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Abstract

Existing software implementations for solving Linear Programming (LP) models are all

based on full matrix inversion operations involving every constraint in the model in every

step. This linear algebra component in these systems makes it difficult to solve dense

models even with moderate size, and it is also the source of accumulating roundoff errors

affecting the accuracy of the output.

We present new versions of the Sphere method, SM-5, 6, for LP not using any pivot steps;

and its extensions to NLP and 0-1 integer linear programming models. These methods are

currently undergoing computational tests.

Key words: Linear Programming (LP), Interior point methods (IPMs) , solving LPs by

descent methods without using matrix inversions.

1 Brief Historical Review

Linear equation models were used for decision making by the Chinese, Indians and other hu-

man societies over 2000 years ago. For example, the Chinese text Chiu-Chang Suanshu (Nine
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Chapters on the Mathematical Art), composed over 2000 year ago, discusses the problem of

determining the yield of of an alcoholic drink from 3 types of grains- inferior, medium, superior-

given the yield data from 3 experiments each using a separete combination of the 3 types

of grains; with a system of 3 linear equations in 3 variables [see, http://www-groups.dcs.st-

and.ac.uk/ history/HistTopics/Nine-chapters.html ]. Similarly the Indian text Bakshali Manuscript

dating to the same period describes 2, 3 equation models in the same number of variables for

similar applications. And they both described the Elimination method for solving a square sys-

tems of linear equations, using pivot steps now known as Gauss-Jordan or Gaussian pivot

steps.

After a long gap, mathematical models consisting of systems of linear inequalities started

appearing in the literature around the 18th century, from studies in mechanics. From mid-

18th century Linear Programming models (LPs) involving the optimization of a linear objective

function subject to linear inequality constraints started appearing in published literature. Then

based on the work of many researchers, Fourier, De la Valle Poussin, Kantorovich, and others;

in 1947 the simplex method for solving systems of linear constraints (equations, inequalities),

and LPs was developed by Dantzig. The basic computaional tool used by the simplex method is

also the pivot step, for various matrix inversion operations in the method. The simplex method

for LP is known as a boundary point method, as it follows a path contained on the boundary

of the feasible region, leading to an optimum solution

In the 2nd half of the 20th century, Karmarkar pioneered an interior point method, IPM

(following a path in the interior of the feasible solution set) for solving LPs, and showed that

intrinsically interior point methods can lead to significantly better computational performance.

In many talks he gave in 1980s he repeatedly emphasized that descent steps taken from the

centralmost part of the feasible region in the direction of descent of the objective function,

have the ability to take longer steps before being stopped by the boundary, and thus have the

potential of being much more efficient than boundary methods on large scale models. In fact

claims were made that IPMs can be hundreds of times more efficient than boundary methods.

Encouraged by his results, several interior point methods have been developed to solve LPs. See

the books [2, 3, 4, 12] for detailed discussion of these methods, and references on them. Most

of these methods are based on the study of properties of ellipsoids contained inside the feasible
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region. Existing commercial software systems for solving LPs are all based on these interior

point methods.

Like the simplex method, these IPMs are also based on matrix inversion operations involving

every constraint in the model in every step, using the fundamental computational tool, the pivot

step. In large scale applications, these pivot steps limit the ability of these algorithms to only

those with very sparse coefficient matrices. Typically, the effectiveness of these algorithms fades

as the density of the coefficient matrix increases.

Spheres are easier to manipulate and study than ellipsoids. In 2006, Sphere methods for LP,

IPMs based on the properties of spheres (instead of ellipsoids like in other IPMs) were introduced

in Murty [2006a, b]. The initial version of the sphere method also needed pivot steps for matrix

inversions, but these pivot steps only involve a subset of constraints in the original LP. After

some other versions, in this paper we describe two versions of the sphere method for LP, SM-5,

6, not involving any pivot steps. We also discuss extensions to solve nonlinear programs (NLPs)

in which all constraints are linear; and present results on computational performance of these

methods.

2 Sphere Methods, SM-5, 6, for LP

SMs consider LPs in the form:

min z = cx (1)

subject to Ax ≥ b

where A is an m × n data matrix; with a known interior feasible solution x1 (i.e., satisfying

Ax1 > b). LPs in any other form can be directly transformed into this form, see [Murty 2009a,

b]. Here is some basic notation that we will use.

• Notation for rows and columns of A: Ai., A.j denote the ith row, and jth column of

A.
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• Feasible region and its interior: K denotes the set of feasible solutions of (1), and

K0 = {x : Ax > b} is its interior.

• Facetal hyperplanes, and their half-spaces containing K: FHi = {x : Ai.x = bi},
the i-th facetal hyperplance of K for i = 1 to m. Also, FH+

i = {x : Ai.x ≥ bi} is the

half-space of FHi containing K.

• IFS: Interior feasible solution, a point x ∈ K0

In order to get good performance from sphere methods on this problem, from Karmarkar’s

original observation, we see that descent steps should be taken from the center of a largest

inscribed sphere within K. A point like that, the center of a largest insphere of K, is called a

ball center of K, to distinguish it from centers used in other IPMs for LP. In order to develop

a method for computing a ball center or a good approximation for it, we first need to determine,

for any given interior point x ∈ K, the radius of the largest insphere of K with x as center. This

is given in Theorem 1 below.

Theorem 1: For any x̄ ∈ K0, the radius of the largest insphere of K with x̄ as center is

minimum{(Ai.x̄− bi)/||Ai.|| : i = 1 to m}.
Proof: Consider any i ∈ {1, ...,m}. The nearest point on FHi to x̄ is its orthogonal

projection x̄i = x̄− AT
i. [(Ai.x̄− bi)/||Ai.||2] of x̄ on FHi; and its distance from x̄ = ||x̄− x̄i|| =

(Ai.x̄ − bi)/||Ai.||. Therefore the sphere {x : ||x − x̄|| ≤ (Ai.x̄ − bi)/||Ai.||} with x̄ as center, is

completely contained in the half-space FH+
i . Also FHi is a tangent plane to this sphere with x̄i

as their touching point, see Figure 1. Any move from x̄, on the halfline joining it to x̄i, beyond

x̄i, will lead to points outside the half-space FH+
i . So this sphere is the largest with x̄ as center

inside FH+
i .
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Figure 1: x̄i is the orthogonal projection of x̄ on FHi. The sphere shown with x̄ as center

and x̄i as a boundary point, is the largest sphere with x̄ as center in the half-space FH+
i . FHi

is a tangent plane to it, and x̄i is their touching point.

Since the above holds for all i = 1 to m, and K is the intersection of all the half-spaces

FH+
i for i = 1 to m, we conclude that the largest sphere with x̄ as center inside K, has radius

= minimum{(Aix̄ − bi)/||Ai.|| : i = 1 to m}. Call this sphere B(x̄,K), and let T (x̄,K) denote

the set of all indices i which tie for the minimum in {(Aix̄− bi)/||Ai.|| : i = 1 to m}. Also from

the above arguments we conclude that FHi for i ∈ T (x̄,K) are all the facetal hyperplanes of K

which touch the sphere B(x̄,K). See Figure 2. ./

We will use “./” to indicate the end of a proof, or an argument.

Figure 2: x̄ ∈ K0, and the ball shown is B(x̄,K), the largest ball inside K with x̄ as center.

Facetal hyperplanes FH1, FH2 corresponding to indices 1, 2 are tangent planes to this ball,

with their touching points x̄1, x̄2 respectively. So, T (x̄,K) here is {1, 2}, known as the touching

constraint index set at x̄.

We will use the terms “ball, sphere” interchangebly. Here is the additional notation that we

will use.

• δ(x,K): Defined for x ∈ K, it is the radius of the largest ball inside K with x as center.

From Theorem 1, we know that δ(x,K) = minimum{Ai.x−bi
||Ai.|| : i = 1, ...,m}. For any point

x on the boundary of K , i.e., satisfying at least one of the constraints in (1) as an equation,

δ(x,K) = 0 by this definition.
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• Largest ball inscribed in K with a given IFS x as center: B(x,K) = {y : ||y−x|| ≤
δ(x,K)} is that largest inscribed ball in K with x as its center.

• Touching constraint index set at a given IFS: T (x,K) defined for x ∈ K0, is the set

of all indices i satisfying: Ai.x−bi
||Ai.|| = Minimum{Ap.x−bp

||Ap.|| : p = 1 to m} = δ(x,K). The facetal

hyperplane FHi = {x : Ai.x = bi} is a tangent plane to B(x,K) for each i ∈ T (x,K),

that’s why T (x,K) is called the index set of touching constraints in (1) defining

K, at x.

• Profitable direction at an IFS x0 ∈ K: A direction g (i.e., vector g 6= 0) is said to be

a profitable direction at x0 ∈ K, if δ(x0 + αg) is increasing at α = 0, as α increases

from 0.

Figure 3: Moving the point x0 ∈ K in the direction indicated by the arrow, traces the point

x0 +αg as α increases from 0. g is a profitable direction at x0 ∈ K since δ(x0 +αg) is increasing

as α increases from 0.

How to Compute A Ball Center of K

As defined above, a ball center of K is a point x ∈ K which maximizes δ(x,K) = {Ai.x−bi
||Ai.|| :

i = 1 to m}. So, if x∗ is a ball center of K, then (δ(x∗,K), x∗) is an optimum solution of the LP
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max δ (2)

subject to δ||Ai.|| ≤ Ai.x− bi, i = 1, ...,m

This is another LP about the same size as the original LP. We will now state Theorem 2,

which will be used in Sphere method 5 (SM-5) to be discussed later.

Theorem 2: Let ∆ be a positive number, and let b(∆) = (bi(∆) = bi−∆||Ai.|| : i = 1, ...,m)

and let K(∆) denote the set of feasible solutions of

min z = cx (3)

subject to Ax ≥ b(∆)

Our original set of feasible solutions for (1), K, is K(0) in this notation. Clearly, K ⊂ K(∆) for

∆ ≥ 0. Every ball center of K is a ball center of K(∆) for ∆ ≥ 0 and vice versa. Also, for all

x ∈ K, ∆ ≥ 0, δ(x,K(∆)) = δ(x,K) + ∆.

Proof: Since any vector x which is feasible to (1), automatically satisfies (3) for ∆ ≥ 0, it

is clear that K ⊂ K(∆). Let (δ̄, x̄) be an optimum solution of (2). So, x̄ is a ball center of K,

and δ̄ = δ(x̄,K) = maximum {δ(x,K) : x ∈ K} = radius of the largest ball insaide K.

Let ∆ > 0. For each x ∈ K, we have seen above that since K ⊂ K(∆), x ∈ K(∆), and

δ(x,K(∆)) = minimum{((Ai.x− bi)/(||Ai.||)) + ∆ : i = 1, ...,m} = δ(x,K) + ∆. So, the radius

of the largest ball inside K(∆) ≥ δ̄ + ∆.

Let x̆ = a ball center of K(∆), and δ̆ = radius of a largest ball inside K(∆). So, δ̆ =

minimum{(Ai.x̆− bi(∆))/(||Ai.||) : i = 1, ...,m}. Therefore we have

Ai.x̆−bi.(∆)
||Ai.|| ≥ δ̆ for all i = 1, ...,m.

i.e., Ai.x̆−bi.
||Ai.|| + ∆ ≥ δ̆ ≥ δ̄ + ∆ for all i = 1, ...,m
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i.e., Ai.x̆− bi ≥ δ̄||Ai.|| ≥ 0 for all i = 1, ...,m.

Therefore, x̆ ∈ K, and hence δ(x̆,K(∆)) = δ(x̆,K) + ∆ ≤ δ̄ + ∆. All these facts together

imply δ̆ = δ̄ + ∆, and that every ball center of K is a ball center of K(∆) and vice versa. ./

Figure 4: K, the original set of feasible solutions for (1) is shown in solid lines. Its ball center

is unique, it is x̄. B(x̄,K), the largest ball inscribed in K, is the smaller ball with x̄ as center in

the figure. Each facet of K is moved parallel to itself outward by a distance of ∆ > 0, leading to

K(∆) shown with dashed lines. x̄ is also the unique ball center of K(∆). B(x̄,K), B(x̄,K(∆))

are concentric.

Figure 5: K, the original set of feasible solutions for (1) is the rectangle in solid lines; and

K(∆) is the rectangle in dashed lines obtained by moving every facet of K outward by a distance

of ∆ > 0. Every point on the dotted line inside, is a ball center of both K and K(∆).

In all the sphere methods so far, each iteration begins with an initial IFS, and consists of

two major steps. The first called the Centering cycle, has the aim of finding a center for
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this iteration, a good approximation for the ball center of the current feasible solution under

consideration, using some computationally efficient strategy. The second is the Descent cycle,

in which descent steps are carried out from the Center obtained in the Centering cycle in several

descent directions. The best output point from these descent steps, will be the initial IFS for

the next iteration of the method.

In this paper we will discuss two recently developed versions of the sphere method for LP,

Sphere methods 5, 6 (SM-5, 6). Both of them do not use any pivot steps. In every iteration

of both SM-5, 6, we face a problem of finding the interval of values of a real parameter γ say,

satisfying a given system of linear inequalities in the parameter. Now we give the procedure, we

will call it Subroutine 1 for computing this interval.

Subroutine 1: Let the system of inequalities in γ be

at + gtγ ≥ 0, t = 1, ..., ` (4)

In systems like this that we encounter in SM-5, 6; for any t if gt = 0, at will be ≥ 0, and hence

that constraint is a redundant constraint in the system. Let

γ1 = maximum{(−at/gt) : over all t satisfying gt > 0}
γ2 = minimum{(−at/gt) : over all t satisfying gt < 0}

Here define the maximum [minimum] in the empty set to be −∞[+∞] respectively. If

γ1 > γ2 system (4) has no solution. Otherwise the required interval for γ feasible to this system

is γ1 ≤ γ ≤ γ2.

In the next two sections, we will describe SM-5, 6 respectively. This will be followed by a

discussion of their computational performance.

3 Sphere Method 5 (SM-5)

In this method, as in Sphere method 2 [Murty 2009a, b], the set of feasible solutions under

consideration in each iteration, is updated by the objective value of the initial IFS for that
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iteration, as described below; and hence gets smaller with each iteration in the method.

In each iteration, the centering cycle finds the center, an approximate ball center of the

current updated set of feasible solutions, using a series of line search steps in profitable directions

as in Sphere methods 1, 2 [Murty 2009a, b]; but the profitable directions for these line search

steps are computed by procedures described in [Xie, Snoeyink, Xu 2006, Clarkson 2010 ] not

using any pivot steps.

We will now describe a general iteration in SM-5 beginning with the given initial IFS for it,

x, say. Here are the various steps in the centering cycle in this iteration.

3.1: Centering Cycle in this Iteration

Step 1: Update the set of feasible solutiuons under consideration by the objective

value at the current initial IFS: This updated set of feasible solutions, denoted by K =

{x : Ax ≥ b, Am+1.x ≥ bm+1}, where Am+1. = −c, bm+1 = −cx− ε, where ε is a small positive

tolerance.

Figure 6: K is the original set of feasible solutions of the original LP being solved. x

is the initial IFS of K for the current iteration. The current set of feasible solutions under

consideration for this iteration is K. The ball shown is the largest ball inside K, the aim of this

centering cycle is to compute a good approximation for its center.

Step 2: The centering Cycle

Here we will use the peocedure discussed by Xie, Snoeyink, Xu [2006] to compute a good

approximation to the ball center of K efficiently, beginning with the current IFS x. This proce-
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dure generates a sequence of points xk, k = 1, 2, ... beginning with x1 = the initial IFS x ∈ K,

converging to an approximate ball center of K. We will now discuss the work in this procedure

in a general step when the current point in the sequence is xk ∈ K.

3.1.1: Translate the Origin to xk

Define new variables y = x− xk. In terms of these new variables y,

K = {y : Ai.(y + xk) ≥ bi}, for i = 1 to m+ 1

= {y : Ai.y ≥ bi −Ai.x
k}, for i = 1 to m+ 1

Since xk ∈ K0, we know that bi − Ai.x
k < 0 for all i = 1 to m, and it also holds for

i = m+ 1 from the definition of the (m+ 1)th constraint. Therefore dividing both sides of the

i-th constraint in the representation of K given above by bi −Ai.x
k, we get

K = {y : Aky ≤ e}, where e is a column vector of all 1 entries in Rm+1, and Ak
i. =

Ai./(bi −Ai.x
k) for i = 1, ..., m+ 1.

If for any i, |bi−Ai.x
k| is too small for this division; we can replace b = (bi : i = 1, ...,m+1)

in the representation of K by b(∆) = (bi−∆||Ai.|| : i = 1, ...,m+1) for some positive number ∆ ,

to make this division easier. By Theorem 2, we know that the ball center we want to approximate

is unaffected by this change in the RHS constants. Then when the algorithm moves to determine

the profitable direction to move at xk (Section 3.1.3); we change all the RHS constants back to

the original bis for all the work in the sequel. However, we will describe this step below using

the same symbols bi for the RHS constants.

Define the set of points in the y-space: Sk = {Pi = (Ak
i.)

T : i = 1 ..., m+ 1}.

3.1.2: Compute the MES (Minimum Enclosing Sphere) of the Set of Points

Sk in the y-space:
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Figure 7: Given the set of points, each marked by an ×, the MES (Minimum Enclosing

Sphere) containing all these points is shown. Q is its center.

Let Qk denote the center of the MES of the set of points Sk defined above. This point

Qk in the y-space corresponds to the point Qk + xk in the original x-space. Results in Xie,

Snoeyink, Xu [2006] indicate that if xk is not a ball center of K, then the straight line joining

xk, Qk + xk is likely to contain points x satisfying δ(x,K) > δ(xk,K). Since our goal is to find

an x maximizing δ(x,K), we will follow the strategy of computing Qk, and then maximizing

δ(x) on the line joining xk, Qk + xk to get a point x better than the current xk for this goal.

Here we describe a simple iterative scheme from Clarkson [2010] for computing Qk approx-

imately. The scheme generates a sequence of points Qt, t = 0, 1, ... beginning with Q0 =

average of points in Sk. Given Qt, obtain the next element in the sequence, Qt+1 by the formula

Qt+1 = (1 − a)Qt + aP t+1, where a = 2/(t + 3) and P t+1 is the farthest point to Qt by

Euclidean distance in the set Sk.

Terminate this scheme when it reaches a point Qt+1 in the sequence satisfying ||Qt+1−Qt|| ≤
ε, and take the final point Qt+1 as an approximation of Qk.

3.1.3: Determining a profitable direction g to move at xk ∈ K

In [Murty 2006 a, b] it has been proved that a direction g is a profitable direction to move

in K at the IFS xk, iff Ai.g > 0 for all i ∈ T (xk,K).

The straight line joining xk, Qk + xk consists of two half-lines, one from xk in the direction

Qk, and another from xk in the direction −Qk. From the above, this implies that at most one of

these two half-lines can contain a point x satisfying δ(x,K) > δ(xk,K). Hence, do the following:

1. If Ai.Q
k > 0 for all i ∈ T (xk,K), define g to be = Qk and go to 3.1.4 below to maximize

δ(xk + αg,K) over α ≥ 0.

2. If Ai.Q
k < 0 for all i ∈ T (xk,K), define g to be = −Qk and go to 3.1.4 below to maximize

δ(xk + αg,K) over α ≥ 0.

Also notice that due to the (m+ 1)th constraint in the definition of the current feasible set

K, any profitable direction g at this stage is likely to be a descent direction for the objective
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function cx in the original problem (1), i.e., cg will be < 0.

If neither of the conditions in 1, 2 above hold, it is an indication that xk corresponds to the

maximum value of δ(x,K) on the line joining xk, xk +Qk. In this case terminate this centering

cycle, accept xk as the approximate ball center of K, and go to the Descent Cycle (Step 3) below

with xk as the center for this iteration.

3.1.4: Maximizing δ(xk + αg,K) over α ≥ 0

From Theorem 1, we know that δ(xk + αg,K) = minimum{[Ai.(x
k + αg)− bi]/||Ai.|| : i = 1

to m+ 1}. In the problem of maximizing δ(xk + αg,K) over α ≥ 0, the only variables are α, δ.

So, this problem is the following 2-variable LP with δ, α as the two variables.

max δ

subject to δ + α
[−Ai.g]

||Ai.||
≤ Ai.x

k − bi
||Ai.||

i = 1, ...,m+ 1 (5)

δ, α ≥ 0

The RHS vector in this LP is > 0 as xk is an IFS of K. We will consider 3 cases that can occur

in this problem.

1. If the coefficient vector of α in this LP (5) is < 0, then clearly the maximum value of δ in

this LP is +∞, which implies that the minimum value of z = cx in the original LP (1) is −∞.

Define for α ≥ 0

δ(α) = minimum {(Ai.(x
k + αg)− bi)
||Ai.||

: i = 1, ...,m+ 1} (6)

So δ(α) → +∞ as α → +∞. Then the point x(α) = xk + αg − δ(α)cT /||c|| is feasible for all

α ≥ 0, and its objective value cx(α)→ −∞ as α→ +∞.

In fact, since g is a profitable direction at xk for K, as noted above cg < 0. And, since δ(α)

defined in (6) tends to infinity as α tends to infinity, we know that Ai.(x
k +αg)− bi ≥ 0 for all i

= 1 to m+1, and hence xk +αg is feasible to (1) for all α ≥ 0, and clearly c(xk +αg) = cxk +αcg
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tends to −∞ since cg < 0. Thus {xk + αg : α ≥ 0} is a half-line in K along which the objective

function in (1) diverges to −∞. Terminate the algorithm with this conclusion.

Figure 8: Set of feasible solutions of the system: δ−α ≤ 4, δ−2α ≤ 1, δ−1.5α ≤ 2, δ, α ≥ 0.

Maximum value of δ in this set is ∞.

2. If the coefficient vector of α in the LP (5) is ≤ 0, but not < 0, then δk = minimum

{(Ai.x
k − bi)/||Ai.|| : i = 1, ...,m + 1 such that Ai.g = 0} is an upper bound for δ in the LP

(5). By definition, we know that δ(xk,K) is finite and T (xk,K) 6= ∅. Also, since g is a profitable

direction at xk, we know that the δ(α) defined in (6) has value at α = 0, δ(0) < δk ,and hence

at least one coefficient of α in (5) must be < 0.

Therefore in this case the optimum value of α in (5) is the value of α which makes δ(α) = δk.

To find this value of α do the following: Let I = {i : 1 ≤ i ≤ m + 1 satisfying Ai.g > 0 and
(Ai.xk−bi)
||Ai.|| < δk}.
Then, one value of α which makes δ(α) = δk is

αk = maximum{(Ai.x
k − bi)/(−Ai.g) : over i ∈ I}.

So, take (δk, αk) as an optimum solution of the 2-variable LP (5) in this case.
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Figure 9: Set of feasible solutions of the system: δ − 2α ≤ 1, δ − α ≤ 4, δ ≤ 6, δ, α ≥ 0.

Maximum value of δ in this set is 6.

3. Consider the last case in which there is an i satisfying −Ai.g > 0, i.e., at least one

coefficient of α in the 2-variable LP (5) is > 0. This problem can be solved by anyone of several

efficient algorithms for solving 2-variable LPs in the literature. We will discuss one simple

approach based on the line search algorithm used in nonlinear programming (NLP) literature:

Since δ is a nonnegative variable in (5),

β = minimum{(Ai.x
k − bi)/(−Ai,g) : over i = 1 to m+ 1 satisfying Ai.g < 0}

is an upper bound for the variable α in (5), i.e., 0 ≤ α ≤ β. Then the LP (5) is equivalent

to the NLP in the single vartiable α

maximize δ(α) (equivalently minimize −δ(α)) subject to 0 ≤ α ≤ β

This problem can be solved by one of the line search algorithms in NLP, for example the

“Quadratic fit line search method” ( see the textbook Murty[1995]). Let αk be an optimum

solution of this problem. Then (δk = δ(αk), αk) is an optimum solution of the 2-variable LP (5).

The point in K corresponding this solution of (5) is:

xk+1 = xk + αkg, and δk+1 = δ(xk+1,K) = minimum{(Ai.x
k+1 − bi)/(||Ai.||) : i =

1, ...,m+ 1}.

Figure 10: Set of feasible solutions of the system: δ + α ≤ 7, δ − 2α ≤ 1, δ − 0.5α ≤ 3,

δ, α ≥ 0. Maximum value of δ in this set is attained at the point (δ, α) = (13/3, 8/3).
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If ||δ(xk+1,K) − |δ(xk,K)|| ≤ ε, terminate this centering cycle , and take the final output

point xk+1 as the center for this iteration and go to the descent cycle (Step 3 in this iteration)

with it. On the other hand if ||δ(xk+1,K)− |δ(xk,K)|| > ε, with xk+1 as the initial IFS go back

to 3.1.

3.2 Descent Cycle in this Iteration

The center for this iteration: Let x̄ denote the center, the output point in the centering

cycle in this iteration.

3.2.1: Determining the Step Length in a General Descent Step

Here we describe how the step length is determined in a general descent step in this method.

Consider a descent step from a point x̂ in a descent direction d, i.e., a direction satisfying cd < 0.

In this method, the point x̂ from which the descent step is taken, may or may not be in K,

the current updated set of feasible solutions; i.e., the constraint Ai.x̂ ≥ bi may or may not hold

for some i ∈ {1, ...,m + 1}. But we need to make sure that the output point from this descent

step is a point in (in fact an IFS) of K, if it is going to be used as the initial feasible solution

for the next iteration in this method SM-5. We consider these cases separately.

Case 1: x̂, the point from which this descent step is taken, is an IFS of K

In this case, we take the maximum possible step length while keeping the output point at

the end of this descent step as an IFS of K. The maximum possible step length, α̂ say, from x̂

inside K in direction d is the maximum value of α satisfying Ai.(x̂ + αd) ≥ bi for all i = 1 to

m+ 1; which is minimum{(bi −Ai.x̂)/(Ai.d) : over all i = 1 to m+ 1 satisfying Ai.d < 0}.
If {i : 1 ≤ i ≤ m + 1, Ai.d < 0} = ∅, then this step length α̂ = +∞; we terminate the

algorithm with the conclusion that the objective function cx in (1) is unbounded below in its set

of feasible solutions, with {x̂+αd : α ≥ 0} providing a feasible half-line along which cx diverges

to −∞.
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If {i : 1 ≤ i ≤ m + 1, Ai.d < 0} 6= ∅, Then the maximum step length is α̂ defined above.

We take the actual step length to be γ̂ = α̂ − ε, leading to the output point x̂ + γ̂d, with its

objective value of c(x̂+ γ̂d).

Case 2: x̂, the point from which this descent step is taken, is not an IFS of K,

and may be outside K

Denote

M = the half-line {x̂+ αd : α ≥ 0}.

In this case we need to make sure that M intersects K in its interior, as otherwise this de-

scent step cannot produce a desired output point no matter what the step length is. For this

the following conditions must hold.

Condition 1: If there is an i ≤ i ≤ m+ 1 satisfying Ai.d = 0, we must have Ai.x̂− bi > 0.

Condition 2: Min{(bi−Ai.x̂)/(Ai.d : over all i satisfyingAi.d < 0}>Max{(bi−Ai.x̂)/(Ai.d) :

over all i satisfying Ai.d > 0}. This can be seen as a requirement from Subroutine 1.

In both SM-5, 6, the point x̂ from which the descent steps is taken, and the descent direction

d will both be selected so that both these conditions will hold.

In this case if {i : 1 ≤ i ≤ m+1 and Ai.d < 0} = ∅, the maximum step length in this descent

step is +∞, and hence the original objective function cx in (1) is unbounded below on its set of

feasible solutions; and {x̂+αd : α ≥ max{0, (bi−Ai.x̂)/(Ai.d) : over all i satisfying Ai.d > 0}
provides a feasible half-line along which cx divereges to −∞, terminate the algorithm with this

conclusion.
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Figure 11: The point x̂ outside of K from which the descent step is taken, and the descent

direction d indicated by the arrow, both together satisfy Conditions 1, 2; so the half-line M

intersects the interior of K. Also, none of the coefficient vectors Ai. in the definition of K

(defined in Step 1 in Section 3.1) satisfy Ai.d < 0; so the maximum step length from x̂ in the

descent direction d is ∞, and M ∩K is a feasible half-line along which cx→ −∞.

Otherwise, take the step length to be γ̂ = min{(bi − Ai.x̂)/(Ai.d) : over all i satisfying

Ai.d < 0} − ε. So, the output point of this descent step in this case is x̂+ γ̂d with the objective

value at it = c(x̂+ γ̂d).

Additional notation that we will use in this Descent Cycle

• Direction ci = the orthogonal projection of cT on {x : Ai.x = 0}= cT−AT
i. [(Ai.c

T )/(Ai.A
T
i. )]

for each 1 ≤ i ≤ m+ 1.

• Ball B. We will denote B(x̄, δ(x̄,K)), the largest ball in K with x̄ as center, by B.

• Touching point x̄i = the orthogonal projection of the center x̄ on FHi = {x : Ai.x = bi}
for each i ∈ T (x̄,K). This x̄i = x̄−AT

i. [(Ai.x̄− bi)/(Ai.A
T
i. )] is the point where the ball B

touches FHi for i ∈ T (x̄,K).

• NTP (Near touching point) x̂i:) Defined for i ∈ T (x̄,K) ∩ {1, ...,m}, it is the point

(1− ε)x̄i + εx̄; ε-distance away from x̄i on the line segment joining x̄i to x̄.

• H(x̂) = For any point x̂ ∈ K , {x : cx = cx̂}, the objective plane through x̂.

• The set Γ. This set is used for storing the output points along with the value for the

objective function cx at them, from various descent steps taken in this descent cycle in

each iteration. In each iteration, initially this set is ∅. At the end of this descent cycle,

the output point in this iteration, is taken as the point in Γ at that stage associated with

the smallest objective value.

The following steps are carried out for each i ∈ T (x̄,K).
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3.2.2: Descent Step D5.1: This descent step was developed in [Murty 2006a, b; Murty

and Oskoorouchi 2008] and gave good results in computational steps reported there.

It is carried out for each i ∈ T (x̄,K), it takes a descent step from the NTP x̂i in the descent

direction −ci. At the end, all the output points obtained along with their objective values are

stored in Γ. If the step length in any of these descent steps turns out to be +∞, the half-line

generated by the descent step is a feasible half-line along which cx diverges to −∞; and the

algorithm is terminated with that conclusion.

Figure 12: x̄ is the current center, T (x̄) = {1, 2}. Descent direction −cT points down south,

−c1 = orthoginal projection of −cT on the facetal hyperplane of Constraint 1. x̄1 is the touching

point on Constraint 1. x̂1 = NTP corresponding to Constraint 1. Descent steps from x̄, x̂1 in

descent direction −c1 are shown, here descent step from x̂1 leads to higher reduction in objective

value.

If no termination occurs, at the end of these descent steps, go to 3.2.3 for the next descent

step.

3.2.3: Descent Step D2 in the Direction of the Path of Centers, and the Average

GPTC Direction at the Center : For i ∈ T (x̄,K), the direction −ci is known as a GPTC

(Gradient Projection on Touching Constraint) direction at the current center x̄. From the

current center x̄, take a descent step in the direction of the average of −ci for i ∈ T (x̄,K).

Also from the current center x̄, take a descent step in the direction of the average of vectors in

the set {(Ai.)
T : i ∈ T (x̄,K) and satisfying c(Ai.)

T < 0} ∪ {(−Ai.)
T : i ∈ T (x̄,K) and satisfying
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c(Ai.)
T > 0}.

This descent step D2 is taken from the current center in the direction (x̄ = center in this

iteration − center in the previous iteration). It is not used in Iteration 1, but carried out from

Iteration 2 onwards.

As in all descent steps in this descent cycle, store the output points obtained in these descent

steps, along with their objective values, in the set Γ.

3.2.4: Descent Steps D5.7: Start with the objective plane through the current center x̄,

{x : cx = cx̄}, and move it parallel to itself in the direction −cT until it becomes a tangent plane

to the ball B. The point where the objective plane in its new position touches B is

¯̄x = x̄− cT δ(x̄,K)/||c||.

If this ¯̄x is a boundary point of K, i.e., satisfies Ai. ¯̄x = bi for some 1 ≤ i ≤ m; then H(¯̄x) must

be the same as {x : Ai.x = bi}; so ¯̄x is an optimum solution for the original LP (1), terminate

the algorithm with this conclusion. Otherwise ¯̄x is an IFS of K, continue.

Figure 13: When the objective plane H(x̄) through the center of B is moved parallel to itself

in the direction −cTuntil it becomes a tangent plane to B, touching it at a point ¯̄x; if ¯̄x is a

boundary point of K, it is an optimum solution of the original LP (1), and H(¯̄x) is a facetal

hyperplane of K and K.
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For each i ∈ T (x̄,K), compute the orthogonal projection ¯̄xi = x̄i− [cT (cx̄i− c¯̄x)]/ccT , of the

touching point x̄i on H(¯̄x). Notice that ¯̄xi may, or may not, be in K. See Figure 14.

INSERT FIGURE 14 HERE.

Figure 14: The ball B with center x̄ has 3 touching facets numbered 1, 2, 3 with touching

points x̄1, x̄2, x̄3 respectively. The objective plane H(x̄) is moved parallel to itself in the

direction −cT until it becomes a tangent plane to B, let ¯̄x be its touching point with B. We

will illustrate Steps 3.2.5, 3.2.6 with the touching facetal hyperplane corresponding to i = 1. ¯̄x1

is the orthogonal projection of x̄1 on H(¯̄x), and the straight line joining ¯̄x, ¯̄x1 is L1 (in this

2-dimensional figure it is the same as H(¯̄x). In higher dimensions H(¯̄x) will be a hyperplane

and L1 will be a straight line on it.). x11, x12 are the two boundary points of K on L1 ∩ K.

All points x on L1 satisfying the property that the descent line from it in the direction −cT

intersects K, are those between x01(α11) and x01(α12). Minimizing f1(α) over α11 ≤ α ≤ α12

leads to the point x01(ᾱ).

3.2.5: Finding Line Segments Intersecting the Interior of K on the Objective

Plane H(¯̄x)

Now carry out the following work for each i ∈ T (x̄,K).

Define the straight line joining ¯̄x and ¯̄xi

Li = {xi(γ) = ¯̄xi + γ(¯̄x− ¯̄xi) : γ takes real values }

in parametric representation with parameter γ, and contained on the objective plane H(¯̄x).

Since xi(γ = 1) = ¯̄x, an interior point of K; Li passes through the interior of K, and so

it must interesct K at two of its boundarey points if Li ∩ K is a line segment. To find those

boundary points of intersection, we need to solve the following system of linear inequalities in

the parameter γ.
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for all p = 1 to m+ 1 Ap.x
i(γ)− bp = Ap. ¯̄x

i − bp + γAp.(¯̄x− ¯̄xi) ≥ 0 (7)

The interval of values of γ feasible to (7) can be found using Subroutine 1, suppose it is

γi1 ≤ γ ≤ γi2. There are three possibilities here, which we will discuss separately.

Possibility 1: γi1 = −∞. This possibility occurs if Ap.(¯̄x− ¯̄xi) ≤ 0 for all p = 1 to m+ 1.

If Ap.(¯̄x− ¯̄xi) < 0 for all p = 1 to m+ 1, from Theorem 1 we verify that δ(xi(γ),K) diverges

to +∞ as γ → −∞. In this case the point xi(γ)−δ(xi(γ),K)[cT /||c||] is feasible for all γ → −∞,

and objective value at it diverges to −∞.

We know that δ(xi(γ)) = min{Ai.x
i(γ)− bi = Ai.(¯̄xi + γ(¯̄x− ¯̄xi))− bi : i = 1 to m+ 1}.

This and the fact that δ(xi(γ)) → ∞ as γ → −∞ implies that Ai.(¯̄x − ¯̄xi) < 0 for all i = 1 to

m+1. So, if β is a small positive number < min{−Ai.(¯̄x− ¯̄xi) : i = 1 to m+1}, then the growth

rate in δ(xi(γ)) as γ decreases is going to be larger than β. These facts show that the half-line

{¯̄xi + [(¯̄x − ¯̄xi) + β(−cT )]γ : γ ≤ γi2} is feasible and the objective value diverges to −∞ along

it. So, we terminate the algorithm with this conclusion in this case.

If Ap.(¯̄x − ¯̄xi) ≤ 0 for all p = 1 to m + 1, but = 0 for some p, then carry out descent steps

D5.1, D2 from xi(γ) for some γ < 0, and store the output points from this steps in the set Γ.

Then with the best point in Γ by objective value at this stage as the initial IFS go to the next

iteration in the algorithm.

Possibility 2: γi1 = +∞, which occurs if Ap.(¯̄x − ¯̄xi) ≥ 0 for all p = 1 to m + 1. All the

conclusions are the same as in Possibility 1; with the change that Ap.(¯̄x− ¯̄xi) ≤ 0 (or < 0) there

need to be replaced by Ap.(¯̄x− ¯̄xi) ≥ 0 (or > 0), and “γ negative ” by “γ positive ”.

Possibility 3: Both γi1 < γi2 are finite.

In this case continue the algorithm by moving to Section 3.2.6.

3.2.6: Extending the line segments Li ∩K for Carrying Out Descent Steps
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We found the line segment Li∩K = {xi(γ) : γI1 ≤ γ ≤ γi2 on H(¯̄x) interesecting the interior

of K above.

Relabel the Line Li: For simplicity we denote

xi(γi1) = xi1, xi(γi2) = xi2.

Then Li ∩K is the interval [xi1, xi2], the line segment joining xi1, xi2. We will now express

Li as the straight line joining xi1, xi2 in terms of the new parameter α:

Li = {x0i(α) = xi1 + α(xi2 − xi1) : α ∈ R1}
Then Li ∩ K = {x0i(α) : 0 ≤ α ≤ 1}. Even when α 6∈ [0, 1], it is possible that a descent

step taken from x0i(α) in the direction −cT leads to an output point in K. The condition to be

satisfied for this, is that x0i(α) + λ(−cT ) ∈ K for some λ ≥ 0.

Determining the interval of values of α such that x0i(α) + λ(−cT ) ∈ K for some

λ ≥ 0: We will Denote the interval by αi1 ≤ α ≤ αi2. This interval includes [0, 1], here we will

determine αi1, αi2.

We consider three cases that can arise now. Define:

I1 = {p : Ap.(−cT ) > 0}, I2 = {p : Ap.(−cT ) < 0}

Case 1: I1 = ∅: So Ap.(−cT ) ≤ 0 for all 1 ≤ p ≤ m+ 1. In this case for each p, the quantity

Ap.(x
0i(α) +λ(−cT )) keeps decreasing as λ increases from 0. So, for this quantity to be ≥ bi for

some λ ≥ 0, it must be ≥ bi for λ = 0. So we need Ap.x
0i(α)− bp ≥ 0 for all 1 ≤ p ≤ m+ 1. So

in this case the interval is αi1 = 0 ≤ α ≤ αi2 = 1.

Case 2: I2 = ∅: So, Ap.(−cT ) ≥ 0 for 1 ≤ p ≤ m + 1. For any 0 ≤ α ≤ 1 the descent step

from x0i(α) ∈ K in the direction −cT has step length = +∞ in this case, since Ap.(x
0i(α)− bp +
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λAp.(−cT ) ≥ 0 for all λ ≥ 0, 1 ≤ p ≤ m+ 1 in this case.

So for any 0 ≤ α ≤ 1, {x0i(α) + λ(−cT ) : λ ≥ 0} is a feasible half-line along which the ob-

jective function cx in (1) diverges to −∞. So, we terminate the algorithm with this conclusion

in this case.

Case 3: Both I1, I2 are nonempty:

From Subroutine 1, for a fixed value of α, for the system of inequalities

Ap.(x
0i(α+ λ(−cT )− bp = [Ap.x

i1 − bp + α(Ap.(x
i2 − xi1)] + λ(Ap.(−cT )) ≥ 0,

for all 1 ≤ p ≤ m+ 1; to have a solution in λ for λ real; the condition to be satisfied is

Max{−[Ap.x
i1 − bp + α(Ap.(x

i2 − xi1)]/(Ap.(−cT )) : over all p ∈ I1} ≤
Min{−[At.x

i1 − bt + α(At.(x
i2 − xi1)]/(At.(−cT )) : over all t ∈ I2}.

Further since we need this system to have a solution in λ ≥ 0, we need in addition to the

above, the following condition also to hold

Min{−[At.x
i1 − bt + α(At.(x

i2 − xi1)]/(At.(−cT )) : over all t ∈ I2} ≥ 0.

Therefore {x0i(α)+λ(−cT ) : λ ≥ 0}∩K 6= ∅, iff α satisfies the following system of inequalities:

−[Ap.x
i1 − bp + α(Ap.(x

i2 − xi1)]/(Ap.(−cT )) + [At.x
i1 − bt + α(At.(x

i2 − xi1)]/(At.(−cT ))

≤ 0 for all p ∈ I1, t ∈ I2, and

−[At.x
i1 − bt + α(At.(x

i2 − xi1)]/(At.(−cT )) ≥ 0 for all t ∈ I2.

This is a system of linear inequalities in the parameter α, and we know that this system

is feasible for all 0 ≤ α ≤ 1; using Subroutine 1 find the complete interval of values of α ;
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αi1 ≤ α ≤ αi2 feasible to this system. We know that αi1 ≤ 0, and αi2 ≥ 1; and both are finite.

3.2.7: Carrying out a Line Serach Step over the Line Segment {x0i(α) = xi1 +

α(xi2 − xi1) : αi1 ≤ α ≤ αi2}:

For αi1 ≤ α ≤ αi2, when a descent step is taken from x0i(α) in the direction −cT , the

maximum step length is

λ(α) = −ε + minimum{(bp − Ap.x
0i(α))/(Ap.(−cT )) over all 1 ≤ p ≤ m + 1 satisfying

Ap.(−cT ) < 0}.

and the output point from this descent step is x0i(α) +λ(α)(−cT ). The objective value at

this output point is

f i(α) = c[x0i(α) + λ(α)(−cT )]

Clearly f i(α) defined over the interval αi1 ≤ α ≤ αi2 is piecewise linear convex. Carry out

a line search step to

Minimize f i(α) over αi1 ≤ α ≤ αi2.

This line search step can be carried out by any of the algorithms discussed for it in NLP

literature, for example, the Quadratic Fit Line Search Method, see the textbook, Murty[1995].

Let ᾱ be the optimum value of α obtained in this line search step. Then the output point

from this line search step is x0i(ᾱ) with its objective value f i(ᾱ) = cx0i(ᾱ). Store the point

x0i(ᾱ), with its objective value in the set Γ.

When these line search steps are completed for all i ∈ T (x̄,K), this descent cycle is com-

pleted. This is also the termination of this iteration in SM-5
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The output point in this iteration is the point in the set Γ associated with the smallest

objective value at this stage. Suppose it is x̂, with objective value cx̂. With x̂ as the initial

IFS the algorithm now moves to the next iteration. The change in the objective value in this

iteration is the difference in the objective values at the initial IFS and the final output point in

this iteration, i.e., cx− cx̂.

The algorithm is terminated in an iteration if the change in objective value attained in that

iteration is ≤ ε, with the final output point in that iteration taken as the approximate optimum

solution of (1).

4 Sphere Method 6 (SM-6)

SM-6 is only slightly different from SM-5. In SM-6 the set of feasible solutions under consider-

ation is not updated as in Step 1 of the centering cycle in SM-5, it is the same as the original

set of feassible solutions K throught the algorithm. Thus the centering step in SM-6 is a lot

simpler than that in SM-5; but the descent steps in SM-6 are the same as in SM-5. As in SM-5,

each iteration in SM-6 begins with an initial IFS of K, and terminates by producing an output

IFS of K at the end. The first iteration begins with an initial IFS given in the input data for

the problem. Subsequent iterations begin with the output IFS of the previous iteration.

We will now describe a general iteration in SM-6 beginning with the initial IFS of K, say x̄,

for it.

4.1: Centering Cycle in this Iteration of SM-6

x̄ denotes the initial IFS of K with which this iteration begins.

Step C1: Finding an approximate center beginning with the initial IFS x̄:

Beginning with x̄ carry out all the work described in Sections 3.2.4, 3.2.5 with K replaced by the

original set of feasible solutions K defined in (1) with m constraints and not m + 1 (so, m + 1

in those sections should be replaced by m for use here).

In this work in Step C1 here, if termination did not occur, we would have obtained line
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segments Li ∩K = {xi(γ) : γi1 ≤ γ ≤ γi2} contained inside K from one end of K to the other,

for each i ∈ T (x̄,K), all lying on the objective plane H(¯̄x).

There are two strategies, 1 and 2, that can be used to select the center. Strategy 2 is simpler

than Strategy 2, but the best among them has to be determined based on computational tests.

STRATEGY 1:

For each i ∈ T (x̄,K), compute δ((xi(γi1) + xi(γi2)/2,K), and find an index i ∈ T (x̄,K)

that corresponds to the maximum value of this quantity. Suppose this maximum is attained by

an index r. Then the output point from this Step C1 beginning with the intial IFS x̄ of K is

¯̄xC = (xr(γr1) + xr(γr2))/2, the mid-point of Lr ∩K.

STRATEGY 2: In this strategy select r to be the i that maximizes ||xi(γi1) − xi(γi2)||
among i ∈ T (x̄,K) and take ¯̄xC = ᾱxi(γi1) + (1 − ᾱ)xi(γi2) where ᾱ is an α that maximizes

δ(αxr(γr1) + (1− α)xr(γr2) over 0 ≤ α ≤ 1.

Here we summarize the notation used in this step:

x̄ = Initial IFS of K for this step.

¯̄x = x̄− δ(x̄,K)cT /||c||, Bottom point of B(x̄,K) in the direction −cT .

x̄i = x̄−AT
i. [(Ai.x̄− bi)/(Ai.A

T
i. )], the point where FHi touches B(x̄,K) for i ∈ T (x̄,K).

¯̄xi = x̄i − cT [(cx̄i − c¯̄x)/ccT ], the orthogonal projection of x̄i on H(¯̄x) for i ∈ T (x̄,K).

Li = {xi(γ) = ¯̄xi + γ(¯̄x− ¯̄xi), Line joining ¯̄xi and ¯̄x for i ∈ T (x̄,K). Li ∩K = {xi(γ) : γi1 ≤
γ ≤ γi2} for i ∈ T (x̄,K).

¯̄xC : If Strategy 1 is used, r is an i ∈ T (x̄,K) that corresponds to the maximum value of

δ((xi(γi1) + xi(γi2))/2,K) and this ¯̄xC = xr(γr1) + xr(γr2))/2. If Strategy 2 is used, r is an

i ∈ T (x̄,K) that maximizes ||xi(γi1)− xi(γi2)|| and ᾱ is an α that maximizes δ(αxr(γr1) + (1−
α)xr(γr2)) over 0 ≤ α ≤ 1.

Go to Step C2 next.

Step C2: Finding an approximate center beginning with ¯̄xC, the output

point from Step C1

Carry out Step C1 beginning with ¯̄xC instead of x̄, and suppose the output point obtained
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is ¯̄̄xC . This point ¯̄̄xC is called the Center in this iteration in SM-6.

Here we summarize the notation used in this step:

¯̄xC = Initial IFS of K for this step.

¯̄̄x = ¯̄xC − δ(¯̄xC ,K)cT /||c||, Bottom point of B(¯̄xC ,K) in the direction −cT .

¯̄xi = ¯̄xC −AT
i. [(Ai. ¯̄x

C − bi)/(Ai.A
T
i. )], in this step, the point where FHi touches B(¯̄xC ,K) for

i ∈ T (¯̄xC ,K).

¯̄̄xi = ¯̄xi − cT [(c¯̄xi − c ¯̄̄x)/ccT ], the orthogonal projection of ¯̄xi on H(¯̄̄x) for i ∈ T (¯̄xC ,K).

Li = {xi(γ) = ¯̄̄xi + γ(¯̄̄x− ¯̄̄xi), Line joining ¯̄̄xi and ¯̄̄x for i ∈ T (¯̄xC ,K).

Li ∩K = {xi(γ) : γi1 ≤ γ ≤ γi2} for i ∈ T (¯̄xC ,K).

¯̄̄xC : If Strategy 1 is used, r is an i ∈ T (¯̄xC ,K) that corresponds to the maximum value of

δ((xi(γi1) + xi(γi2))/2,K) and this ¯̄̄xC = xr(γr1) + xr(γr2))/2. If Strategy 2 is used, r is an

i ∈ T (¯̄xC ,K) that maximizes ||xi(γi1)−xi(γi2)|| and ᾱ is an α that maximizes δ(αxr(γr1)+(1−
α)xr(γr2) over 0 ≤ α ≤ 1.

Now go to the Descent steps in this iteration.

4.2: Descent steps in this iteration in SM-6

Select a set Γ, initially = ∅, for storing the output points with their objective values (for

z = cx) generated in each of the descent steps carried out below.

Descent step D5.1: The current center is ¯̄̄xC . For each i ∈ T (¯̄̄xC ,K), compute the

touching point xi of B(¯̄̄xC ,K) with FHi, x
i = ¯̄̄xC − AT

i. [(Ai.
¯̄̄xC − bi)/||Ai.||2]. Then x̂i =

ε ¯̄̄xC + (1 − ε)xi is called the NTP (Near touching point) of B(¯̄̄xC ,K) with FHi. It is the

point ε distance away from xi on the line segment joining xi to ¯̄̄xC , where ε is a small positive

tolerance.

For each i ∈ T (¯̄̄xC ,K), take a descent step from the NTP x̂i in the descent direction −ci.
Store the output points from each of these descent steps along with their objective values in the

set Γ.

Descent Step D5.7 in SM-6:
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We obtained line segments Li ∩ K = { ¯̄̄xi(γ) : γi1 ≤ γ ≤ γi2} on the objective plane H(¯̄̄x)

for i ∈ T (¯̄xC ,K) in Step C2. On these line segments on H(¯̄̄x) execute the work in Step 3.2.6,

3.2.7 of SM-5 replacing K with K , to extend these line segments and carry out line search to

minimize f i(α) on them for all i ∈ T (¯̄xC ,K). Store the output points with the objective values

at them in the set Γ

Other Descent steps: From the center ¯̄̄xC , take descent steps in the directions ¯̄̄xC − ¯̄xC ,

−cT , and the average of the GPTC directions at the current center ¯̄̄xC .

Also from the current center ¯̄̄xC , take a descent step in the direction of the average of vectors

in the set {(Ai.)
T : i ∈ T (¯̄̄xC ,K) and satisfying c(Ai.)

T < 0} ∪ {(−Ai.)
T : i ∈ T (¯̄̄xC ,K) and

satisfying c(Ai.)
T > 0}.

Store the output points from each of these descent steps along with the objective values at

them, in the set Γ.

After all these descent steps, select the point in Γ corresponding to the least objective value

as the new x̄, reset the set Γ to be the empty set, and with the new x̄ go to the next iteration.

Terminate the method when the change in objective value in an iteration falls below a selected

tolerance. In the final iteration, take the point in Γ corresponding to the least objective value

as an approximate optimum solution of (1).

5 Sphere Methods for Linearly Constrained Nonlinear Program-

ming (NLP) Models

We consider the NLP

min θ(x) (8)

subject to Ax ≥ b

where A is a data matrix of order m × n; with a known IFS x1, and θ(x) is a continuously
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differentiable nonlinear function of x ∈ Rn. We will continue using the notation developed

earlier. ∇θ(x) denotes the gradient vector of θ(x) at x written as a row vector.

Here we will assume that K, the set of feasible solutions of the problem, is bounded; so, (8)

has an optimum solution. Also in this section, we will consider the case where θ(x) is a convex

function. Extension to the case when θ(x) is nonconvex, or when some of the variables in x

are required to be binary will be discussed in the next section. We begin discussing two results

that we will use.

Result 1: Let x̂ ∈ K satisfy ∇θ(x̂) 6= 0. Then there exists an optimum solution x0 of (8)

satisfying ∇θ(x̂)x0 ≤ ∇θ(x̂)x̂.

Proof: Since θ(x) is a convex function, we know that it satifies the gradient support inequal-

ity [2009b] at x̂

θ(x)− θ(x̂) ≥ ∇θ(x̂)(x− x̂) for all x ∈ Rn.

Let x0 be an optimum solution of (8). Substituting x = x0 in the above gradient support

inequality, we get θ(x0)− θ(x̂) ≥ ∇θ(x̂)(x0− x̂). But since x0 is an optimum solution of (8), we

have 0 ≥ θ(x0)− θ(x̂) ≥ ∇θ(x̂)(x0 − x̂); so ∇θ(x̂)(x0 − x̂) ≤ 0. ./

The next result is the basis for the first method in Constrained NLP, the Frank-Wolfe Method.

Result 2: If x̂ ∈ K minimizes the linear function ∇θ(x̂)x over x ∈ K, then x̂ is an optimum

solution of the original NLP (8).

Proof: Suppose x̂ satisfies ∇θ(x̂) = 0. Since θ(x) is a convex function, in this case x̂ is an

optimum solution of (8).

Now consider the case ∇θ(x̂) 6= 0. Since x̂ minimizes ∇θ(x̂)x over x ∈ K, by the Dual-

ity Theorem of Linear Programming, there exists a dual vector, a row, π̂ = (π̂1, ..., π̂m) such
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that x̂, π̂ together satisfy the dual feasibility and complementary slackness optimality conditions:

∇θ(x̂)− π̂A = 0; π̂ ≥ 0; π̂i(Ai.x̂− bi) = 0, i = 1, ..., m.

Together with Ax̂ ≥ b, these are the KKT optimality conditions for x̂ to be an optimum

solution of (8). ./

5.1 Descent Steps Based on SM-5, 6 for LP

We will consider the general iteration in which the current solution is the initial IFS, x̄, say.

By Result 1, we know that we can get descent directions at the IFS x̄ for our original problem

(8), or show that x̄ is itself an optimum solution of (8), by solving the LP (9) below.

min ∇θ(x̄)x (9)

subject to Ai.x ≥ bi i = 1, ...,m+ 1

where Am+1. = −∇θ(x̄), bm+1 = ∇θ(x̄)x̄− ε, ε a small positive tolerance to guarantee that

x̄ is an IFS of the set of feasible solutions, K̄ of (9). Now consider the LP (9).

Apply one iteration of SM-5 or SM-6 to solve this LP with the current solution x̄ as the initial

IFS. Notice that in carrying out this iteration of SM-5 on (9), due to the (m+ 1)th constraint in

(9), the set of feasible solutions of this LP, K̄, is already updated by the objective value at the

current initial IFS x̄, so it is not necesssary to begin the centering cycle with Step 1 in Section

3.1, it can begin directly with Step 2.

When this iteration of SM-5 or SM- 6 on (9) terminates, if we conclude that x̄ itself is an

optimum solution of (9), then by Result 2 we conclude that x̄ is optimum to the original NLP

(8), and we terminate. Otherwise we would have the set Γ = set of all output points of descent

steps for (9) carried out in this iteration. So, at this stage, for each x̂ ∈ Γ, ∇θ(x̄)x̂ < ∇θ(x̄)x̄,

or ∇θ(x̄)(x̂− x̄) < 0; i.e., (x̂− x̄) is a descent direction for θ(x) at x̄.

Set up a set ΓN for storing the output points along with the objective value of θ(x) at them,

from the various descent steps that will be carried out in this iteration; this set ΓN is ∅ initially.
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Now for each x̂ ∈ Γ, apply a line search step to minimize θ(x̄+ α(x̂− x̄)) over 0 ≤ α ≤ 1. If

α̂ is the optimum value of α obtained in this step, store the output point x̄ + α̂(x̂ − x̄), along

with its objective value θ(x̄+ α̂(x̂− x̄)) in the set ΓN .

5.2: Descent Step in the Trust Region Descent Direction

Let Q(x) be the 2nd order Taylor Series Approximation for θ(x) at the current solution x̄.

The problem of minimizing Q(x) over the ball B(x̄, K̄) is known in the literature as a trust

region problem. Efficient software implementations of an algorithm for solving it are available

(see http://galahad.rl.ac.uk/galahad-www/ , also Matlab has programs for solving it) whether

Q(x) is convex or not.

Let x be the optimum solution obtained for this problem. If ∇θ(x) = 0, since θ(x) is convex,

we conclude that x is an optimum solution of the orginal problem (8), and we terminate the

algorithm. Otherwise, assuming that Q(x) is a goood approximation for θ(x) inside B(x̄, K̄),

x− x̄ will be a descent direction for θ(x) at x̄.

Use Subroutine 1 to find, γ̄, the maximum value of the parameter γ that keeps the point

x̄ + γ(x − x̄) feasible to the original NLP (8). Then apply a line search step to minimize

θ(x̄+ α(x− x̄)) over 0 ≤ α ≤ γ̄ − ε. If ᾱ is the optimum value of α obtained in this step, store

the output point x̄+ ᾱ(x− x̄), along with its objective value θ(x̄+ ᾱ(x− x̄)) in the set ΓN .

5.3: Descent Step Based of Facetal Normal Dirctions

Find directions d in the set {AT
i. ,−AT

i. : i ∈ T (x̄,K)} [CHECK WHETHER CHANGING

THIS TO i = 1, ...m HERE GIVES BETTER PERFORMANCE] which are descent directions

at x̄ (i.e., satisfy ∇θ(x̄)d < 0), and let y be the average of these directions. Find the maximum

value of γ for x̄+ γy to be ∈ K using Subroutine 1, and suppose it is γ̄.

Apply a line search step to minimize θ(x̄+αy) over 0 ≤ α ≤ γ̄− ε. If ᾱ is the optimum value

of α, store the output point x̄+ ᾱy along with its objective value θ(x̄+ ᾱy) in the set ΓN .

5.4: Descent Steps Based on the Touching Set Of Constraints
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When x̄ is the current IFS this technique uses a direction y that is a solution of

Ai.y = 1 for all i ∈ T (x̄,K) (10)

that also satisfies ∇θ(x̄)y < 0. To get such a direction, it finds a basic solution for (10). In

this process suppose the basic vector obtained for (10) is (y1, ..., yp), eliminating any redundant

constraints in (10) found. Let c = ∇(x̄), and include “cy = 0” in another row vector under those

in (10).

We will solve this system of linear equations using the efficient GJ (Gauss-Jordan) Method

with the explicit basis inverse (see, Section 1.2.2 in Murty[2010]), then it generates B−1, the

inverse of the basis of (10) corresponding to the basic vector (y1, ..., yp) for (10). Every column

vector in the canonical tableau of (10) with respect to this basic vector can be calculated using

the well known formulas (see [Murty 2009b]) and the data in the original system (10). However,

we will describe the descent steps carried out here using the canonical tableau displayed below,

with the basic variables priced out in the last row.

y1 .... yp yp+1 ..... yn RHS

1 .... 0 ā1
p+1 ..... ā1

n ȳ1

...
. . .

...
... .....

...
...

0 .... 1 āpp+1 ..... āpn ȳp

0 .... 0 c̄p+1 ..... c̄n ∆

Then indices i = 1 to p corresponding to the top p rows in the above canonical tableau are

contained in T (x̄,K) corresponding to rows in (10). There are two cases to consider here.

Case 1: If c̄j = 0 for all j = p+1 to n: Then the vector c = ∇θ(x̄) is a linear combination

of {Ai. : i ∈ T (x̄,K)}, these indices i ∈ T (x̄,K) correspond to the top rows 1 to p in the above

canonical tableau. There are two subcases to consider here.

Subcase 1.1: ∆ > 0: In this subcase , ȳ = (ȳ1, ..., ȳp, 0, ..., 0)T is a descent direction for

θ(x) at x̄. Find α1 = the value of α that minimizes θ(x̄ + αȳ) within K. If ∇θ(x̄ + α1y) = 0,

the conclude that x̄ + α1y is an optimum solution of the original NLP (8) , and terminate the

algorithm. Otherwise, continue.
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Now if x̄ + α1y is an interior point of K, i.e., satisfies all the constraints in (8) as strict

inequalities, then take it as the output point of this line search operation. On the other hand,

if x̄ + α1y is a boundary point of K, i.e., satisfies at least one of l the constraints in (8) as an

equation, then take x̄ + (α1 − ε)y as the output point of this line search operation. Store the

output point in this line search operation, along with the value of θ(x) at it in the set ΓN .

Subcase 1.2: ∆ < 0:

Denote cB = (c1, ..., cp), the row vector of elements in c = ∇θ(x̄) corresponding to the basic

variables in (y1, ..., yp), and π̄B = cB−B−1, π̄ = (π̄B, 0, ..., 0) ∈ Rm. Then, c =
∑p

i=1 π̄iAi. = π̄A.

At this stage if δ(x̄,K) is small, and the vector π̄ computed above is ≥ 0, then “c =

(
∑p

i=1 π̄iAi.) = (π̄A), π̄ ≥ 0, π̄i = 0 for i 6∈ {1, ..., p}” are an approximate form of the KKT

optimality conditions for (8) for x̄. So we terminate with the conclusion that x̄ is an approximate

optimum to the original NLP (8).

Suppose π̄ 6≥ 0. In this subcase there is no descent profitable direction at x̄; so take x̄ as the

approximate ball center in this iteration. Apply the descent step in the Trust region descent

direction (Section 5.2) at x̄, and continue.

Case 2: One or more of c̄j are 6= 0: Let J = {j : p+ 1 ≤ j ≤ n, c̄j 6= 0}. Carry out the

following for each j ∈ J :

The solution to (10) obtained by keeping all nonbasic variables other than yj at 0, while giving

the nonzero value β to yj in the canonical tableau corresponding to the basic vector (y1, ..., yp) is:

y(β) = (ȳ1 − ā1
jβ, ..., ȳp − βā

p
j , 0...0, β, 0, ..., 0)T

in which β is the value given to the nonbasic variable yj . We will call the interval of values of

β, in which the value of cx at x = y(β), which is βc̄j −∆ is < 0 as the descent range for β.

Let β1 = ∆/c̄j . This range is unbounded and it is :

β < β1 if c̄j > 0, or β > β1 if c̄j < 0

Moving in the direction y(β) from the current IFS x̄ a nonegative step length of α yields the

34



point x̄ + αy(β). For each fixed value β̄ of β in its descent range, the point x̄ + αy(β̄) will be

feasible to the original NLP (8) iff

Ai.(x̄+ αy(β̄)) ≥ bi for all i = 1 to m.

Solving this systems of inequalities in α by Subroutine 1 discussed in Section 2 gives the

feasible interval of values of α, limits of this interval will depend on β̄. Denote this interval by

α1(β̄) ≤ α ≤ α2(β̄).

For any β̄ in the descent range of β, let g(β̄) denote minimum value of {θ(x̄+αy(β̄)) : α1(β̄) ≤
α ≤ α2(β̄)}. Even though the function g(β) is not available in explicit functional form, its value

g(β̄) for any given value β̄ can be obtained by performing a line search from its definition above.

Using this we can now minimize the function g(β) itself over the descent range for β using a

direct search line search method that only uses function values at selected values of β; this will

give the minimum value of θ(x̄+ αy(β)) over all feasible α, β values. If β∗, α∗ are the values of

β, α at this minimum , include in the set ΓN the point x̄+α∗y(β∗) as the output point obtained

corresponding to this index j in the set J .

When this work is completed for all j ∈ J , select the best point in the set ΓN by objective

(θ(x)) value , and call it x̂ the new current IFS. With it as the initial IFS go to the next iteration.

The algorithm is terminated when the distance between consecutive elements in the sequence

of initial IFSs xr in the algorithm becomes small. The final point in this sequence is taken as

an approximation to the optimum for the original NLP (8).

6 Sphere Methods for Linearly Constrained Nonlinear Program-

ming (NLP) Models in Which Objective Function θ(x) Is Non-

convex, Or for 0-1 Interger Linear Programs (ILPs)

Consider the 0-1 ILP
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Minimize cx

S. to Ax ≥ b (11)

xj ∈ {0, 1} for all j ∈ J1

where A is an m×n matrix, and J1 ⊂ {1, ..., n}. This problem is equivalent to finding the global

minimum of the following nonconvex Quadrtic Program (QP).

Minimize z1(x) = cx+M
∑
j∈J1

xj(1− xj)

S. to Ax ≥ b (12)

0 ≤ xj ≤ 1 for all j ∈ J1

in which M is a large positive penalty parameter, which is a special case of (8) with z1(x) being

a concave function. In this section we will consider the NLP (8) with θ(x) being nonconvex,

which includes this problem.

In this nonconvex case the main differences are: Result 1 may not be valid, also if we get

a point x satisfying ∇θ(x) = 0 during the algorithm, that point x is not guaranteed to be an

optimum solution (i.e., global minimum) for (8), may not even be a local minimum. Also Result 2

is not valid as stated. So if x̂ is a feasible solution satisfying: x̂ is an optimum solution to the LP:

minimize ∇θ(x̂)x subject to Ax ≥ b, we cannnot guarantee that x̂ is a global optimum solution

for (8) , but it is a KKT point for (8); and in real wirld applications of nonconvex nonlinear

models, a KKT point is usually accepted as an approximation to an optimum solution.

So, starting with the initial IFS we apply the algorithm discussed in Section 5 in this non-

convex case also. Since the set ΓN generated by that algorithm contains the output points in

descent steps carried out is all directions of the feasible region, at termination, the best point

in ΓN is likely to be a good approximation to the global optimum. For solving the 0-1 ILP, at

termination all binary variales are likely to have their values in the final solution very close to

0 or 1, they are then rounded off to ther nearest integer in determining the final solution.
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7 Computational Results

Computational tests on these algorithms are being carried out by David Kaufman (davidlk@gmail.com)

at the University of Michigan, Ann Arbor; Vincent F. Yu (vincent@mail.ntust.edu.tw) at the

National Taiwan University of Science and Technology, and his students. The paper will be

completed when the results of these tests become available.
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