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Fast Descent Methods for LPs With No Matrix Inversions
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Abstract

Existing software implementations for solving Linear Reogming (LP) models are all based on full matrix inversion
operations involving every constraint in the model in ev&@gp. Thidinear algebra componentin these systems makes
it difficult to solve dense models even with moderate size,i@ais also the source of accumulating roundoff errors
affecting the accuracy of the output.

We present a new Sphere method, SM-6, for LP not using any stieps. The method is currently undergoing
computational tests.

Key words: Linear Programming (LP), Interior point methods (IPMs) lveay LPs by descent methods without using
matrix inversions.

In Memorium: | dedicate this paper to the memory of my dear friend Santomballi with whom | had many fruitful
discussions on the methods discussed in this paper, whedassy in a tragic drowning accident in the sacred Ganges
river recently.

1. Introduction of moderate size. This provided a motivation for us to

develop fast algorithms for LP without using matrix
For modeling decision making applications, LP is inversion operations.

the most commonly used mathematical model. Soft- SMs consider LPs in the form:

ware systems for solving LP models are based on either

the simplex method, or interior point methods (IPMs,

in particular the primal-dual IPM) developed during the min  z = cz 1)

second half of the 20th century (see the books [1-3,6] st. Ax >0

for detailed discussion of these methods, and references

on them) and are able to solve large scale sparse models

(those involving thousands of constraints), within rea- whereA is anm x n data matrix; with a known interior

sonable times by exploiting the sparcity of the models. feasible solution:! (i.e., satisfyingAxz!' > b). Here is

As several real world applications lead to sparse mod- the notation we will use in this paper.

els, these systems are very popular in practice. o Notation for rows and columns of A: A4; , A ; de-

But the simplex method, and these IPMs are based on  note thei’" row and;*" column of A.
matrix inversion operations involving every constraint ® Feasible region and its interior: K denotes the set
in the model in every step. In large scale applications, _Of f_easi_ble solutions of (1), an8® = {z : Az > b}
these matrix inversion operations limit the ability of Its interior.
these algorithms to only those with very sparse coeffi- ® Facetal hyperplanes:FH; = {z : A; x = b;}, the
cient matrices. Typically, the effectiveness of these al-  i-th facetal hyperplance ot for i = 1 tom.
gorithms fades as the density of the coefficient matrix ® Largestinscribed ball with a given point as center,
increases. its radius: B(z,d(z)), o(x) are defined for: € K°.

— mini Ajx—b; . ; _ i
Many applications lead to LP models that are not ~ 9(%) = minimum{g=p : i = 1,...,m} is the

sparse, and need near-optimum solutions in real time. adius of the largest ball that can be inscribedsin

In many of these applications, the LP models are only ~ With @ as its centerB(z,d(z)) = {y : |ly — z|| <
0(x)} is that largest inscribed ball i with = as

Email: Katta G. Murty [murty@umich.edu]. its center. We will use “B(z)” to denote the ball
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B(z,0(z)).

Touching constraint set at a given point:7'(x) de-
fined forz € K9, it is the set of all indices satisfy-
ing: AHZ*III’ = Minimum{%}:ﬁp cp=1tom} =
0(x). The facetal hyperplanBH; = {z : A; x = b;}

is a tangent plane t®(z, §(x)) for eachi € T'(x),
that's why T'(z) is called theindex set of touching
constraints in (1) defining K, atx.

GPTC (gradient projection on touching con-
straint) directions: Let ¢! denote the orthogo-
nal projection ofc” on {z : A;xz = 0}, ie,

¢t =ct' — AT[(A;.cT /|| A |)?] for i = 1 tom. When
the ball B(x,4(x)) is under consideration, the di-
rections —c' for i € T(x) are called theGPTC
directions at the current centerz in K.

Ball center of K: It is the center of a largest ball in
K, it maximizesd(x) overz € K.

IFS: We will use this abbreviation for “interior fea-
sible solution”, i.e., forK it will be an x satisfying

Ax > b.

For & € K, H(%): is the objective plane through

itis {z: cx = ci}.

Sphere Methods (SM) for LP were introduced by
Murty in 2006 and developed further (see Chapter 8 on
Sphere Methods in the book [4], and paper [5]) . In this
paper we will describe SM-6 for LP, which does not use
any pivot steps at all.

2. Sphere Method 6 (SM-6) for LP

In this method, in a generdescent stepfrom an IFS
x* in descent directiod (i.e., d satisfyinged < 0), we
move fromz* in this direction the maximum distance
possible while still remaining at a distanedrom the
boundary. This gives th&ep lengthin this descent step
to be 3, where

B = Minimum {(—A; x* + b; +€)/(A; d) :
over alli satisfyingA4; d < 0}

(@)

if there is at least onésatisfyingA; d < 0, and in this
case the output of this descent step’ist Sd. Heree is
a small positive tolerance, like 0.1. In this case the best
value fore wiil be determined from computational tests.
On the other hand, ifi; d > 0 for all 4, then the step
length in this descent step i®. In this case the fea-
sible half-line{z* + 8d : B > 0} is one along which
the objective functiorez in (1) diverges to—oco as g
goes toco. If this occurs in any descent step carried
out in this method, we terminate the algorithm with the
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conclusion thatz is unbounded belowin (1)

Subroutine 1: Finding the interval of values of a
real parameter o say, satisfying a given system of
linear inequalities: In every iteration in SM-6, we en-
counter the problem of finding the interval of values of
a single variablex satisfying a given system of linear
inequalities on it. Here we give a procedure for this
problem. Let the system be :

a; +dia>0forallt=1tok

We assume thad; # 0 for all ¢, as otherwise that
inequality does not involve at all. The required interval
is: a' = max{(—ay/d;) : for all ¢t satisfyingd;, > 0}
< a < a? =min{(—a;/d; : forall t satisfyingd; < 0}.

Here define maximum [minimum] in the empty set
to be —co [+00] respectively. Ifa; > a@» then the
system has no solution.

Each iteration in SM-6 begins with an initial IFS,
and terminates by producing an output IFS at the end..
The first iteration begins with the IFS" given in input
data. Subsequent iterations begin with the output IFS of
the previous iteration. Each iteration consists of several
steps. We will describe each of these steps now. In the
rest of this Section 2 we will describe the algorithm
under the assumption thét is bounded We will now
describe the steps in a general iteration in SM-6 under
this assumption. The case whiemay not be bounded
will be discussed in the next Section 3.

The General Iteration in SM-6

Let z denote the initial IFS with which this iteration
begins.

Step C1: Finding an approximate center begin-
ning with z:

Substep 1.Move the objective plané?(z) in the
direction—c” until it becomes a tangent plane to the ball
B(z), the largest ball insid&” with z as center (with its
radiusé(z)). The point where the objective plane in its
new position touche®(z) is z! =z — cT'[6(z)/||c|]-

If z' is a boundary point ok, i.e., satisfiesd; 7' =
b; for at least one € {1,...,m}, then thisz! is an
optimum solution of the LP (1), terminate the algorithm.
Otherwise continue. Now apply the following Substep
2 for eachi € T'(z):
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Substep 2.For i € T(z), #* = point where the
factal hyperplang”H; touchesB(z). So it is the or-
thogonal projection ofs on F H;, thereforez’ = 7 —
AT(06(2)/||Ail]) = 2 — AT[(As.@ — bi) /]| Ai|]?].

For each € T'(z) compute the orthogonal projection
rtofzf onH(z!), 2! = 2'—cT[(ca’—cz')/ccT]. De-
fine L, = straight line joiningr™! andz!, itis {z (v) =
2 + y(z! — 1) : v takes all real valugs in para-
metric form in terms of parameter. To determine the
interval of values of the parameterfor which z! (v)
lies in K, we need to solve the following system of lin-
ear inequalities iny.

Ay 2t (y) > b, forp=1tom 3)

This is a system ofn linear inequalities in the pa-
rametery, and we know that when = 1, 2! (y) =
which is an interior point of<. So the interval of values
of (3) is a nonempty interval with = 1 as an interior
point.

Descent steps in this iteration.
Descent steps in this iteration

Select a sel’, initially = @, for storing the output
points with their objective values (far= cx) generated
in each of the descent steps carried out below.

Descent step D5.1The current center ig2. For each
i € T(z?), compute theouching point z¢ of B(Z?)

2" = ex? + (1 —€)z' is called theNTP (Near touching

point) of B(Z?) with FH,. It is the pointe distance
away fromz® on the line segment joining® to z2,

wheree is a small positive tolerance.

For eachi € T(Z?), take a descent step from the
NTP 2 in the descent directior-c’. Store the output
points from each of these descent steps along with their
objective values in the sét.

Other descent steps:iFrom the centetz?, take de-

(3) can be solved by Subroutine 1 discussed above, scent steps in the direction® — z!, —c”, and the

and since we assumed thitis bounded in this discus-

average of the GPTC directions at the current cefter

Sion, the interval of solutions will be a bounded interval Store the Output points from each of these descent Steps

Y1 < v < 2. Find 51, 752 using Subroutine 1. Then:

Lin K ={ 2 (y) : vi1 <7 < 72}, and the length
of this interval , denoted by; is ||z (v;1) — 2% (vi2)||-

Substep 3.Among alli € T'(z) select that index
which corresponds to the maximum value fgrcom-
puted in Substep 2, and suppose it is . Then the
output pointz® from this Step C1 beginning witi , is
' =[2" (y1) + 2" (r2)] /2, the mid-point ofL,. N K.

along with the objective values at them, in the Bet

After all these descent steps, select the point'in
corresponding to the least objective value as the hgw
reset the sef to be the empty set, and with the new
go to the next iteration.

Terminate the method when the change in objective
value in an iteration falls below a selected tolerance.
In the final iteration, take the point il corresponding
to the least objective value as an approximate optimum

Actually, in this Substep 3, there is an alternate pro- Solution of (1).

cedure for selecting the output point. For this pro-
cedure letA = {(z*!(v;1) + 2 (vi2))/2 : i € T(z)},
the set of mid-points of the line segmerisn K for
i € T(z). Under this alternative, take' as the point
x € A corresponding to the maximum value ).

We will determine which of these alternative proce-

3. What to do if we don’t know whether K is
bounded

Suppose we do not know wheth&t is bounded or

dures in Substep 3 gives better results, and select thathot. In this case also, we apply the algorithm as de-

one as the procedure to implement in Substep 3.

Step C2: Finding an approximate center begin-
ning with ', the output point from Step C1

Carry out Step C1 beginning with! instead ofz,
and suppose the output point obtainedds This point
z2 is called theCenter in this iteration. Now go to the

scribed above. Now several cases may occur.

Case 1:The algorithm may continue as usual, with
all v;1, ;2 finite until termination with an approximate
optimum solution at the end. In this case we get that
approximate optimum for (1) without knowing whether
K is bounded or not.
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Case 2:The algorithm may continue as usual, with
all v;1, 72 finite in every step, until in some descent
step, the step legth turns out to be, and we termi-
nate with the conclusion that: is unbounded below in
(). That final descent line provides a feasible half-line
along whichez diverges to—oo.

Case 3:In some iteration, in Substep 2, eithgf =
—00, Or v;2 = oo for somei in the touching sef’'(z)
in that iteration.

In this Substep consider the ling; = {z%(v)
2t +y(F! — 2) : v takes real valugsfor thati. We
consider the two possibilities separately.

Possibility 1: Supposey;; = —occ. Then 4, (z! —
z)y <oforallp=1tom.

If A, (@' —2") < 0 for all p = 1 to m,
§(z™ + ~y(z! — 21)) diverges toco asy goes to—oo,
so under this possibility;z diverges to—oo, i.e., it is
unbounded below ovek .

If A, (z' —2™) <0forall p=1tom, and is equal
to 0 for somep, then move to the descent steps to take
descent steps froni! () for somey < 0, and continue
the algorithm by going to the next iteration with the
output point at the end of these descent steps.

Possibility 2: Supposey;; = oo. Then A4, (z! —
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x") >0 forallp=1tom.

If A, (@' —2") > 0 for all p = 1 to m,
§(z*t + y(z! — 2')) diverges too as~y goes tooo,
so under this possibility;z diverges to—oo, i.e., it is
unbounded below ovek .

If A, (z' —=2™) > 0forall p=1tom, and is equal
to 0 for somep, then move to the descent steps to take
descent steps froni! () for somey > 0, and continue
the algorithm by going to the next iteration with the
output point at the end of these descent steps.
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