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Abstract:

We consider the problem of determining whether or not a convex function f(x) is

bounded below over Rn. Our focus is on investigating the properties of the vectors

in the cone of recession 0+f of f(x) which are related to the unboundedness of the

function.
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1. Introduction

We consider the unconstrained problem

minimize : f(x) (1)

subject to : x∈Rn,

where f : Rn → R, is a convex function, assuming finite values for all x ∈ Rn. The

problem is said to be unbounded below if the minimum value of f(x) is −∞.

Our focus is on the properties of vectors in the cone of recession 0+f of f(x),

which are related to unboundedness in (1).

The problem of checking unboundedness is as old as the problem of optimization

itself. In special types of constrained problems there exist efficient methods for

checking unboundedness: linear and convex quadratic programming [3,5] and qua-

dratic programming with quadratic constraints (QCQP) [4]. In the first two types,

if the problem is unbounded, these methods identify a feasible half-line along which

the objective function diverges to −∞. This is not the case for the third type of

problem, or for more general problems with nonlinear constraints; these problems

can be unbounded even if the objective function is bounded along every feasible

half-line.

However it was shown in [4] that if QCQP is unbounded below, then there exists

an equivalent problem in a lower dimensional space with possibly fewer constraints

and the same type of objective function, which is unbounded along a half-line con-

tained in the feasible region. However, the existence of a half-line along which

the objective function diverges to −∞ is not necessary for unboundedness even in

unconstrained optimization problems of the form (1). An example is given below.

Example 1.1. Define the set K ∈ R2 as the region between the x2 axis and the

parabola x2=x2
1. For x ∈ R2 define

f(x) = −x1 + (g(x))4

where g(x) is the Euclidean distance from x to the set K. It can be verified that

f(x) is convex and C2. Although f(x) is unbounded below on R2, it is bounded

below on every half-line.

�
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We show however that for some classes of functions (e.g. the one satisfying

conditions of Theorem 2.3) unboundedness implies the existence of a half-line along

which the function is unbounded below.

The other factor which makes the problem of checking unbondedness nontrivial,

is that some functions have a finite infimum, but no minimum along some half-lines,

and that the level sets of these functions are unbounded. When applied on a convex

function with an unbounded level set, many unconstrained minimization algorithms

will only generate a stationary sequence {xi}, that is, a sequence satisfying

∇f(xi) → 0.

In general such a sequence will not necessarily converge to a global minimum, but

as was shown in [2] convergence of such a sequence to a global minimum holds for

so called asymptotically well behaved convex functions, i.e., closed convex functions

for which 0 belongs to the relative interior of the domain of its Fenchel conjugate.

For this class of functions, the set of minima is nonempty and stationary sequences

converge towards this set of minima.

The aim of the paper is to investigate relationships between unboundedness and

the vectors in the cone of recession.

We prove necessary and sufficient conditions for a vector to be in the cone of re-

cession. We also show that unboundedness of f(x) from below along some half-line,

implies unboundedness of the function along any half-line with the same direction,

or any direction from the relative interior of 0+f . We prove a similar property

for the vectors in 0+f along which function f(x) is bounded below; to be specific,

boundedness of f(x) along each of several linearly independent vectors and their

positive linear combination implies that all vectors in the smallest subspace spanned

by these vectors are directions of boundedness.

2. Properties of the directions of recession

Throughout the paper if no additional assumptions about the differentiability of

f(x) are mentioned, it is implicitly assumed that f(x) is a convex function finite at

every point x of Rn.

A vector s 6= 0 is called a direction of recession of f(x) if for every x the

function f(x + ts) is a nonincreasing function of t [6]. Since f is finite throughout
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Rn, then f is a proper convex function [p. 24, 6]. Therefore, by Corollary 7.4.2

[6], f is closed and consequently by Theorem 7.1 [6], f is a lower semi-continuous

function. Therefore Theorem 8.6 [6] implies that if f(x + ts) is nonincreasing in

t for even one x ∈ Rn then it is nonincreasing in t for every x. The symbol 0+f

denotes the set of directions of recession of f(x).

Definition 2.1. (i) We say that the vector s ∈ 0+f is an asymptotic direction

for f , if f has a finite infimum but not a minimum along any half-line with the

direction vector s. Let Da
f denote the set of all asymptotic directions of f .

We say that f(x) is asymptotically decreasing along the half-line x̄(t) =

x̄ + ts, t ≥ 0, if it is strictly decreasing and bounded below along this half-line.

(ii) We say that the vector s ∈ 0+f is a direction of unboundedness for the

function f(x) if it is unbounded along any half-line with the direction s. We let the

set of all directions of unboundedness be denoted by Du
f .

�
Lemma 2.1. Let f : Rn → R be convex, differentiable and bounded below along

the half-line x̄(t) = x̄ + ts, t ≥ 0. Let s ∈ 0+f . Then

lim sup
t→∞

‖∇f(x̄(t))‖ < ∞.

Proof. Let

lim sup
t→∞

‖∇f(x̄(t))‖ = ∞.

This implies that ∃i ∈ {1, ..., n}, ∃{tj}, (tj < tj+1, ∀j, ) such that limj→∞ tj = ∞,

and as j → ∞
∂f(x̄ + tjs)

∂xi
→ either + ∞, or −∞. (2)

Let us assume that the first alternative in (2) holds. Let δ > 0 and ei be the ith

unit vector. By convexity

f(x̄ + tjs + δei) ≥ f(x̄ + tjs) +
∂f(x̄ + tjs)

∂xi
δ. (3)

As j → ∞ the left hand side of (3) decreases since s ∈ 0+f and tj → ∞, but the

right hand side of (3) → +∞, a contradiction. Let us assume now that the second

alternative in (2) holds. Replacing δ by −δ yields a proof for the second alternative.

�
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In Lemma 2.2 below we will state a necessary and sufficient condition for the

given vector s to be a direction of recession.

Lemma 2.2. Assume that the function f(x) is convex and differentiable. A

nonzero vector s ∈ Rn is a direction of recession of f(x) iff for arbitrary x̄ ∈ Rn,

and the half-line x̄(t) = x̄ + ts, t ≥ 0, then

lim
t→∞〈s,∇f(x̄(t))〉 ≤ 0. (4)

Proof. Suppose that s ∈ 0+f. Then f(x̄(t)) is nonincreasing in t ≥ 0 for every x̄

∈ Rn. So 〈s,∇f(x̄(t))〉 ≤ 0 for all t ≥ 0. Also, since f(x) is convex, 〈s,∇f(x̄(t))〉
is monotonically increasing in t ≥ 0. Hence (4) holds. Conversely, suppose that

limt→∞〈s,∇f(x̄(t))〉 exists and is nonpositive. By convexity of f(x) this implies

that 〈s,∇f(x̄(t))〉 ≤ 0 for all t ≥ 0. Hence f(x̄(t)) is nonincreasing in t ≥ 0, which

implies that s ∈ 0+f.

�
Example 2.1. Let us consider the convex quadratic function Q(x) = 1

2
xT Bx +

aT x where a ∈ Rn and B ∈ Rn×n is symmetric positive semidefinite. It follows

immediately, by using the fact that sT Bs ≤ 0 implies sT Bs = 0 and Bs = 0, that

the set (S) of vectors satisfying the condition in Lemma 2.2 for this function Q(x)

is given by S = {s : Bs = 0, aT s ≤ 0}. Hence, the cone of recession 0+Q = {s :

Bs = 0, aT s ≤ 0}.
Let rint(X) denote the relative interior of the set X, and the symbol D=

f denote

the constancy space of f , where D=
f = {y ∈ Rn|y ∈ 0+f ∧ −y ∈ 0+f} [6].

Theorem 2.1. (i) Suppose f(x) is convex, and unbounded below along the half-

line a(t) = a + ts, t ≥ 0 for some a ∈ Rn. Then for every vector x̄ ∈ Rn, f(x) is

unbounded below along the half-line x̄(t) = x̄ + ts, t ≥ 0. Also f(x) is unbounded

below along every half-line a(t) = a + ty, t ≥ 0 for all y ∈ rint (0+f).

(ii) If the convex function f(x) is bounded below along the half-line a(t) = a+ts, t ≥
0, where s ∈ 0+f, then for every x̄ ∈ Rn, the function is bounded below along the

line x̄(t) = x̄ + ts.

(iii) Let us assume that the convex function f(x) ∈ C∞. Suppose f(x) asymptoti-

cally decreases along the half-line a(t) = a + ts, t ≥ 0, (i.e. it is strictly decreasing

and bounded below along this half-line), then it also asymptotically decreases along

every half-line with the direction s.
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Proof. (i) Our original proof was long and required the function to be dif-

ferentiable. Here we give the simple proof without any differentiability assumption

provided by C. Zalinescu.

Let c be a point such that x̄ = (1 − λ)a + λc for some 0 < λ < 1. Of course

s ∈ 0+f, and so f(c + ts) ≤ f(c) for every t ≥ 0. So, for all t ≥ 0

f(x̄ + ts) = f((1 − λ)(a + ts) + λ(c + ts)) ≤ (1 − λ)f(a + ts) + λf(c + ts)

≤ (1 − λ)f(a + ts) + λf(c).

So f(x) is unbounded below along the half-line x̄(t), t ≥ 0.

Also, if y ∈ rint (0+f), there exists a z ∈ 0+f and 0 < α < 1 such that y =

(1 − α)s + αz. We also have f(a + tz) ≤ f(a) for every t ≥ 0 because z ∈ 0+f .

Whence:

f(a + ty) = f((1 − α)(a + ts) + α(a + tz)) ≤ (1 − α)f(a + ts) + αf(a + tz)

≤ (1 − α)f(a + ts) + αf(a).

and this implies that f(x) is unbounded below along the half-line a(t) = a+ty, t ≥ 0.

(ii) Proof follows directly from part (i) of the theorem.

(iii) Part (ii) of the theorem implies that for any x̄ ∈ Rn, and x̄(t) = x̄ + ts, t ≥ 0,

f(x) is either asymptotically decreasing along x̄(t), t ≥ 0 or constant for t ≥ t0

for some t0 ≥ 0. Since f ∈ C∞, if the latter case holds then the function is

constant along a whole line containing the half-line a(t), t ≥ 0 (see for example [6])

and consequently s ∈ D=
f , and −s ∈ 0+f . The latter conclusion contradicts the

assumption that f(x) is asymptotically decreasing along a(t), t ≥ 0. Therefore f(x)

asymptotically decreases along every half-line with the direction s.

�
In Example 2.2 we provide an illustration of Theorem 2.1. The function f(x)

given there was used in [1] as an example of the function for which application of

the classical methods, such as the steepest descent, fails to generate a sequence

convergent to the infimum of f(x).

Example 2.2. Let f(x) = x2 + e−x1−x2 .

∇f(x) = (−e−x1−x2 , 1 − e−x1−x2). Expression on the left side of the inequality

(6), with x̄ = 0, gives

lim
t→∞〈(−e−ts1−ts2 , 1 − e−ts1−ts1), (s1, s2)〉 ≤ 0.



7

We observe that the last inequality is equivalent to:

〈(0, 1), (s1, s2)〉 ≤ 0, if s1 + s2 > 0,

〈(−1, 0), (s1, s2)〉 ≤ 0, if s1 + s2 = 0,

The cone of recession is a convex cone bounded by two half-lines : s1(t) = (1,−1)t, t ≥
0, and s2(t) = (1, 0)t, t ≥ 0. The function is unbounded along a half-line x̃1(t) =

x̃ + (1,−1)t, t ≥ 0 and bounded along a half-line x̃2(t) = x̃ + (1, 0)t, t ≥ 0, for any

x̃ ∈ Rn. By Theorem 2.1 (i) it follows that f(x) is unbounded along any half-line

x3(t) = x̃ + (s1, s2)t, t ≥ 0 such that (s1, s2) ∈ int 0+f, that is, if (s1, s2) satisfies

the system : s2 < 0, s1 + s2 > 0.

�
Lemma 2.3. Let f : Rn → R be convex and differentiable. If for some a ∈ Rn

and s ∈ Rn, s 6= 0, limt→∞〈s,∇f(a+ ts)〉 < 0, then f(x) is unbounded below along

every half-line with direction s.

Proof. By convexity f(a+ts) ≤ f(a)+t〈s,∇f(a+ts)〉 ≤ f(a)+t limr→∞〈s,∇f(a+

rs)〉 for t ≥ 0. But the last expression → −∞ as t → ∞. So f(x) is unbounded below

on the half-line {a + ts : t ≥ 0}. Therefore, by Theorem 2.1, f(x) is unbounded

below along every half-line with direction s.

�
Corollary 2.1. Assume that f(x) is convex and differentiable. If f(x) remains

bounded below along a half-line x̄(t) = x̄ + ts, t ≥ 0, where s is a direction of

recession of f(x), and ∇f(x) 6= 0 on this half-line, then either

lim sup
t→∞

〈s, ∇f(x̄(t))
‖∇f(x̄(t))‖〉 = 0

or limt→∞ ‖∇f(x̄(t))‖ = 0.

Proof. Assume that f(x) remains bounded below on the given half-line, and that

lim sup
t→∞

〈s, ∇f(x̄(t))
‖∇f(x̄(t))‖〉 < 0

and lim supt→∞ ‖∇f(x̄(t))‖ = M > 0 where M is finite by Lemma 2.1. Then there

must exist an ε > 0 and t̄ > 0 such that for all t ≥ t̄

〈s, ∇f(x̄(t))
‖∇f(x̄(t))‖〉 < −ε.
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Let F (t) = f(x̄(t)). So, for all t ≥ t̄

F ′(t) = 〈s,∇f(x̄(t))〉 < −ε||∇f(x̄(t))||.

Since M is finite, the above implies that limt→∞〈s,∇f(x̄(t))〉 ≤ −εM which by

Lemma 2.3 implies that limt→∞ f(x̄(t)) = −∞,

a contradiction to the hypothesis. Hence the corollary must hold. �
Let Pos(ŝi, i = 1, ..., k) denote the nonnegative hull of the vectors ŝi, i =

1, 2, ..., k.

Theorem 2.2. Suppose that f(x) is convex and ŝi ∈ 0+f , i = 1, 2, ..., k. Then

(i) If the function f is bounded below along the half-lines with directions ŝi, i =

1, 2, ...k, and ŝ ∈ rint (Pos(ŝi, i = 1, 2, ..., k)), then it is bounded below along any

half-line with the direction vector in Pos (ŝi, i = 1, ..., k).

(ii) If the function f(x) is bounded below along the directions ŝ1, ŝ2, . . . ,ŝk, and
∑k

i=1 λiŝ
i, λi > 0, i = 1, ..., k, then the function is bounded below along any

direction in the subspace spanned by ŝ1, ŝ2 . . . ,ŝk.

Proof. (i) Suppose that there exists a vector s̄ ∈ Pos(ŝi, i = 1, 2, ..., k) which is a

direction of unboundedness. It follows that there exists a vector s̃ ∈ rint Pos(ŝi, i =

1, 2, ..., k) such that ŝ = βs̄ + γs̃, β, α > 0. Therefore for x ∈ Rn, t ≥ 0, we have

f(x + tŝ) = f(x + tβs̄ + tγs̃) ≤ f(x + tβs̄)

which contradicts the assumption that ŝ is also a direction of boundedness.

(ii) From part (i) it follows that f(x) is bounded below along any half-line with

direction vector from Pos(ŝi, i = 1, ..., k). Now suppose that f is unbounded along

the direction vector

s̃ =
k∑

i=1

αiŝ
i,

where some αi are negative. We have that

Pos(ŝi, i = 1, . . . , k) ⊂ 0+f,

and s̃ ∈ 0+f . We will show that there exists vector s̄ ∈ rint Pos(ŝi,i = 1, . . . , k), that

can be represented as a positive combination of the vectors in Pos(ŝi, i = 1, . . . ,k)

and the vector s̃ (with positive coefficient corresponding to s̃). Let K̄ = {j|αj < 0}
and define

š =
k∑

i=1

ᾱiŝ
i



9

with ᾱj >|αj | for j ∈ K̄ and ᾱi>0 for i /∈K̄. Thus

s̄ = s̃ + š ∈ rint Pos(ŝi, i = 1, . . . , k).

Because š is a vector of recession, we get

f(ts̃) ≥ f(ts̄), t ≥ 0. (5)

From the assumption that f(x) is bounded along the vector
∑k

i=1 λiŝ
i and part (i)

of the theorem it follows that f(x) is bounded along direction s̄. This leads to the

contradiction with the inequality (5). �
The example given below illustrates Lemma 2.2 and the Theorems 2.1(i) and 2.2.

Example 2.3. Let f(x) =
∑n−1

i=1 e−xi − xn, and x̄ = 0. The inequality (4) has a

form

lim sup
t→∞

〈(−e−ts1 ,−e−ts2 , ...,−e−tsn−1,−1), (s1, s2, ..., sn)〉 ≤ 0. (6)

Let us define sK = min{s1, s2, ..., sn−1}, and consider three cases:

1) sK > 0,

2) sK < 0, and

3) sK = 0.

In case 1), inequality (6) is equivalent to : sn ≥ 0.

If condition 2) is satisfied we divide the expression in the limit (6) by e−tsK ,

which yields

〈−(χK), s〉 ≤ 0, (7)

where χK = (χ1, χ2, ..., χn), with χj = 1, if j ∈ argmin {s1, ..., sn−1} and χj = 0

otherwise.

The system (7) is equivalent to −sK ≤ 0, which contradicts the assumption in

2). Therefore there does not exist vector s satisfying inequality (6) and condition

2). Now consider case 3). Then the system (6) reduces to

−(ΓK)T s ≤ 0, (8)

where ΓK = (Γ1, ..., Γn), with Γi = 1, if i = n or i ∈ argmin{s1, ..., sn−1}, and

Γi = 0 otherwise. The inequality (8) along with the assumption in 3) implies

si ≥ 0, i = 1, ..., n. We finally conclude that 0+f = {s|si ≥ 0, i = 1, ..., n}. In order
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to illustrate Theorem 2.2 we take ŝi = ei, i = 1, ..., n− 1, where ei are unit vectors

in Rn. Clearly, ei ∈ 0+f , and f(x) is bounded along ei, i = 1, ..., n−1, as well as it

is bounded along
∑n−1

i=1 ei. It is also straightforward to show that f(x) is bounded

along any vector in the subspace spanned by the vectors ei, i = 1, ..., n− 1. On the

other hand the function is unbounded below along the vector en as well as along

eα =
∑n

i=1 αiei, where αi ≥ 0, i = 1, ..., n − 1 and αn > 0. The vector eα is in

rint(0+f) and unboundedness along the vector eα verifies that Theorem 2.1(i) holds

in this example.

�
Definition 2.2. Let ∂0+f = 0+f \ rint 0+f. The set F ⊂ ∂0+f is called a face

of 0+f if s1, s2 ∈ F ⇒ α1s
1 + α2s

2 ∈ F, ∀α1, α2 ≥ 0.

�
Corollary 2.2. If f(x) is convex, then any face F of 0+f has a property that

either all vectors s ∈ F are directions of boundedness, or all vectors s ∈ rint (F )

are directions of unboundedness.

Proof. Let us suppose that there exists s ∈ Du
f ∩ F. Then if y ∈ rint(F ), then

there exists z ∈ F, and 0 < α < 1, such that y = (1 − α)s + αz. We have

f(ty) = f((1−α)ts + αtz) ≤ (1−α)f(ts) + αf(tz) ≤ (1−α)f(ts) + αf(0), ∀t ≥ 0,

which proves that y ∈ Du
f .

�
Lemma 2.4. Let f(x) be convex and differentiable. Then, for any ŷ ∈ Rn, we

have

0+f ⊂ {y|〈c, y〉 ≤ 0},

where c is an arbitrary accumulation point of the sequence

{ ∇f(tj ŷ)
‖∇f(tj ŷ)‖}.

where the sequence {tj} satisfies limj→∞ tj = ∞.

Proof. Let us suppose that the opposite is true, that is ∃y0 ∈ 0+f, ∃ŷ ∈ Rn

such that cT y0 > 0, where c = limj→∞{ ∇f(tj ŷ)
‖∇f(tj ŷ)‖} for some tj → ∞. Therefore

∃t̄ > 0, 〈∇f(t̄ŷ), y0〉 > 0, which implies that f(x) is increasing along the half-line

x̂(t) = t̄ŷ + ty0, t ≥ 0. This contradicts the earlier assumption that y0 ∈ 0+f.
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�
We will show in Theorem 2.3 below that under some conditions, the existence of

the direction of uboundedness is necessary for the function f(x) to be unbounded.

The convex function f(x) is called faithfully convex if it is constant along some

segment only if it is constant along whole line containing this segment. Convex

analytic functions belong to this class. In Theorem 2.3 below we will prove in

particular that under assumption that Da
f = ∅, an analytic convex function can be

unbounded only if it is unbounded along a half-line.

Theorem 2.3. Let us assume that f(x) is a faithfully convex function. Then

(i) 0+f = D=
f ∪ Du

f ∪ Da
f , and Du

f ∩ Da
f = ∅.

(ii) If rint(0+f)∩Da
f 6= ∅, then every vector s ∈ rint(0+f) is an asymptotic direction.

(iii) If 0+f 6= D=
f , then dim(0+f) >dim(D=

f ).

(iv) If Da
f = ∅, then f(x) is unbounded below only if it is unbounded below along

some half-line.

Proof. The proof follows directly from the Theorem 2.1 and the assumption that

f(x) is a faithfully convex function.

(ii) Let ŝ ∈ rint(0+f) ∩ Da
f . Let us suppose that there exists s̃ ∈ rint(0+f) ∩ D=

f .

Since s̃ ∈ rint(0+f) then there exists ε > 0 such that sε = s̃ + ε(s̃ − ŝ) ∈ 0+f. It

follows that there exists τ ∈ (0, 1) and t > 0, such that τ(−s̃)+(1− τ)sε = −tŝ. We

clearly have −ŝ /∈ 0+f, but τ(−s̃) + (1 − τ)sε ∈ 0+f, which leads to contradiction

and completes the proof.

(iii) Let us assume that

D=
f ( 0+f (9)

and dim(0+f) = dim(D=
f ). The latter assumption implies that D=

f = L(0+f),

(where L(0+f) denotes the smallest linear subspace containing the cone of recession

of f), which along with the inclusion 0+f ⊂ L(0+f) contradicts assumption (9).

(iv) Consider X0 = D=
f and X1 = X⊥

0 . Then f(x + x0) = f(x) for all x0 ∈ X0

and arbitrary x ∈ Rn. Suppose that f is not bounded below. Then there exists

{xi} ⊂ X1 such that ‖xi‖ → ∞ and f(xi) → −∞. Taking u an accumulation point

of { xi

‖xi‖}, u ∈ 0+f. Of course u ∈ X1, and so u /∈ X0. As Da
f = ∅, we have that

u ∈ Du
f . This completes the proof of the part (ii) of the lemma.

�
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Remark 1: The difficulty with the Corollary 2.1 and Lemma 2.4, is that they

require to determine the limit

lim sup
t→∞

〈s, ∇f(ts)
‖∇f(ts)‖〉, (10)

and the accumulation point of the sequnce

{ ∇f(tjs)
‖∇f(tjs)‖}

respectively, which may cause some computational difficulties.

The functions in both Example 2.2 and 2.3, indicate that the expression

lim
t→∞

∇f(ts)
‖∇f(ts)‖ (11)

can be discontinuous (although piecewise continuous) function of s, while the limit

(10) exists. Nevertheless it can shown that the limit (11) exists for some types of

functions: polynomial, and functions being combination of polynomials, rational

functions, exponential and logarithmic functions. This means, that if a convex

function f(x) is in particular of the form

f(x) =
k∑

i=1

βiln
Pi(x)
Qi(x)

+
m∑

i=k+1

Pi(x)
Qi(x)

eRi(x),

where Pi(x), Qi(x) and Ri(x) are polynomials of n-variables, βi ∈ R, Qi(x) 6=
0, ∀x ∈ Rn, and Pi(x)

Qi(x) > 0, i = 1, 2, ..., k, then the limit (11) exists.
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