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Abstract

Existing software implementations for solving Linear Programming (LP) models are all based on full matrix inversion
operations involving every constraint in the model in everystep. Thislinear algebra componentin these systems makes
it difficult to solve dense models even with moderate size, and it is also the source of accumulating roundoff errors
affecting the accuracy of the output.

We present a new Sphere method, SM-6, for LP not using any pivot steps. The method is currently undergoing
computational tests.

Key words: Linear Programming (LP), Interior point methods (IPMs) , solving LPs by descent methods without using
matrix inversions.

In Memorium: I dedicate this paper to the memory of my dear friend Santosh Kabadi with whom I had many fruitful
discussions on the methods discussed in this paper, who passed away in a tragic drowning accident in the sacred Ganges
river recently.

1. Introduction

For modeling decision making applications, LP is
the most commonly used mathematical model. Soft-
ware systems for solving LP models are based on either
the simplex method, or interior point methods (IPMs,
in particular the primal-dual IPM) developed during the
second half of the 20th century (see the books [1–3,6]
for detailed discussion of these methods, and references
on them) and are able to solve large scale sparse models
(those involving thousands of constraints), within rea-
sonable times by exploiting the sparcity of the models.
As several real world applications lead to sparse mod-
els, these systems are very popular in practice.

But the simplex method, and these IPMs are based on
matrix inversion operations involving every constraint
in the model in every step. In large scale applications,
these matrix inversion operations limit the ability of
these algorithms to only those with very sparse coeffi-
cient matrices. Typically, the effectiveness of these al-
gorithms fades as the density of the coefficient matrix
increases.

Many applications lead to LP models that are not
sparse, and need near-optimum solutions in real time.
In many of these applications, the LP models are only
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of moderate size. This provided a motivation for us to
develop fast algorithms for LP without using matrix
inversion operations.

SMs consider LPs in the form:

min z = cx (1)

s.t. Ax ≥ b

whereA is anm×n data matrix; with a known interior
feasible solutionx1 (i.e., satisfyingAx1 > b). Here is
the notation we will use in this paper.
• Notation for rows and columns ofA: Ai., A.j de-

note theith row andjth column ofA.
• Feasible region and its interior:K denotes the set

of feasible solutions of (1), andK0 = {x : Ax > b}
its interior.

• Facetal hyperplanes:FHi = {x : Ai.x = bi}, the
i-th facetal hyperplance ofK for i = 1 tom.

• Largest inscribed ball with a given point as center,
its radius: B(x, δ(x)), δ(x) are defined forx ∈ K0.
δ(x) = minimum{Ai.x−bi

||Ai.||
: i = 1, ...,m} is the

radius of the largest ball that can be inscribed inK
with x as its center.B(x, δ(x)) = {y : ||y − x|| ≤
δ(x)} is that largest inscribed ball inK with x as
its center. We will use “B(x)” to denote the ball
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B(x, δ(x)).
• Touching constraint set at a given point:T (x) de-

fined forx ∈ K0, it is the set of all indicesi satisfy-
ing: Ai.x−bi

||Ai.||
= Minimum{Ap.x−bp

||Ap.||
: p = 1 to m} =

δ(x). The facetal hyperplaneFHi = {x : Ai.x = bi}
is a tangent plane toB(x, δ(x)) for eachi ∈ T (x),
that’s whyT (x) is called theindex set of touching
constraints in (1) definingK, atx.

• GPTC (gradient projection on touching con-
straint) directions: Let ci denote the orthogo-
nal projection of cT on {x : Ai.x = 0}, i.e.,
ci = cT −AT

i. [(Ai.c
T /||Ai.||2] for i = 1 tom. When

the ball B(x, δ(x)) is under consideration, the di-
rections−ci for i ∈ T (x) are called theGPTC
directions at the current centerx in K.

• Ball center of K: It is the center of a largest ball in
K, it maximizesδ(x) overx ∈ K.

• IFS: We will use this abbreviation for “interior fea-
sible solution”, i.e., forK it will be an x satisfying
Ax > b.

• For x̂ ∈ K, H(x̂): is the objective plane througĥx,
it is {x : cx = cx̂}.
Sphere Methods (SM) for LP were introduced by

Murty in 2006 and developed further (see Chapter 8 on
Sphere Methods in the book [4], and paper [5]) . In this
paper we will describe SM-6 for LP, which does not use
any pivot steps at all.

2. Sphere Method 6 (SM-6) for LP

In this method, in a generaldescent stepfrom an IFS
x∗ in descent directiond (i.e.,d satisfyingcd < 0), we
move fromx∗ in this direction the maximum distance
possible while still remaining at a distanceǫ from the
boundary. This gives thestep lengthin this descent step
to beβ, where

β = Minimum {(−Ai.x
∗ + bi + ǫ)/(Ai.d) :

over all i satisfyingAi.d < 0} (2)

if there is at least onei satisfyingAi.d < 0, and in this
case the output of this descent step isx∗+βd. Hereǫ is
a small positive tolerance, like 0.1. In this case the best
value forǫ wiil be determined from computational tests.

On the other hand, ifAi.d ≥ 0 for all i, then the step
length in this descent step is∞. In this case the fea-
sible half-line{x∗ + βd : β ≥ 0} is one along which
the objective functioncx in (1) diverges to−∞ asβ
goes to∞. If this occurs in any descent step carried
out in this method, we terminate the algorithm with the

conclusion thatcx is unbounded belowin (1)

Subroutine 1: Finding the interval of values of a
real parameter α say, satisfying a given system of
linear inequalities: In every iteration in SM-6, we en-
counter the problem of finding the interval of values of
a single variableα satisfying a given system of linear
inequalities on it. Here we give a procedure for this
problem. Let the system be :

at + dtα ≥ 0 for all t = 1 to k

We assume thatdt 6= 0 for all t, as otherwise that
inequality does not involveα at all. The required interval
is: ᾱ1 = max{(−at/dt) : for all t satisfyingdt > 0}
≤ α ≤ ᾱ2 =min{(−at/dt : for all t satisfyingdt < 0}.

Here define maximum [minimum] in the empty set
to be −∞ [+∞] respectively. Ifᾱ1 > ᾱ2 then the
system has no solution.

Each iteration in SM-6 begins with an initial IFS,
and terminates by producing an output IFS at the end..
The first iteration begins with the IFSx1 given in input
data. Subsequent iterations begin with the output IFS of
the previous iteration. Each iteration consists of several
steps. We will describe each of these steps now. In the
rest of this Section 2 we will describe the algorithm
under the assumption thatK is bounded. We will now
describe the steps in a general iteration in SM-6 under
this assumption. The case whreK may not be bounded
will be discussed in the next Section 3.

The General Iteration in SM-6

Let x̄ denote the initial IFS with which this iteration
begins.

Step C1: Finding an approximate center begin-
ning with x̄:

Substep 1.Move the objective planeH(x̄) in the
direction−cT until it becomes a tangent plane to the ball
B(x̄), the largest ball insideK with x̄ as center (with its
radiusδ(x̄)). The point where the objective plane in its
new position touchesB(x̄) is x̄1 = x̄− cT [δ(x̄)/||c||].

If x̄1 is a boundary point ofK, i.e., satisfiesAi.x̄
1 =

bi for at least onei ∈ {1, ...,m}, then thisx̄1 is an
optimum solution of the LP (1), terminate the algorithm.
Otherwise continue. Now apply the following Substep
2 for eachi ∈ T (x̄):
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Substep 2.For i ∈ T (x̄), xi = point where the
factal hyperplaneFHi touchesB(x̄). So it is the or-
thogonal projection of̄x on FHi, thereforexi = x̄ −
AT

i.(δ(x̄)/||Ai.||) = x̄−AT
i. [(Ai.x̄− bi)/||Ai.||2].

For eachi ∈ T (x̄) compute the orthogonal projection
xi1 of xi onH(x̄1),xi1 = xi−cT [(cxi−cx̄1)/ccT ]. De-
fineLi = straight line joiningxi1 andx̄1, it is {xi1(γ) =
xi1 + γ(x̄1 − xi1) : γ takes all real values}, in para-
metric form in terms of parameterγ. To determine the
interval of values of the parameterγ for which xi1(γ)
lies inK, we need to solve the following system of lin-
ear inequalities inγ.

Ap.x
i1(γ) ≥ bp for p = 1 to m (3)

This is a system ofm linear inequalities in the pa-
rameterγ, and we know that whenγ = 1, xi1(γ) = x̄1

which is an interior point ofK. So the interval of values
of (3) is a nonempty interval withγ = 1 as an interior
point.

(3) can be solved by Subroutine 1 discussed above,
and since we assumed thatK is bounded in this discus-
sion, the interval of solutions will be a bounded interval
γi1 ≤ γ ≤ γi2. Find γi1, γi2 using Subroutine 1. Then:

Li ∩K ={ xi1(γ) : γi1 ≤ γ ≤ γi2} , and the length
of this interval , denoted byℓi is ||xi1(γi1)−xi1(γi2)||.

Substep 3.Among all i ∈ T (x̄) select that indexi
which corresponds to the maximum value forℓi com-
puted in Substep 2, and suppose it isi = r. Then the
output point¯̄x1 from this Step C1 beginning with̄x , is
¯̄x1 = [xr1(γr1)+xr1(γr2)]/2, the mid-point ofLr∩K.

Actually, in this Substep 3, there is an alternate pro-
cedure for selecting the output point¯̄x1. For this pro-
cedure let∆ = {(xi1(γi1) + xi1(γi2))/2 : i ∈ T (x̄)},
the set of mid-points of the line segmentsLi ∩K for
i ∈ T (x̄). Under this alternative, takē̄x1 as the point
x ∈ ∆ corresponding to the maximum value forδ(x).
We will determine which of these alternative proce-
dures in Substep 3 gives better results, and select that
one as the procedure to implement in Substep 3.

Step C2: Finding an approximate center begin-
ning with ¯̄x1, the output point from Step C1

Carry out Step C1 beginning with̄̄x1 instead ofx̄,
and suppose the output point obtained is¯̄x2. This point
¯̄x2 is called theCenter in this iteration. Now go to the

Descent steps in this iteration.

Descent steps in this iteration

Select a setΓ, initially = ∅, for storing the output
points with their objective values (forz = cx) generated
in each of the descent steps carried out below.

Descent step D5.1:The current center is̄̄x2. For each
i ∈ T (¯̄x2), compute thetouching point xi of B(¯̄x2)
with FHi, xi = ¯̄x2 − AT

i. [(Ai. ¯̄x
2 − bi)/||Ai.||2]. Then

x̂i = ǫ¯̄x2+(1− ǫ)xi is called theNTP (Near touching
point) of B(¯̄x2) with FHi. It is the pointǫ distance
away fromxi on the line segment joiningxi to ¯̄x2,
whereǫ is a small positive tolerance.

For eachi ∈ T (¯̄x2), take a descent step from the
NTP x̂i in the descent direction−ci. Store the output
points from each of these descent steps along with their
objective values in the setΓ.

Other descent steps:From the center̄̄x2, take de-
scent steps in the directions̄̄x2 − ¯̄x1, −cT , and the
average of the GPTC directions at the current center¯̄x2.
Store the output points from each of these descent steps
along with the objective values at them, in the setΓ.

After all these descent steps, select the point inΓ
corresponding to the least objective value as the newx̄,
reset the setΓ to be the empty set, and with the new̄x
go to the next iteration.

Terminate the method when the change in objective
value in an iteration falls below a selected tolerance.
In the final iteration, take the point inΓ corresponding
to the least objective value as an approximate optimum
solution of (1).

3. What to do if we don’t know whether K is
bounded

Suppose we do not know whetherK is bounded or
not. In this case also, we apply the algorithm as de-
scribed above. Now several cases may occur.

Case 1:The algorithm may continue as usual, with
all γi1, γi2 finite until termination with an approximate
optimum solution at the end. In this case we get that
approximate optimum for (1) without knowing whether
K is bounded or not.
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Case 2:The algorithm may continue as usual, with
all γi1, γi2 finite in every step, until in some descent
step, the step legth turns out to be∞, and we termi-
nate with the conclusion thatcx is unbounded below in
(1). That final descent line provides a feasible half-line
along whichcx diverges to−∞.

Case 3:In some iteration, in Substep 2, eitherγi1 =
−∞, or γi2 = ∞ for somei in the touching setT (x̄)
in that iteration.

In this Substep consider the lineLi = {xi1(γ) =
xi1 + γ(x̄1 − xi1) : γ takes real values} for that i. We
consider the two possibilities separately.

Possibility 1: Supposeγi1 = −∞. ThenAp.(x̄
1 −

xi1) ≤ 0 for all p = 1 tom.

If Ap.(x̄
1 − xi1) < 0 for all p = 1 to m,

δ(xi1 + γ(x̄1 − xi1)) diverges to∞ asγ goes to−∞,
so under this possibility,cx diverges to−∞, i.e., it is
unbounded below overK.

If Ap.(x̄
1 − xi1) ≤ 0 for all p = 1 tom, and is equal

to 0 for somep, then move to the descent steps to take
descent steps fromxi1(γ) for someγ < 0, and continue
the algorithm by going to the next iteration with the
output point at the end of these descent steps.

Possibility 2: Supposeγi1 = ∞. ThenAp.(x̄
1 −
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xi1) ≥ 0 for all p = 1 tom.

If Ap.(x̄
1 − xi1) > 0 for all p = 1 to m,

δ(xi1 + γ(x̄1 − xi1)) diverges to∞ asγ goes to∞,
so under this possibility,cx diverges to−∞, i.e., it is
unbounded below overK.

If Ap.(x̄
1 − xi1) ≥ 0 for all p = 1 tom, and is equal

to 0 for somep, then move to the descent steps to take
descent steps fromxi1(γ) for someγ > 0, and continue
the algorithm by going to the next iteration with the
output point at the end of these descent steps.
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