbol� If F is a set	 �F� � F� means

that �F� is an element of F�� Also �F� �� F� means

that �F� is not an element of F��


 Subset symbol� If E	 ��� are two sets	 �E 
 ����

means that �E is a subset of ����	 or that �every

element in E is also an element of �����



Notation xvii

� Set union symbol� If D	 H are two sets	 D �H is

the set of all elements that are either in D or in H

or in both D and H�

� Set intersection symbol� If D and H are two sets	

D�H is the set of all elements that are in both D

and H�

 The empty set� The set containing no elements�

n Set di�erence symbol� If D and H are two sets	

D nH is the set of all elements of D that are not

in H�

f g Set brackets� The notation fx � some propertyg

represents the set of all elements x	 satisfying the

property mentioned after the ����

jFj If F is a set	 this symbol denotes its cardinality	

that is	 the number of distinct elements in the set

F�

e The base of the natural logarithms� e� � �
�P
n��

�
n� 	

if is approximately equal to ����

e	 er The symbol e denotes a column vector	 all of whose

entries are equal to �� Its dimension is usually un


derstood from the context� When we want to spec


ify the dimension	 er denotes the column vector in

Rr	 all of whose entries are equal to ��

I	 Ir The symbol I denotes the unit matrix	 its order

understood from the context� When we want to

specify the order	 Ir denotes the unit matrix of or


der r�

j�j Absolut value of the real number ��

This symbol indicates the end of a proof�

y� If y � �yj� � R
n	 let y�j � Maximum f�� yjg	 j � �

to n� Then y� � �y�j ��



xviii Notation

� Lexicographically greater than� Given two vectors

x � �xj�	 y � �yj� in Rn	 x � y means that for the

smallest j for which xj�yj �� �	 we have xj�yj � ��

PosfA�� � � � � Akg If A�� � � � � Ak are vectors in Rn then PosfA�� � � � �

Akg � fy � y � ��A��� � ���kAk	 �� �� �� � � �	 �k ��
�g� It is the cone in Rn which is the nonnegative

hull of the set of vectors fA�� � � � � Akg�

Pos�A� If A is a matrix	 Pos�A� � fx � x � Ay for some

y �� �g� It is the cone which is the nonnegative hull

of the column vectors of the matrix A�

n n factorial� De�ned only for nonnegative integers�

� � �� And n is the product of all the positive

integers from � to n	 whenever n is a positive inte


ger��
n
r

�
De�ned only for positive integers n �

� r� It is the

number of distinct subsets of r objects from a set

of n distinct objects� It is equal to n�
r��n�r�� �

hv�� � � � � vri When v�� � � � � vr are all column vectors from the

space Rn	 say	 and satisfy the property that the

set of column vectors

���� �
v�

��	 � � � � �

��� �
vr

��	
 is

linearly independent	 then v�� � � � � vr are the ver


tices of an �r � ��
dimensional simplex	 which is

their convex hull	 this simplex is denoted by the

symbol hv�� � � � � vri� See Section ������

C�M� The class of �n complementary cones associated

with the square matrix M of order n�

K�M� The union of all complementary cones in C�M�� It

is the set of all vectors q for which the LCP �q�M�

has at least one solution�

Z�y�	 W�y� If y � �y�� � � � � yn�T is a complementary vector for

the LCP �q�M� of order n	 then Z�y� � fj � yj �

zjg and W�y� � fj � yj � wjg� See Section ����



Notation xix

Miminumf g The minimum number among the set of numbers

appearing inside the set brackets� Maximumf g

has a similar meaning� If the set is empty we will

adopt the convention that the minimum in it is �	

and the maximum in it is �	�

In�mum� minimum�

Supremum� maximum

Let ��� be a subset of Rn and let f�x� be a real

valued function de�ned on ���� The in�mum for

f�x� on ��� is de�ned to be the largest number �

satisfying� f�x� �
� � for all x � ���� If �	 is the

in�mum for f�x� on ���	 and there exists an !x �

��� satisfying f�!x� � �		 then �	 is said to be the

minimum value of f�x� on ��� and !x is the point

which attains it� As an example let ��� 
 R� be the

open interval � � x � �	 and let f�x� � x� The

in�mum of f�x� on ��� in this example is �	 it is not

a minimum since � �� ���	 and there exists no point

x in ��� where f�x� � �� As another example let

��� 
 R� be the unbounded set � �
� x � 	 and let

f�x� � �
x

� In this example	 the in�mum of f�x�

on ��� is �	 and again this is not a minimum� In the

same manner	 the supremum in ��� of a real valued

function f�x� de�ned on ��� 
 Rn	 is the smallest

number 	 satisfying� f�x� �� 	 for all x � ���� If 		
is the supremum of f�x� on ���	 and there exists an

"x � ��� satisfying f�"x� � 			 then 		 is said to be

the maximum value of f�x� on ���	 and "x is the

point which attains it�



xx Notation

Local minimum�

global minimum

Consider an optimization problem in which an ob


jective function 
�x�	 which is a real valued function

de�ned over Rn	 is required to be minimized	 sub


ject to possibly some constraints on the decision

variables x� Let K 
 Rn denote the set of feasible

solutions for this problem� A point "x � K is said

to be a global minimum for this problem if there

exists no x � K satisfying 
�x� � 
�"x�� A point

!x � K is said to be a local minimum for this prob


lem if there exists an � � � such that the following

system has no feasible solution

x � K


�x� � 
�!x�

jjx� !xjj � �

that is	 !x is a local minimum for this problem i� !x is

a global minimum for 
�x� over K�fx � jjx� !xjj �

�g� See Section �����

Cardinality De�ned only for sets� The cardinality of a set is

the number of distinct elements in it�

Principal Submatrix FJJ
of square matrix F

Let F � �fij� be a given square matrix of order

n� Let J 
 f�� � � � � ng� The principal subma�

trix of F determined by the subset J is the matrix

FJJ � �fij � i � J� j � J�� See Section ������ The

determinant of FJJ is known as the principal sub


determinant of F corresponding to the subset J�

BFGS updating formula The Broyden
Fletcher
Goldfarb
Shanno formula for

updating a positive de�nite symmetric approxima


tion to the Hessian �or its inverse� of a twice con


tinuously real valued function 
�x� de�ned on Rn	

as the algorithm moves from one point to next� See

Sections ����� and �������

LCP Linear complementarity problem�

NLCP Nonlinear complementarity problem�

LP Linear program�

BFS Basic feasible solution�
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NLP Nonlinear program�

PD Positive de�nite� A square matrix M of order n is

said to be PD if yTMy � � for all y � Rn	 y �� ��

PSD Positive semide�nite� A square matrix M of order

n is said to be PSD if yTMy �� � for all y � Rn�

ND Negative de�nite� A square matrix of order n is

said to be ND if yTMy � � for all y � Rn	 y �� ��

NSD Negative semide�nite� A square matrix of order n

is said to be NSD if yTMy �� � for all y � Rn�

PPT Principal pivot transform� See Section ����

�i�j� This refer to the jth equation in the ith chapter�

Equations are numbered serially in each chapter�

Section i�j� i�j�k The sections are numbered serially in each chapter�

�i�j� refers to section j in Chapter i� �i�j�k� refers

to subsection k in section i�j�

Figure i�j The jth �gure in Chapter i� The �gures are num


bered serially in this manner in each chapter�

Reference �i�j� The jth reference in the list of references given at

the end of the Chapter i� References given at the

end of each chapter are numbered serially�

Exercise i�j The jth exercise in Chapter i� Exercises are num


bered serially in each chapter�

Figure i� Exercise i�

Theorem i� Reference i�

Example i

In the appendices	 �gures	 examples	 exercises	 the


orems	 references	 etc� are numbered serially using

a single number for each� So any �gure	 example	

exercise	 theorem or reference with a single number

like this must be in the appendix�
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Linear Function�

a�ne function

The real valued function f�x� de�ned over x � Rn

is called a linear function if f�x� � c�x� � � � ��

cnxn where c�� � � � � cn are constants	 it satis�es the

property� f��x� � �x�� � �f�x�� � �f�x�� for all

x�� x� � Rn and for all real numbers �	 �� The real

valued function g�x� de�ned over x � Rn is said to

be an a�ne function if g�x� � 		 � 	�x� � � � ��

	nxn where 		� 	�� � � � � 	n are constants	 it satis�es

the property� g��x� � �x�� � �g�x�� � �g�x�� for

all x�� x� � Rn and for all real numbers �	 � satis


fying �� � � �� Every ane function de�ned over

Rn in a linear function plus a constant�

Basis� basic vector�

basic solution�

basic feasible solution

See Section ����

Bounded set A subset S 
 Rn is bounded if there exists a �nite

real number � such that jjxjj �� �	 for all x � S�

Proper subset If E is a subset of a set ���	 E is said to be a proper

subset of ��� if E �� ���	 that is	 if ��� nE �� �

Feasible solution A numerical vector that satis�es all the constraints

and restrictions in the problem�

Optimum solution or

Optimum feasible

solution

A feasible solution that optimizes �i� e�	 either max


imizes or minimizes as required� the objective value

among all feasible solutions�

Algorithm The word from the last name of the Persian scholar

Abu Ja�far Mohammed ibn M"us"a alkhow"arizm"#

whose textbook on arithmetic �about A�D� ����

had a signi�cant in$uence on the development of

these methods� An algorithm is a set of rules for

getting a required output from a speci�c input	 in

which each step is so precisely de�ned that it can

be translated into computer language and executed

by machine�
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Size The size of an optimization problem is a parameter

that measures how large the problem is� Usually

it is the number of digits in the data in the op


timization problem	 when it is encoded in binary

form�

O�nr� A �nitely terminating algorithm for solving an opti


mization problem is said to be of order nr or O�nr�	

if the computational e�ort required by the algo


rithm in the worst case	 to solve a version of the

problem of size n	 grows as �nr	 where �	 r are

numbers that are independent of the size n and

the data in the problem�

Polynomially bounded

algorithm

An algorithm is said to be polynomially bounded

if it can be proved that the computational e�fort

required by it is bounded above by a �xed polyno


mially in the size of the problem�

The class P of problems This is the class of all problems for solving which

there exists a polynomially bounded algorithm�
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NP�complete class

of problems

A decision problem is one for which the answer is

�yes� or �no�� For example	 given an integer square

matrix D of Rn	 the problem �is there an x � Rn

satisfying xTDx � �%� is a decision problem� Also	

given a square matrix M of order n and a column

vector q � Rn	 the problem �does the LCP �q�M�

have a solution%� is a decision problem� Often	

optimization problems can be handled by study


ing decision problem versions of them� For exam


ple	 consider the problem of minimizing 
�x� over

x � K	 where K represents the set of feasible solu


tions of this problem� The decision problem version

of this optimization problem is �is there an x � K

satisfying 
�x� �
� �%� where � is a speci�ed real

number� Clearly	 by examining this decision prob


lem with varying values of �	 we can narrow down

the solution of the optimization problem�

The NP
complete class is a class of decision prob


lems in discrete optimization	 satisfying the prop


erty that if a polynomially bound algorithm exists

for any one problem in the classs	 then polynomi


ally bounded algorithms exist for every problem in

the class� So far no polynomially bounded algo


rithm is known for any problem in theNP
complete

class	 and it is believed that all these problems

are hard problems �in the worst case	 the compu


tational e�ort required for solving an instance of

any problem in the class by any known algorithm	

grows asymptotically	 faster than any polynomial

in the size of the problem�� See reference ������ for

a complete discussion of NP
completeness�

Necessary conditions�

su�cient conditions�

necessary and su�cient

conditions

When studying a property of a system	 a condi


tion is said to be a necessary condition for that

property if that condition is satis�ed whenever the

property holds� A condition is said to be a su��

cient condition for the property if the property

holds whenever the condition is satis�ed� A neces�

sary and su�cient condition for the property

is a condition that is both necessary condition and

a sucient condition for that property�
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Active or tight

constraint

An inequality constraint gp�x� �
� � is said to be

active or tight	 at a point !x satisfying it	 if gp�!x� �

�� The equality constraint hi�x� � � is always an

active constraint at any point !x satifying it�

Infeasible system A system of constraints in the variables x � �xj�

is said to be infeasible	 if there exists no vector x

satisfying all the constraints�

Complementary pair A pair of variables in an LCP	 at least one of which

is required to be zero� Each variable in a comple


mentary pair is said to be the complement of the

other� A pair of column vectors corresponding to

a complementary pair of variables in an LCP is a

complementary pair of column vectors� Each col


umn vector in a complementary pair is the comple


ment of the other� In an LCP of order n	 there are

n complementary pairs	 numbered � to n�

Complementary set

of vectors

A vector of n variables in an LCP of order n is

a complementary vector if the jth variable in the

vector is from the jth complementary pair of vari


ables	 for each j� A complementary set of column

vectors is an ordered set in which the jth vector is

from the jth complementary pair for each j�

Complementary matrix In an LCP of order n	 this is a square matrix of

order n whose jth column vector is from the jth

complementary pair	 for each j�

Complementary cone In an LCP of order n	 this is Pos�A� where A is a

complementary matrix of this problem�

Complemetary basis It is a complementary matrix which is nonsingular�

Complementary basic

vector

It is a complementary vector of variables associated

with a complementary basis�

Complementary feasible

basis

It is a complementary basis which is a feasible basis

for the problem�
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Complementary feasible

basic vector

It is a complementary basic vector which is feasible

to the problem�

!z leads to a solution

of the LCP �q�M�

We say that the vector !z leads to a solution of the

LCP �q�M� if �w � M !z � q� !z� is a solution of the

LCP �q�M��

To process an LCP When an algorithm for solving LCPs is applied on

an LCP	 it may either obtain a solution of the LCP	

or terminate without obtaining a solution� It is pos


sible that some algorithms may terminate without

a solution even though the LCP may have a so


lution� An algorithm for solving LCPs is said to

process a speci�ed class of LCPs if	 when the

algorithm is applied on any LCP from this class

and it terminates without obtaining a solution	 we

can prove that the LCP in fact has no solution�

In other words	 an algorithm is said to process a

class of LCPs i� for every LCP in this class	 the al


gorithm either produces a solution or conclusively

establishes that the LCP cannot have a solution�

Secondary ray

or terminal ray

This is the half
line or ray obtained at the end of

executing the complementary pivot algorithm on

an LCP	 if the algorithm terminates in ray termi


nation� This secondary ray	 if it is obtained	 is dis


tinct from the initial ray with which the algorithm

is initiated� See Section ������

Subcomplementary set�

vector

It is a complementary set or vector with one ele


ment missing�

Almost complementary

vector

It is a vector that is complementary except for one

violation which is set up appropriately� See Sec


tions �����	 ����

Copositive matrix A square matrix M of order n is said to be copos


itive if yTMy �� � for all y �� � in Rn�

Strictly copositive

matrix

A square matrix M of order n is said to be strictly

copositive if yTMy � � for all y � � in Rn�
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Copositive plus matrix A square matrix M of order n is said to be copos


itive plus if it is copositive	 and for y �� � in Rn if

yTMy � � then �M � MT �y � ��

P	�matrix A square matrix is a P	
matrix if all its principal

subdeterminants are �� ��

P �matrix A square matrix is said to be a P 
matrix if all its

principal subdeterminants are strictly positive�

Q�matrix A square matrix M of order n is said to be a Q


matrix if the LCP �q�M� has a solution for all q �

Rn�

Z�matrix A square matrix M � �mij� is a Z
matrix if mij ��
� for all i �� j�

Q	�matrix The square matrix M is said to be a Q	
matrix if

K�M� is a convex cone�

!Q�matrix� or

Completely Q�matrix

A square matrix M such that M and all its princi


pal submatrices are Q
matrices�

!Q	�matrix� or

Completely Q	�matrix

A square matrix M such that M and all its princi


pal submatrices are Q	
matrices�
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Faces� Facets Let K 
 Rn be a convex polyhedron� H � fx �

ax � a	g where a �� � is a given row vector in

Rn� H is a hyperplane in Rn� H is said to have

K on one of its sides if either ax �
� a	 for all x �

K	 or ax �
� a	 for all x � K� If H has K on

one of its sides and H � K �� 	 H is said to be

a supporting hyperplane for K� A face of K

is either the empty set 	 or the set K itself	 or

H � K for some supporting hyperplane H for K�

See reference ������� For example	 extreme points

of K are its faces of dimension zero� Edges of K

are its faces of dimension �	 etc�

A face of K is said to be a facet if its dimension is

one less than the dimension of K�

For some special convex polyhedra	 simplicial cones

or simplexes	 it is possible to characterize all faces

easily� If fB��� � � � � B�ng is a linearly independent

set of column vectors in Rn	 then	 for the simpli


cial cone PosfB��� � � � � B�ng	 the cone PosfB��� � � � �

B�j��� B�j��� � � � � B�ng is a facet for any j	 and the

cone PosfB�j � j � Jg is a face for any subset

J 
 f�� � � � � ng �this face is de�ned to be f�g	 if

J � �� If fv	� � � � � vng are the set of vertices of an

n
dimensonal simplex in Rn	 the convex hull of fv	�

� � � � vj��� vj��� � � � � vng is a facet of this simplex for

all j	 and the convex hull of fvj � j � Jg is a face

of this simplex for all subsets J 
 f�� � � � � ng �this

face is de�ned to be the empty set if J � ��

Principally degenerate�

principally

nondegenerate� matrices

A square matrix A is said to be principally non�

degenerate if all its principal subdeterminantes

are nonzero� principally degenerate if at least

one of its principal subdeterminantes has value zero�

In this book we are usually concerned only with

principal degeneracy or nondegeneracy of square

matrices	 and hence we usually omit the adjective

�principally� and refer to the matrices as being de


generate or nondegenerate�

Degenerate or

nondegenerate

complementary cone

A complementary cone is nondegenerate if its inte


rior is nonempty	 degenerate otherwise�
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Strongly degenerate

or weakly degenerate

complementary cone

A degenerate complementary cone Pos�A��� � � � �

A�n� is said to be strongly degenerate if there

exists ���� � � � � �n� � � such that � � ��A�� � � � ��

�nA�n	 that is	 if the zero vector can be expressed

as a semipositive linear combination of the com


plementary set of column vectors fA��� � � � � A�ng�

weakly degenerate otherwise�

Degenerate or

nondegenerate

basic solutions� vectors�

systems of linear

equations

Consider the system of linear constraints �Ax � b�

where A is a matrix of order m�n and rank m� A

basic solution !x for this system is said to be non�

degenerate if the number of nonzero variables in

!x is m	 degenerate if this number is � m� The

right hand side constants vector b in the system

is said to be degenerate if the system has at least

one degenerate basic solution	 b is said to be non


degenerate if the system has no degenerate basic

solution� Thus b is degenerate in the system if it

can expressed as a linar combination of m � � or

less column vectors of A	 nondegenerate otherwise�

The system of constraints is itself said to be degen


erate or nondegenerate depending on whether b is

degenerate or nondegenerate�

Lipschitz continuous Let f�x� be a continuous real valued function de


�ned on K 
 Rn� It is said to be Lipschitz continu


ous �or Lipschitzian� on K if there exists a nonneg


ative number � such that jf�x�� f�y�j �� �jjx� yjj

for all x� y � K� The number � is known as the

Lipschitz constant for this function�

Principal subproblem Consider the LCP �q�M� with variables �w�� � � � �

wn�T 	 �z�� � � � � zn�T � Let J 
 f�� � � � � ng	 J �� �

Let qJ � �qi � i � J�T 	 MJJ � �mij � i � J�

j � J�� The LCP �qJ�MJJ� in variables wJ	 zJ
is called the principal subproblem of the LCP

�q�M� corresponding to the subset J�

Simplex See Section ����

r
�!x� The row vector of partial derivatives
����x�

�x�
� � � � �

���x�
�xn

�
	 gradient vector	 evaluated at x � !x�



xxx Notation

f�x� The subdi�erential set of the function f�x� at the

point x� See Appendix � and Section ������

Di�erentiable function A real valued function 
�x� de�ned on an open sub


set ��� 
 Rn is said to be di�erentiable at a point

!x � ���	 if all the partial derivatives ���
x�
�xj

	 j � � to

n exist	 and for any y � Rn	 �
�!x � �y� � 
�!x� �

�r
�!x�y��� tends to zero as � tends to zero� If it

is di�erentiable at every point !x � ���	 it is said to

be di�erentiable in ����

Continuously

di�erentiable function

A real
valued function 
�x� de�ned on an open sub


set ��� � Rn is said to be continuously di�eren�

tiable at a point !x � ��� if it is di�erentiable at ���

and r
�x� is contiuous at !x� If it is continuously

di�erentiable at every point !x � ���	 it is said to be

continuoulsy di�erentiable in ����

H�
�!x�� The Hessian matrix of 
�x� at !x� It is the square

matrix of second partial derivatives
� ����x�
�xi�xj

�
eval


uated at !x�

Twice di�erentiable

function

A real valued function 
�x� de�ned over an open set

��� � Rn is said to be twice di�erentiable at !x � ���

if r
�!x� and H�
�!x�� exist	 and for all y � Rn	

�
�!x��y��
�!x����r
�!x��y� ��

� y
TH�
�!x��y���


tends to zero as � tends to zero� 
�x� is said to be

twice di�erentiable in ��� if it is twice di�erentiable

at every point in ����

Twice continuously

di�erentiable function

A real valued function 
�x� de�ned over an open set

��� � Rn is said to be twice continuously di�er�

entiable at !x � ��� if it is twice di�erentiable at !x

and H�
�x�� is continuous at !x� It is twice contin


uously di�erentiable in ��� if it is twice continuously

di�erentiable at every point in ����
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Smooth function Mathematically	 a real valued function de�ned on

Rn is said to be a smooth function if it has deriva


tives of all orders� Many of the algorithms dis


cussed in this book use only derivatives of the �rst

or at most second orders� So	 for our purpose	 we

will consider a smooth function to be one which is

continuously di�erentiable	 or twice continuously

di�erentiable if the method under consideration

uses second order derivatives�

Optimization problems

in minimization form

Whenever a function f�x� has to be maximized

subject to some conditions	 we can look at the

equivalent problem of minimizing �f�x� subject to

the same conditions� Both problems have the same

set of optimum solutions and the maximum value

of f�x� � �minimum value of ��f�x��� Because of

this	 we discuss only minimization problems�

rh�x� when

h�x� � �h��x�� � � � � hm�x��T
Let h�x� denote the column vector of m di�eren


tiable functions hi�x�	 i � � to m	 de�ned over Rn�

Then rh�x� �
��hi�x�

�xj
� i � � to m	 j � � to n

�
is the Jacobian matrix in which the ith row vec


tor is the gradient vector of hi�x� written as a row

vector�

Nonlinear programming

problem

This refers to an optimization problem of the fol


lowing general form �

minimize 
�x�

subject to hi�x� � �� i � � to m

gp�x� �� �� p � � to t

where all the functions 
�x�	 hi�x�	 gp�x� are real

valued continuous functions of x � �x�� � � � � xn�T �

Rn� The problem is said to be a smooth non�

linear program if all the functions are in fact

continuously di�erentiable functions� In this book

we only consider smooth nonlinear programs� See

Chapter ���
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Quadratic forms in

matrix notations

Consider the quadratic form in n variables x �

�x�� � � � � xn�T 	 f�x� �
nP
i��

giix


i �

nP
i��

nP
j�i��

gijxixj �

An example for n � � is h�x� � ��x
� � �x
� �

�x�x�� �x�x� � ��x�x�� Let F � �fij� be a square

matrix of order n satisfying

fii � gii� i � � to n

fij � fji � gij� for i �� j and j � i�

Then it can be veri�ed that f�x� � xTFx� In par


ticular	 if we de�ne the symmetric matrixD � �dij�

of order n	 where

dii � gii� i � � to n

dij � dji �
�

�
gij � for i �� j and j � i

then f�x� � xTDx� For the quadratic form h�x�

in � variables	 x � �x�� x�� x��
T 	 given above	 the

matrix D turns out to be

D �

������� �� �
� ��

�
� �� �

�� � �

������	
and h�x� � xTDx�
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Quadratic programming

problem�

convex or nonconvex

quadratic programs

An optimization problem in which a quadratic func


tion of x � �x�� � � � � xn�T � Rn is to be optimized

subject to linear constraints on the variables	 is

called a quadratic programming problem� Its gen


eral form is�

minimize Q�x� � cx � �
�
xTDx

subject to Ax �� b

Ex � d

where D is a square symmetric matrix of order n�

The inequality constraints here include any non


negativity restrictions or the lower or upper bound

restrictions on the variables�

This problem is called a convex quadratic pro�

gram if D is a PSD matrix �in this case the objec


tive function to be minimized	 Q�x�	 is convex�� a

nonconvex quadratic program otherwise�

QP Quadratic Programming Problem�

Complemetary basis It is a complementary matrix which is nonsingular�

rx�f�x� ���	 Hx�f�x� ��� These are respectively the row vector of the partial

deri
vates	 and the square matrix of the second or


der partial derivates	 of the function f�x� ��	 with

respect to the variables in the vector x	 at �x� ���
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Karush�Kuhn�Tucker

�or KKT� necessary

optimality conditions

Let 
�x�	 hi�x�	 gp�x�	 be real valued continuously

di�erentiable functions de�ned on Rn for all i	 p�

Consider the following mathematical program�

minimize 
�x�

subject to hi�x� � �� i � � to m

gp�x� �� �� p � � to t

The Karush
Kuhn
Tucker �KKT� Lagrangian for

this problem is� L�x� �� �� � 
�x� �
Pm

i�� �ihi�x�

�
Pt

p�� �pgp�x� where �i	 �p are the Lagrange

multipliers associated with the constraints� The

Karush
Kuhn
Tucker �KKT� necessary optimality

condition for this problem are �



x
L�x� �� �� � r
�x��

mX
i��

�irhi�x��

�
tX

p��

�prgp�x� � �

hi�x� � �� i � � to m

gp�x� �� �� p � � to t

�p �� �� p � � to t

�pgp�x� � �� p � � to t

where r
�x� etc� are the vectors of partial deriva


tives� If !x is a local minimum for this problem	 un


der fairly general conditions �see Appendix �� it can

be shown that there exist multiplier vectors !�	 !�

such that !x	 !�	 !� together satisfy these KKT condi


tions� In the literature these conditions are usually

called �rst�order necessary optimality condi�

tions or Kuhn
Tucker conditions� But it has been

found recently that Karush was the �rst to discuss

them� Hence	 nowadays	 the name Karush
Kuhn


Tucker necessary optimality conditions is coming

into Vogue�

A feasible solution !x satisfying the property that

there exist Lagrange multiplier vectors !�	 !� such

that !x	 !�	 !� together satisfy the KKT conditions	

is called a KKT point for the problem�
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Stationary point

for an NLP

Given an NLP	 a stationary point for it usually

refers to any feasible solution satisfying a neces


sary optimality condition for it� Every optimum

solution is a stationary point	 but	 in general	 there

may be stationary points which are not even locally

optimal to the problem�

Direction� half�line Any point y � Rn	 y �� � de�nes a direction in

Rn� Given !x � Rn	 points !x � �y	 � �
� � are

obtained when you move from !x in the direction y�

The set of all these points fx � x � !x � �y� � �
� �g

is the half�line or ray through !x in the direction

of y� See Section ������

Step length Given !x � Rn	 y � Rn	 y �� �� for � � �	 the point

!x��y is obtained by taking a step of length � from

!x in the direction of y� In this process � is the step

length�

Feasible direction Given a set ��� 
 Rn	 and a point !x � ���� the direc


tion y � Rn	 y �� �	 is called a feasible direction

at !x for ��� if there exists a positive number !� such

that !x� �y � ��� for all � �� � �
� !�� Thus the direc


tion y is a feasible direction at !x for ��� i� an initial

segment of positive length on the half
line through

!x in the direction y is contained in ����

Given an optimization problem	 and a feasible solu


tion x for it	 the direction y �in the x
space� is said

to be a feasible direction at x for this optimization

problem if there exists an � � � such that x��y is

a feasible solution to the problem for all � �
� � �

� ��

Descent direction Let 
�x� be a real valued function de�ned over x �

Rn� The direction y � Rn	 y �� �	 is said to be a

descent direction for 
�x� at !x if 
�!x��y� � 
�!x�

whenever � is positive and suciently small� So by

moving from !x a small but positive step length in

a descent direction	 
�x� is guaranteed to strictly

decrease in value�

A descent direction for a minimization problem at

a feasible solution x	 is a feasible direction for the

problem at x	 which is a descent direction at x for

the objective function being minimized�
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Line search problem�

line search method

Let 
�x� be a real valued function de�ned on Rn�

Let !x � Rn be a given point and y � Rn	 y �� �

a given direction� The problem of minimizing


�!x � �y� over a �
� � �

� b where a	 b are given

bounds on �	 is called a line search problem or

a line minimization problem� and any method

for solving such a problem is called a line search

method� Since !x	 y are given	 
�!x� �y� is purely

a function of the single variable �	 if we denote


�!x � �y� � f���	 the line search problem is the

one dimensional minimization problem of �nding

the minimum of f��� over a �
� � �

� b� Typi


cally	 in most line search problems encountered in

applications	 we will have a � � and b is either

a �nite positive number	 or �	� When b is �


nite	 the problem is often called a constrained

line search problem� Several line search meth


ods are discussed in Section ����� Many nonlinear

programming algorithms use line search methods

repeatedly in combination with special subroutines

for generating feasible descent directions�

Hereditary symmetry�

hereditary PD

Many algorithms for nonlinear programming �for

example those discussed in Section ����� or Chapter

��� are iterative methods which maintain a square

matrix B of order n and update it in each step� Let

Bt denote this matrix in the tth step� The updating

formula in this method provides Bt�� as a function

of Bt and other quantities which are computed in

the tth step or earlier� This updating procedure is

said to possess the hereditary symmetry prop�

erty if for any t	 the fact that Bt is symmetric

implies that Bt�� is also symmetric� Similarly	 the

updating procedure possesses the hereditary PD

property if for any t the fact that Bt is PD implies

that Bt�� is also PD� Thus	 if the updating proce


dure has the hereditary symmetry and PD proper


ties	 and the initial matrix B used in the method is

both symmetric and PD	 the matrices Bt obtained

in all the steps of the method will also be symmet


ric and PD�
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Active set method Any method for solving an NLP which partitions

the set of inequality constraints into two groups &

the active set consisting of those inequalities which

are to be treated as active	 that is	 as equality

constraints� and the inactive set� Inequality con


straints in the inactive set are presumed to hold

as strict inequalities at the optimum solution and

are essentially ignored� The remaining problem is

solved �treating all the constraints as equality con


straints� by any method for solving equality con


strained optimization problems� Active set meth


ods also have procedures for revising the active set

�either deleting inequality constraints from it	 or

adding inequality constraints from the inactive set

into it� in each step	 based on information accumu


lated in the method so far�

Convex programming

problem� nonconvex

programming problem

A problem in which a convex objective function is

to be minimized over a convex set �usually of the

form� minimize 
�x�	 subject to gi�x� �� �	 i � � to

m and ht�x� � �	 t � � to p� where all the functions

are given and 
�x� is convex� gi�x� are concave for

all i� and ht�x� is ane for all t� is said to be a

convex programming problem� A nonconvex

programming problem is one which is not con


vex	 that is	 does not belong to the above class� For

a convex programming problem every local mini


mum is a global minimum� In general	 it is very

hard to �nd the global minimum in a nonconvex

programming problem� Necessary and sucient

conditions for optimality are available for convex

programming problems� For nonconvex program


ming problems we have some necessary conditions

for a point to be a local minimum	 and sucient

conditions for a given point to be a local minimum�

No simple set of conditions which are both neces


sary and sucient for a given point to be a local

minimum	 are known for general nonconvex pro


gramming problems�
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Merit function In a nonlinear program where an objective function

de�ned on Rn is to be minimized subject to con


straints	 a merit function is a real valued function

de�ned on Rn	 it consists of the objective function

plus penalty terms for constraint violations� Usu


ally the penalty

terms come from either the absolute
value penalty

function �L�
penalty function� or the quadratic penalty

function� Minimizing the merit function balances

the two competing goals which result from the de


sire to decrease the objective function while reduc


ing the amount by which the constraints fail to be

satis�ed� See Section ������

Cauchy�Schwartz

inequality
Let x	 y be two column vectors in Rn� Then jxT yj
�
� jjxjj�jjyjj	 this inequality is known as the

Cauchy�Schwartz inequality� To prove it con


sider the quadratic equation in one variable �	 f���

� ��x� y�T ��x� y� � �
jjxjj
 � ��xT y � jjyjj
 �

�� Since f��� � jj�x � yjj
	 it is always �� �� This

implies that the equation f��� � � can have at

most one real solution in �� It is well known that

the quadratic equation a�
 � b� � c � � has at

most one real solution i� b
 � �ac �
� �	 applying

this to the equation f��� � �	 we conclude that

�xT y�
 �
� jjxjj
�jjyjj
	 that is	 jxT yj �� jjxjj�jjyjj�

Also	 the quadratic equation a�
 � b� � c � � has

exactly one real solution if b
 � �ac � �� Apply


ing this to f��� � �	 we conclude that f��� � �

has a real solution if jxT yj � jjxjj�jjyjj	 in this case

since f��� � jj�x � yjj
 � � for some real �	 we

must have �x� y � �	 or y is scalar multiple of the

vector x� Thus	 if the Cauchy
Schwartz inequality

holds as an equation for two vectors x� y � Rn	 one

of these vectors must be a scalar multiple of the

other�
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Cholesky factor If M is a square matrix of order n which is sym


metric and positive de�nite	 there exists a lower

triangular matrix F of order n with positive diag


onal elements	 satisfying M � FFT � This matrix

F is known as the Cholesky factor of M � For

ecient methods for computing Cholesky factors	

see books on computational linear algebra	 or �����	

������

Homotopy method To solve a system by a homotopy method	 we

continuously deform a simple system with a known

solution	 into the system we are trying to solve� For

example	 consider the problem of solving a smooth

system of n equations in n unknowns �g�x� � ���

Let a be an initial point from Rn	 consider the

simple system of equations �x � a� with a known

solution� Let F �x� �� � �g�x� � ��� ���x� a�	 on

� �
� � �

� �	 x � Rn	 F �x� �� is continuous in x and

�� The system �F �x� �� � ��	 treated as a sys


tem of equations in x	 with � as a parameter with

given value between � and �� is the simple system

when � � �	 and the system we want to solve when

� � �� As the parameter � varies from � to �	 the

system �F �x� �� � �� provides a homotopy �con


tiuous deformation� of the simple system �x � a�

into the system �g�x� � ��� The method for solving

�g�x� � �� based on the homotopy F �x� ��	 would

follow the curve x��� �where x��� is a solution of

F �x� �� � � as a function of the homotopy param


eter �� beginning with x��� � a	 until � assumes

the value � at which point we have a solution for

�g�x� � ���
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Principal rearrangement

of a square matrix

Let M be a given square matrix of order n� Let

p � �i�� � � � � in� be a permutation of ��� � � � � n�� The

square matrix P of order n whose rows are Ii���

Ii��� � � � � Iin� in that order is the permutation ma


trix corresponding to p� P is obtained by essen


tially permuting the rows of the unit matrix I of

order n using the permutation p� The matrix M � �

PMPT is known as the principal rearrangement of

M according to the permutation p� Clearly M �

is obtained by �rst rearranging the rows of M ac


cording to the permutation p	 and in the resulting

matrix	 rearranging the columns again accordng to

the same permutation p� See Section ������

Euclidean distance�

rectilinear distance

Let x � �xj�	 y � �yj� be two point in Rn� The

Euclidean distance between x and y is jjx� yjj �s
nP

j��
�xj � yj�
� The rectilinear distance between

x and y is
nP

j��
jxj � yj j�
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Steepest descent

direction at a feasible

solution� in a continuous

minimization problem�

First	 consider an unconstrained minimization prob


lem

minimize 
�x� over x � Rn �i�

where 
�x� is a real valued continuous function de


�ned over Rn�

Given any direction y � Rn	 y �� �	 the directional

derivative of 
�x� at a point x in the direction y is

de�ned to be

limit

�x� �y�� 
�x�

�

as �� ��	 and denoted by 
��x� y�	 when it exists�

If 
�x� is di�erentiable at x	 then 
��x� y� � r
�x�y�

In general	 
��x� y� may exist even if 
�x� is not dif


ferentiable at x�


��x� y� measures the rate of change in 
�x� at x �

x	 when moving in the direction y�

The direction y is said to be a descent direction at

x for problem �i�	 if 
��x� y� � ��

If x is a local minimum for �i�	 there is no descent

direction for �i� at x	 and hence no steepest descent

direction� Unfortunately	 the converse of this state


ment may not always be true	 that is	 the absence of

a descent direction at a point x does not imply that

x is a local minimum� See Exercise �� in Appendix

�� This just means that descent methods are not

always guaranteed to �nd a local minimum�

If x is not a local minimum for �i�	 an optimum

solution of

minimize 
��x� y� subject to norm �y� � � �ii�

is called a steepest descent direction at x for �i�	

under the particular norm used	 if it is a descent

direction at x for �i�� In �ii�	 norm �y� is a function

which measures the distance between the points �

and y is Rn� Di�erent norms may lead to di�erent

steepest descent directions�

In optimization literature	 usually norm �y� is taken

as yTAy where A is some speci�ed symmetric PD

matrix of order n �taking A � I	 the unit matrix

of order n	 leads to the Euclidean norm��
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Now consider a constrained continuous minimiza


tion

problem� Let K 
 Rn denote its set of feasible

solutions� Then this problem is of the form

minimize 
�x� subject to x � K �iii�

where the objective function 
�x� is a real valued

continuous function de�ned over Rn� Let x � K

be a given feasible solution�

Again	 if x is a local minimum for �iii�	 there is

no descent direction and hence no steepest descent

direction for �iii� at x� If x is not a local minimum

for �iii�	 any optimum solution of

minimize 
��x� y�

subject to norm of �y� � ��

and y is a feasible direction

at x for K	 and a descent

direction for 
�x� at x

�iv�

is known as a steepest descent direction for �iii� at

the feasible solution x�
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Descent methods Descent methods for smooth minimization prob


lems

have the following features� They are initiated with

a feasible solution	 x		 for the problem	 and gen


erate a sequence fxr � r � �� �� �� � � �g of feasible

points� For each r	 the objective value at xr�� is

strictly less than the objective value at xr� For

r �
� �	 step r � � of the method consists of the

following two substeps�

�� Generate a feasible direction	 yr	 for the problem

at the present feasible point xr	 which is a descent

direction for the objective function�

�� Carry out a line search on the half
line fx � x �

xr � �yr� � �
� �g for improving the objective value�

For this	 one has to determine the maximum value

of �	 say �	 such that xr � �yr remains feasible

to the problem for all � �
� � �

� � and then solve

the line minimization problem of minimizing the

objective function over fx � x � xr � �yr� � �
� � �

�
�g	 the output of which is the next point in the

sequence	 xr���

If there exists no feasible descent direction at xr	

the method terminates with xr while carrying out

substep � �unfortunately	 this does not guarantee

that xr is even a local minimum for the problem	

it just means that we are unable to improve on

the point xr using descent methods�� If subsetp �

does produce a direction yr	 from the de�nition of

feasible descent directions	 � is guaranteed to be

positive in substep � �it may happen that � � 	��

Di�erent descent methods use di�erent procedures

for carrying out substeps �	 ��

Therefore	 the important feature of descent meth


ods is that each move is made along a straight line	

and results in a strict improvement in objective

value� Since the objective value strictly improves

in each step �assuming that the method does not

terminate in that step�	 the sequence of points gen


erated by a descent method is called a descent

sequence�
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Karmarkar�s algorithm

for LP and an intuitive

justi�cation for it

A detailed description of Karmarkar�s algorithm	

including complete proofs of its polynomial bound


edness are provided in Section ����� Here we give a

statement of this algorithm	 with an intuitive jus


ti�cation	 for someone interested in an overview

without all the technical details and the proofs�

Consider the problem of minimizing a linear func


tion on a convex polytope�

x

x

0

1

One can improve the current solution substantially

by moving in the steepest descent direction	 if the

current solution is near the center of the feasible

region	 as in x	 in the �gure given above� but not

so if it is near the boundary	 as in x��

The main ideas behind Karmarkar�s algorithm are

the following�

i� If the current feasible solution is near the center

of the feasible region	 it makes sense to move in the

steepest descent direction�

ii� If it is possible to transform the problem without

changing it in an essential way	 that moves the cur


rent feasible solution near the center of the feasible

region	 do it� Karmarkar uses a projective scaling

transformation to do exactly this�

A �relative� interior feasible solution to an LP is one

which satis�es all inequality constraints as strict

inequalities� The basic strategy of Karmarkar�s al


gorithm is to start at a �relative� interior feasible

solution	 and to carry out a projective scaling trans


formation to move the current solution to the cen


ter�
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In the transformed problem	 move in the steepest

descent direction from this center	 but not all the

way to the �relative� boundary� Repeat as often as

necessary�

Karmarkar considers linear programming problems

in the following form

minimize cx

subject to Ax� �

eTx� �

x�� �

�P�

where A is a given matrix of order m � n	 and eT

is the row vector of all ��s in Rn� The set S � fx �

x � Rn and eTx � �� x �� �g is the standard �n���

dimensional simplex in Rn� The problem �P� is

assumed to satisfy the following assumptions�

��� The point a	 � ���n�e � ���n� � � � � ��n�T 	 the

center of S	 is feasible to �P��

��� The problem �P� has an optimum solution	 and

the optimum objective value in �P� is zero�

Methods for transforming any LP into the form

�P� satisfying conditions ���	 ���	 are discussed in

Section ����� This is the initialization work before

applying Karmarkar�s algorithm on an LP� While

these initialization methods are simple and math


ematically correct	 they can ruin the practical ef


�ciency unless done in a clever way� Practically

ecient initialization techniques in implementing

Karmarkar�s algorithm	 are the object of intense

research investigations at the moment�

Let us now consider the LP �P� satisfying ��� and

���� Karmarkar�s method generates a sequence of

feasible solutions for �P�	 x	 � a	� x�� x�� � � � � all of

them in the relative interior of S �i� e�	 xr � � for

all r�	 with cxr monotonic decreasing� The method

is terminated when we reach a t such that the ob


jective value cxt is suciently close to the optimum

objective value of �� So the terminal solution xt is

a near optimum solution to �P�� A pivotal method

�needing at most n pivot steps� that leads to an

optimum extreme point solution of �P� from a near

optimum solution	 is discussed in Section ����	 it
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can be used in a �nal step if necessary� We now

provide the general step�

General step r�� in Karmarkar�s algorithm�

Let xr � a � �a�� � � � � an�T � � be the current fea


sible solution of �P�� De�ne D as the n�n diagonal

matrix with diagonal entries a�� � � � � an	 that is

D �

�� a� �
� � �

� an

A �

Since the matrix D depends on the current solu


tion	 you get a di�erent D in each step� Use the

projective transformation T � S� S	 de�ning new

variables y � �y�� � � � � yn� by

y � T �x� �
D��x

eTD��x
�

Since D is a diagonal matrix with positive diagonal

entries	 D�� is the diagonal matrix whose ith di


agonal entry is ���ai�� For every x � S	 T �x� � S�

Also	 points in the relative interior of S in the x


space map into points in the relative interior of S

in the y
space� The current feasible solution a of

�P� in the x
space	 maps into the solution a	 �

���n� � � � � ��n�	 the center of the simplex S in the

y
space	 under this transformation�

To transform the problem �P�	 we use the inverse

transformation

x � T���y� �
Dy

eTDy
�

It can be veri�ed that this transforms the original

LP into

minimize
cDy

eTDy
� 
�y�

subject to ADy� �

eT y� �

y �� ��

�Q�

The constraints remain linear and essentially in the
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same form as those in �P�	 but the objective func


tion in �Q� is nonlinear�

Since the current solution for �Q� is a		 the center

of S	 it makes sense to move from a		 in the steep


est descent direction in �Q� at a	� Since a	 � �	

the set of feasible directions for �Q� at a	 is f� �

� � Rn� AD� � �� eT � � �g� Let

B �

��AD
� � �
eT

A �

At a		 the denominator in 
�y�	 eTDy	 is equal to

���n�	 and it remains quite constant in a small

neighborhood of a	� So	 the steepest descent di


rection for �Q� at the current point a	 can be ap


proximated by the steepest descent direction for

the objective function cDy subject to the same con


straints as in �Q�	 this is the solution of

minimize cD�

subject to B�� �

k�k� ��

The optimum solution of this problem is "cp�k"cpk	

where

"cp � cD�I � BT �BBT ���B�

"cp is the orthogonal projection of cD onto the sub


space f� � B� � �g� So	 the next point for �Q� is of

the form

y� � a	 � �"cp�k"cpk

where � is a positive step length� � can be chosen

as large as possible	 but keeping y� � �� This leads

to the new solution xr�� for the original problem

�P�	 where

xr�� �
Dy�

eTDy�
�

If cxr�� is suciently close to �	 terminate with

cxr�� as a near optimum solution for �P�	 other


wise	 go to the next step with xr�� as the current

solution�


