
Fast Descent Methods for LPs With No Matrix Inversions

Katta G. Murty

Department of IOE, University of Michigan,

Ann Arbor, MI 48109-2117, USA;

Sandia National Labs, Livermore, CA

Phone: 734-763-3513, Fax: 734-764-3451, e-mail: murty@umich.edu

www-personal.umich.edu/˜ murty/

March 2012

Abstract

Existing software implementations for solving Linear Programming (LP) models are all

based on full matrix inversion operations involving every constraint in the model in every

step. This linear algebra component in these systems makes it difficult to solve dense

models even with moderate size, and it is also the source of accumulating roundoff errors

affecting the accuracy of the output.

We present new methods for LP that help reduce the need for this linear algebra compo-

nent significantly, or even eliminate it altogether, and still get comparable or better results.

Key words: Linear Programming (LP), Interior point methods (IPMs) , ball centers of

a polytope, solving LPs by descent methods without using matrix inversions.

In Memorium: We dedicate this paper to the memory of our dear friend Santosh Kabadi

with whom we had many fruitful discussions on the methods discussed in this paper, who

passed away in a tragic drowning accident in the sacred Ganges river recently.

1 Introduction

For modeling decision making applications, LP is the most commonly used mathematical model.

Software systems for solving LP models are based on either the simplex method, or interior point

1

methods (IPMs, in particular the primal-dual IPM) developed during the second half of the

20th century (Dantzig and Thappa [1997], Kojima, Mizuno, Yoshishe [1989], Megiddo [1989],

Mehrotra [1992], Monteiro and Adler [1989], Sonnevend, Stoer and Zhao [1989], and the books

Saigal [1995], Wright [1997], and Ye [1997])) and are able to solve large scale sparse models

(those involving thousands of constraints) within reasonable times by exploiting the sparcity of

the models. As several real world applications lead to sparse models, these systems are very

popular in practice.

But the simplex method, and these IPMs are based on matrix inversion operations involving

every constraint in the model in every step. In large scale applications, these matrix inversion

operations limit the ability of these algorithms to only those with very sparse coefficient matrices.

Typically, the effectiveness of these algorithms fades as the density of the coefficient matrix

increases.

Many applications lead to LP models that are not sparse, and need near-optimum solutions

in real time. In many of these applications, the LP models are only of moderate size. This

provided a motivation for us to develop fast algorithms for LP without using matrix inversion

operations, or using them sparingly if at all.

One such application is the graphics application posed by Watson [2010] recently. It needed

the solution of LPs in real time on GPUs (“Graphical Processing Units”, the hot new topic in

high performance computing). GPU is the ”CPU” in a graphic coprocessor. GPUs are basically

vector computers, designed to do a few simple operations very fast on large arrays of data. They

were specifically designed for graphics processing, but have the potential to be adapted to other

more general uses. They are inherently parallel, performing at least 32 threads of computation

(instruction streams) in parallel.

The present trend in supercomputing is to have a massively parallel machine, but with each

”node” being a general purpose CPU plus several GPUs (currently each node is just a commodity

CPU).

GPUs pose some interesting constraints. They can hold only 16K (about 4000 numbers) of

transient data (storage locations for data that changes in the algorithm), including everything

like loop indices, temporary variables, etc. But they have a much larger static memory that

is accessed for reading only. Therefore GPUs favor algorithms that frequently evaluate fixed

2

functions. Small scale linear algebra (e.g., a 63x63 matrix fills up the entire dynamic memory)

is possible, but not heavy computations. However, they can solve large problems by moving

data into and out of this GPU memory, but that is slow, and too much data movement negates

the speed advantage of the GPU.

Commercial software packages such as MOSEK and CPLEX cannot be used in GPUs because

these codes are too big to fit in the GPU memory, and cannot exploit the GPU architecture.

Therefore a new code needs to be developed that explicitly exploits the GPU architecture—it

has to be small and highly memory-efficient.

The advantage of GPUs is that they perform arithmetic operations super fast, and can

execute 32 threads in parallel (similar to operating on vectors of length 32 in one instruction).

On some applications they are more than 100 times faster than the fastest general purpose CPU

(e.g., the latest Intel chip). On the other hand one CPU can drive several GPUs, and thus

speedups more than 100 times per node of a large parallel machine are possible.

In this paper we present SM-5 (Sphere Method 5), a variant of the Sphere Methods for LP

using no matrix inversions, and discuss computational results obtained using it. It provides an

efficient algorithm for LPs needing only small memory, as required in applications being solved

using GPUs. Of course it can also be used for solving LP models using regular computers in

other applications.

SMs consider LPs in the form:

min z = cx (1)

s.t. Ax ≥ b

where A is an m × n data matrix; with a known interior feasible solution x0 (i.e., satisfying

Ax0 > b). We assume that K, the set of feasible solutions of (1), is bounded. Strategies for

modifying any given LP into this form are discussed in (Murty[2009-2, 3]).

1.1 Nomenclature

Here is the notation we will use in this paper.

3

• Notation for rows and columns of A: Ai., A.j denote the ith row and jth column of

A.

• Feasible region and its interior: K denotes the set of feasible solutions of (1), and

K0 = {x : Ax > b} its interior.

• Facetal hyperplanes: FHi = {x : Ai.x = bi}, the i-th facetal hyperplance of K for i =

1 to m.

• Largest inscribed ball with a given point as center, its radius: B(x, δ(x,K)), δ(x,K)

defined for x ∈ K0, δ(x,K) = minimum{Ai.x−bi
||Ai.|| : i = 1, ...,m} is the radius of the largest

ball that can be inscribed in K with x as its center. B(x, δ(x,K)) = {y : ||y−x|| ≤ δ(x,K)}
is that largest inscribed ball in K with x as its center.

• Touching constraint set at a given point: T (x,K) defined for x ∈ K0, it is the set of

all indices i satisfying: Ai.x−bi
||Ai.|| = Minimum{Ap.x−bp

||Ap.|| : p = 1 to m} = δ(x,K). The facetal

hyperplane FHi = {x : Ai.x = bi} is a tangent plane to B(x, δ(x,K)) for each i ∈ T (x,K),

that’s why T (x,K) is called the index set of touching constraints in (1) defining K

at x.

• Updated feasible region: When xr is the current interior feasible solution in the algo-

rithm, the set Kr+1 defined as,

Kr+1 = {x : Ax ≥ b, Am+1.x ≥ bm+1} (2)

where Am+1. = −c, bm+1 = Am+1.x
r − ε, and ε is a small positive tolerance, is the set

of feasible solutions of (1) updated by the current objective value in the algorithm. The

current objective value is strictly monotonic decreasing in the algorithm, and hence this

updated set of feasible solutions keeps getting smaller during the algorithm.

• Coefficient matrix for updated feasible region: Ar, br refer to the (m + 1) × n

coefficient matrix in (2), and the RHS vector belonging to Rm+1 in (2) respectively.

• Radius of largest inscribed sphere for updated feasible region at a given point

as center, and its touching constraint set: δ(x,Kr+1), T (x,Kr+1) defined for interior

4

points x of Kr+1 same way as δ(x,K), T (x,K) for K defined above, using the system of

constraints (2) characterizing Kr+1.

• GPTC (gradient projection on touching constraint) directions: Let ci denote the

orthogonal projection of cT on {x : Ai.x = 0}, i.e., ci = (I − AT
i. (Ai.))c

T for i = 1 to m.

When the ball B(x, δ(x,K)) is under consideration, the directions −ci for i ∈ T (x,K) are

called the GPTC directions at the current center x in K.

• Ball center of K: It is the center of a largest ball in K, it maximizes δ(x,K) over x ∈ K.

• Ball center of Kr+1: When xr is the current interior feasible solution in the algorithm,

this is the ball center of the updated set of feasible solutions defined by (2).

• IFS: We will use this abbreviation for “interior feasible solution”, i.e., for K it will be an

x satisfying Ax > b.

INSERT FIGURE 1 HERE

Figure 1: x0 ∈ K and the ball shown is B(x0, δ(x0)), the largest ball inside K with x0 as

center. Facetal hyperplanes of K corresponding to indices 1,2 are tangent planes to this ball, so

T (x0) = {1, 2}.

INSERT FIGURE 2 HERE

Figure 2: K here is the feasible region bounded by 5 facetal hyperplances numbered 1 to

5. The ball B is the largest inscribed ball in K and its center x̄ is the ball center of K. Here

the ball center and the largest inscribed ball in K are unique, but in general they may not be

unique. SM will work with any approximation of a ball center computed by the centering cycle.

INSERT FIGURE 3 HERE

Figure 3: K is the feasible region in the original problem. When xr is the current IFS, the

updated feasible region Kr+1 (the shaded region), a largest inscribed ball B in Kr+1, and its

center x̄r, a ball center of Kr+1, are shown.

5

1.2 Initialization Routine

In this paper we will assume that K0 6= ∅. For solving (1), the sphere methods for LP need an

initial IFS for K. If an IFS for (1) is not available, , we can use the following Phase I procedure

to find an IFS of K. This procedure introduces an artificial variable xn+1 associated with the

column vector e (a column vector of appropriate order in which all entries are 1) changing the

constraints in (1) into

Ax+ exn+1 ≥ b (3)

Let X =
(

x
xn+1

)
, A1 = (A

...e) of order m× (n+ 1).

Then the Phase I problem is (here ε is a small positive number)

min xn+1

s.t. A1X ≥ b+ εe (4)

Let x0
n+1 = 1+max{0, bi : i = 1, · · · ,m}, and X0 =

(
x0=0
x0
n+1

)
. Then X0 satisfies A1X

0 > b+εe.

Now we apply the sphere method to solve (4) beginning with X0 as the initial IFS. Under our

assumption, (4) has an optimum solution at which the minimum objective value in (4) is ≤ 0.

In solving (4) by the sphere method, when we get an IFS of (4), X ′ =
(

x′

x′
n+1

)
at which x′n+1 is

close to 0, then x′ will be an IFS of (1). Now we apply the sphere method on the original LP

(1) beginning with x′ as the initial IFS for it.

For another option to use when an initial IFS for (1) is not available, but we know that

K0 6= ∅, see Descent Step D5.8 based on Blow-up-2 routine discussed later.

1.3 Outline of Sphere Methods to solve LPs

We will now describe the main strategy used by the SMs to solve (1). Each iteration of the

method begins with the best IFS obtained at the end of the previous iteration; and consists of

two cycles; a centering cycle, and a descent cycle consisting of several descent steps. Details

of both these steps are discussed next.

SM-5 uses the framework used in Sphere Method 2 (SM-2). In SM-2 discussed in Murty

and Oskoorouchi [2010], in iteration r + 1 with xr as the initial IFS, the current set of feasible

6

solutions considered is Kr+1, the set of feasible solutions updated by the current objective value

cxr (defined in (2)).

The center, the output of the centering cycle in this iteration in SM-5, is a ball center of

Kr+1, computed approximately.

The main strategy used in SM-2 to compute the ball center of Kr+1 starting with an initial

IFS x̂ in Kr+1, is to select a direction y called a profitable direction to move at x̂ for Kr+1,

i.e., one satisfying the property that δ(x̂ + αy,Kr+1) strictly increases as α increases from 0;

and determines the optimum step length to maximize δ(x̂+ αy,Kr+1) over α ≥ 0.

INSERT FIGURE 4 HERE. Figure 4: Illustration of a profitable direction y at an IFS x0 in

Kr+1. As we move from x0 in the direction y indicated by the arrow, δ(x0 +αy,Kr+1) increases

until we reach the point x∗.

A direction y has been shown to be a profitable direction at x̂ for Kr+1 iff Ai.y > 0 for

all i ∈ T (x̂,Kr+1) [8, 9, 14], so checking a given direction for profitability is easy.

Once a profitable direction y at the current point x̂ for Kr+1 has been determined, the

optimum step length that maximizes δ(x̂+αy,Kr+1) is ᾱ , where (δ̄, ᾱ) is the optimum solution

in the following 2-variable LP:

max δ

s.t. δ − αAi.y ≤ Ai.x̂− bi ∀i = 1, · · · ,m+ 1 (5)

δ, α ≥ 0

and δ(x̂+ᾱy,Kr+1) = δ̄, the optimum objective value in this 2-variable LP, and the output point

of this move in the profitable direction y at x̂ is x̂ + ᾱy. We will discuss an efficient algorithm

to solve this 2-variable LP in Section 3.

As an illustration, in Figure 4, as we move from x0 in the profitable direction y indicated by

the arrow, the optimum step length ᾱ for the move takes us to the point x∗, where δ(x0 + αy)

is maximum over α ≥ 0. If this step length is larger that ᾱ, it can be verified that δ(x0 + αy)

actually decreases from δ(x∗).

7

2 The Centering Cycle in SM-5

The centering cycle in SM-5 computes the ball center of the current set of feasible solutions Kr+1

approximately starting with xr as the current IFS of Kr+1, using the method based on results

from Xie, Snoeyink, Xu [2006] and Clarkson [2010], not using any matrix inversions. Here is the

method.

Translate the origin to the current IFS xr, i.e., define the new vector of variables y = x−xr.
In terms of y, Kr+1 = {y : Ary ≥ br − Arxr}. In the y-space xr becomes the origin 0. Since it

is an interior point of Kr+1, we have br − Arxr < 0. Define A
′r
i. = Ar

i./(b
r
i − Ar

i.x
r) for all i = 1

to m+ 1. Then in the y-space Kr+1 = {y : A
′ry ≤ e} where e is a column vector of all 1s; and

A
′r is the matrix with A

′r
i. as the row vectors for i = 1 to m+ 1.

We know that A
′r is of order (m+ 1)× n. Let S = {Pi = (A

′r
i.)

T : i = 1 to m+ 1}.
Let Q denote the center of the minimum Enclosing Sphere (min ES) for the set S of points,

i.e., the smallest radius sphere containing all the points in S. An approximation for this can be

found by the following scheme.

Scheme for computing Q: Q = center of min ES containing all the points in S =

{P1, ..., Pm+1}.
Strating with Q0 = average of points in S, obtain the sequence Qt, t = 1, 2, ... as described

below.

Having obtained Qt, let P t+1 be the farthest point (by Euclideam distance) from Qt in the

set S. Then define Qt+1 = (1− a)Qt + aP t+1 where a = 2/(t+ 3).

When the sequence Qt converges take the final point as an approximation for Q.

INSERT FIGURE 5 HERE

Figure 5: The set S of points and the approximated MES for S and its center Q.

Centering step in SM-5 continued: Once Q is obtained, it corresponds to Q + xr in

the original x-space. Now maximize δ using our 2-variable LP algorithm in Kr+1 by finding the

optimum step length to move on the straight line joining Q+ xr to xr and let the best point be

called xr1.

8

With xr1 as the new current IFS, repeat this centering step.

Continue repeating this centering step a few times until change in δ per step becomes small.

Take the final point as the output of the centering step called the center in this iteration. Go

to the descent steps with it.

2.1 The Various Descent Steps Used in SMs

Considering the genral iteration r+ 1, suppose the center obtained in the centering step in this

iteration is x̄r. From this center, the descent cycle in this iteration carries out various descent

steps. In this section we describe all the descent steps used in various SMs, and a new one, the

most productive ones among these need to be determined in computational tests, to carry out

in the descent cycle in SM-5 in each iteration.

In a general descent step from an IFS x∗ in descent direction d (i.e., d satisfying cd < 0),

we move from x∗ in this direction, the maximum distance possible while still remaining at a

distance ε from the boundary. This gives the step length to be γ, where

γ = Minimum{(−Ar
i.x
∗ + bri + ε)/(Ar

i.d) : over all i satisfying Ar
i.d < 0} (6)

and the output of this descent step is x∗ + γd.

Here are the various descent steps used in SM-1 in the descent cycle when the center is x̄r.

D1.1: Descent step from x̄r in the direction d1 = −cT .

D1.2: Let G = {(Ai.)
T : i ∈ T (x̄r,K) such that c(Ai.)

T < 0}∪{(−Ai.)
T : i ∈

T (x̄r,K) such that c(Ai.)
T > 0}. Take a descent step from the center x̄r in the

direction which is the average of all the directions in G.

D2: Descent step from x̄r in the direction d2 = x̄r − x̄r−1, direction of the path of

centers being generated, here x̄r−1 is the center obtained in the previous iteration.

D3: Descent step from x̄r in each of the directions −ci for i ∈ T (x̄r,K).

D4: Descent step from x̄r in the average of the directions in D3.

9

D5.1 For each i ∈ T (x̄r,K), let xir be the orthogonal projection of x̄r on FHi. It is

x̄r + (Ai.)
T (bi −Ai.x̄

r).

Let x̂ir = (1 − ε)xir + εx̄r, the point on the line segment joining xir and x̄r at a

distance of ε from xir. x̂ir is called the NTP (near touching point) of B(x̄r, δ(x̄r))

with its tangent plane FHi.

For each i ∈ T (x̄r,K), take a descent step from the NTP x̂ir in the direction −ci.

INSERT FIGURE 6 HERE Figure 6: The largest inscribed ball with the current center x̄r

of Kr+1 is shown. Facetal planes 1,2,3 are the touching planes to this ball with the touching

points x1r, x2r, x3r shown. The dashed lines indicate descent steps in D5.1. The dashed-dotted

line from x̄r is the descent step from x̄r in the direction −cT .

Now we describe additional descent steps D5.2, D5.3 used in this general iteration r + 1 in

SM-2 (Murty and Oskoorouchi [2010, 2011]).

D5.2, Descent Step 5.2: Let x̃r1 denote the best point (by objective value) obtained in

descent steps D1 to D5.1 in this iteration. This x̃r1 is the initial IFS for Descent Step 5.2 (D5.2).

For each i ∈ T (x̃r1,K), from x̃r1 take a descent step in the GPTC direction −ci. Also, from

x̃r1 take a descent step in the direction which is the average of −ci for i ∈ T (x̃r1,K). Let x̃r2

denote the best point obtained in all these descent steps, by objective value. If cx̃r1 − cx̃r2 is:

> the selected tolerance ε for objective value reduction, with x̃r2 as the initial IFS

repeat this D5.2; and continue the same way.

≤ ε, take x̃r2 as the output of this D5.2, with this point go to D5.3.

D5.3, Descent Step 5.3: We come to this step from the output point of D5.2, let us denote

it by xs. Clearly δ(xs) ≤ ε from the manner it is obtained.

For each i ∈ T (xs,Kr+1), define xis = xs + (Ai.)
T (bi − Ai.x

s), the orthogonal projection

of xs on facetal hyperplane FHi . Define x̄ = [
∑

i∈T (xs,Kr+1) x
is]/|T (xs,Kr+1)|. Typically, a

move from xs in the direction xs− x̄ goes through the central portion of Kr+1, so a step in this

10

direction at this stage can be expected to lead to good improvement in objective value. We have

2 cases to consider.

Case 1: If c(xs − x̄) < 0 carry out a descent step at xs in the descent direction (xs − x̄),

and make the output of this descent step the new current point (new xs) and repeat this step

with it, as long as the improvement in objective value is greater than the selected tolerance.

Case 2: If c(xs − x̄) ≥ 0, let y be the orthogonal projection of (xs − x̄) on the hyperplane

{x : cx = 0}, y = (I − cT c)(xs − x̄).

Solve the 2-variable LP: max δ subject to δ − αAi.y ≤ Ai.x
s − bi for all i, and δ, α ≥ 0. Let

δ̄, ᾱ be the optimum solution of this 2-variable LP. The point xs + ᾱy has objective value = cxs

because cy = 0, from this point take all descent steps D1 up to D5.2. Call the final output point

of these descent steps as the new current point (new xs), and with it repeat this D5.3 until the

improvement in objective value becomes less than the selected tolerance.

Next we will describe a descent steps D5.4, D5.5 discussed in (Murty and Oskoorouchi [2011])

for use in every iteration of SM-2 , SM-3, SM-4.

D5.4, Descent Step 5.4: This descent step is carried out in the descent cycle after all

the descent steps D1 to D5.3 have been carried out in this cycle. . Let K̄ denote the current

updated set of feasible solutions, here it is the current Kr+1.

Let x1, ..., xs be all the points obtained at the end of all the descent steps carried out in the

latest D5.1 above in this iteration; and suppose xs is the best among all these by objective value.

Let H = {x : cx = cxs}, the objective plane through xs, called the current objective plane.

Let ε1 be a small positive number, e.g. ε1 = 0.1 or smaller. Here s = the number of touching

constraints at the center using which this D5.1 was carried out.

For each t ∈ {1, ..., s− 1}, let x̃t be the orthogonal projection of xs + ε1(xt − xs) on H. For

all t such that x̃t ∈ K, leave x̃t as it is.

For any t ∈ {1, ..., s−1} such that x̃t 6∈ K̄, do the following: For each i = 1 to m+1 such that

Ai.x̃
t < bi we know that Ai.x̃

t− bi < 0 and Ai.x
s− bi > 0 (because xs is an interior point of K̄),

and so (Aix
s−bi)−(Ai.x̃

t−bi) = Ai.x
s−Aix̃

t > 0. Hence for such i, the smallest value of β that

would make Ai.(βx
s + (1−β)x̃t) = β(Aix

s−Ai.x̃
t)+Ai.x̃

t ≥ bi is β = (bi−Ai.x̃
t)/(Ai.x

s−Ai.x̃
t)

11

which is > 0 and < 1.

So if we define θ = Maximum{(−(Ai.x̃
t− bi)/(Ai.x

s−Ai.x̃
t)): over all constraints i defining

K̄ and satisfying Ai.x̃
t − bi < 0}; then θxs + (1− θ)x̃t on the line segment joining xs and x̃t is

in K̄.

Now replace x̃t by (θ)xs + (1 − θ)x̃t. It can be verified that after these changes all x̃t ∈ K̄
for all t = 1 to s− 1.

Now define the direction y as the average of {(x̃t − xs)/||x̃t − xs|| : t = 1 to s− 1}. All the

x̃t for t = 1 to s − 1, are spread out in different directions all around K̄ ∩H. So the half-line

from xs in the direction y will be in the central portion of K̄ ∩H, and hence the point which

maximizes δ(xs +αy) over α ≥ 0 for the current set of feasible solutions K̄ may be a reasonable

approximation to the ball center of K̄ on H.

Solve the 2-variable LP (of the form (5)) to find the point xs + αy, α ≥ 0 which maximizes

δ = the radius of the largest ball inscribed inside K̄ with xs + αy as center, for the current set

of feasible solutions K̄. Let ¯̄x2 be the resulting point.

Let S(¯̄x2) = {(Ai.)
T : i ∈ T (¯̄x2,K) such that c(Ai.)

T < 0}∪{(−Ai.)
T : i ∈ T (¯̄x2,K) such that

c(Ai.)
T > 0}, and let y be the average of all the directions in S(¯̄x2). Redefine K̄ = {x : Ax ≥ b

and Am+1.x ≥ bm+1} where Am+1. = −c as defined earlier, and bm+1 = −c¯̄x2 − ε (here ε is

a small positive number), as the current set of feasible solutions. Solve the 2-variable LPs to

maximize the radius of the largest ball inscribed inside the current set of feasible solutions with

its center on each of the half-lines {¯̄x2 + α(−cT) : α ≥ 0} and {¯̄x2 + βy : β ≥ 0}; and let ¯̄x3 be

the point among the outputs which corresponds to the maximum radius of the inscribed ball.

With ¯̄x3 as the center carry out the descent cycle with all descent steps D1 to D5.3. Using

the set of output points from the latest application of D5.1, carry out D5.4 again. Continue this

way repeating D5.4 as long as good reductions in objective value are obtained

If the reduction in objective value in two successive applications of D5.4 is less than the

selected tolerance, the best point among the outputs of all the descent steps carried out in this

iteration is the output of this iteration. With that point the method goes to D5.5.

D5.5: Let x1, ..., xs be all the points obtained at the end of all the descent steps carried out

in the latest D5.1 above in this iteration; and suppose xs is the best among all these by objective

12

value. For t = 1 to s− 1, define xt(α) = xs + α(xt − xs).
For t = 1 to s− 1, carry out the following step.

Step: Take α = 2−p, start with p = 1. Take a descent step from xt(α) in the direction −cT .

If the output point corresponds to an objective value < cxs, call this point x̃t, then go to

the next value of t. If the output point corresponds to an objective value > cxs, keep the value

of t the same but increment p by 1 and repeat the above step.

Let x̃ denote the best by objective value among the x̃t. Take x̃ as the initial IFS for carrying

out D5.2 followed by D5.3.

D5.6: This step may not be suitable if the number of constraints m in (1) is large.

For each i = 1 to m+ 1 do the following. Define cm+1 = c.

As earlier let xri = orthogonal projection of xr on Fi = {x : Ai.x = bi}, which is xr +

(AT
i. (bi −Ai.x

r)). Two cases to consider.

Case 1: If xri ∈ Kr+1, let x̂ri = εxr + (1− ε)xri as before (it is the NTP). From x̂ri take a

descent step in the direction −ci.

Case 2: If xri 6∈ Kr+1, let αi be the largest value of α such that xr + α(xri − xr) ∈ Kr+1.

In this case define x̂ri =xr + (αi − ε)(xri − xr). Again take the descent step from x̂ri in the

direction −ci.
The best point among the output points obtained in these descent steps is the output point

in this descent step.

D5.7: The Kabadi Descent Step 1: This and the following D5.8 were developed based

on our discussions with Santosh Kabadi.

Let Kr+1 be the current set of feasible solutions, and x̄r its center obtained at the end of

the centering cycle.We will use x̄r as the initial IFS for initiating this step.

Blow-up-1 for Kr+1: If δ(x̄r,Kr+1) is small, we can blow up Kr+1 to make it fat for

carrying out this step. This involves replacing the RHS constants vector br in (2) by κbr where

κ, known as the blow up factor, is a positive number > 1 to be chosen appropriately to blow

13

up δ(x̄r,Kr+1) into a reasonable size number. This has the effect of multiplying x̄r, δ(x̄r,Kr+1)

etc. by κ. But we will continue to denote Kr+1, x̄r, δ(x̄r,Kr+1), etc. by these same symbols. At

the end you need to remember to divide the results by κ to bring them to refer to the original

problem (1) again.

Let B = B(x̄r, δ(x̄r,Kr+1)), T = T (x̄r,Kr+1) denote the current insphere of Kr+1, the index

set of touching constraints respectively. As defined earlier, let xir = x̄r + (Ai.)
T (bi − Ai.x̄

r) be

the orthogonal projection of x̄r on FHi for i ∈ T .

For each i ∈ T extend the line joining xir to x̄r until it intersects the boundary of Kr+1

again on the other side of x̄r, and let that point of intersection be x̄ir. Finding x̄ir requires

only one minimum ratio computation at xir in the direction x̄r − xir to find the maximum

step length, γir, all the way to the boundary of Kr+1. Similar to (6), we know that γir =

minimum{(−Ar
i.x

ir + bri)/(A
r
i.(x̄

r − xir)) : over all i = 1 to m + 1 satisfying Ar
i (x̄

r − xir) < 0}.
Then x̄ir = xir + γir(x̄r − xir).

Let Li denote the line segment joining xir and x̄ir. A general point on Li is xi(α) =

xir + α(x̄ir − xir), 0 ≤ α ≤ 1. In D5.7, we will take descent steps in a descent direction, qi say,

from points along Li, for each i ∈ T .

There are three possible choices of descent directions that can be used for carrying out these

descent steps. They are −cT , −(ci), −(ci + cī)/2, where ī is the p satisfying Ap.x̄
ir = bp

if it is unique. If there are several p satisfying this equation, then ī is a p among these that

corresponds to the best output point in the step D5.1 if it was carried out in this iteration, or

the one which minimizes −c(cp) (remember ci is defined as a column vector for each i). We will

use the descent direction among the 3 choices that gives the best results in computational tests,

as the qi to implement.

Let qi denote the descent direction selected, then cqi < 0. A general point on Li is xi(α) =

xir + α(x̄ir − xir), 0 ≤ α ≤ 1.

Let di(α) denote the maximum step length that can be taken from xi(α) in the direction qi

for 0 ≤ α ≤ 1. Computing di(α) for each α takes one minimum ratio computation, i.e., di(α)

is the value of γ in the formula in (6) obtained by setting the point where this descent step is

taken from x∗ = xi(α), and the direction in which this descent step is taken d = qi . So, di(α) =

14

Minimum{(−Ar
p.x

i(α)+brp + ε)/Ar
p.q

i: over all p satisfying Ar
p.q

i < 0}. Clearly di(α) is a concave

function over 0 ≤ α ≤ 1.

So, the objective value f i(α) of the point obtained at the end of the descent step from xi(α)

is: f i(α) = cxi(α) + cqidi(α); which is a convex function in 0 ≤ α ≤ 1, since cqi < 0 as qi is a

descent direction.

The minimum value of f i(α) over 0 ≤ α ≤ 1 can be found efficiently using a line search

subroutine in NLP (nonlinear programming) codes (based on some efficient method like the

bisection section search method).

After completing this step for each i ∈ T , we take the best among the output points obtained

corresponding to all i ∈ T , and that point is the output point of this D5.7. With that point

as the new IFS D5.7 can be repeated again. Continue the same way as long as there is good

reduction after each repitition.

If blow up of solution set is carried out, divide the output point and the RHS constants

vector by the blowup factor to bring them to refer to the original problem (1).

D5.8: The Kabadi Descent Step 2: Here we describe another blow-up routine, Blow-

up-2 to use before applying D5.8. Let ∆ be a positive blow-up parameter , selected appropri-

ately. In fact this Blow-up-2 can be used right at the beginning of the method when an initial

IFS to (1) is not available, if we know that K0 6= ∅; with D5.8 as the only deescent step carried

out.

Blow-up-2: Assuming that each constriant in the updated system (1) is normalized to make

sure that ||Ai.|| = 1 for all i, replace each bi in (1) by bi −∆ = bei . This leads to the expanded

system which we will denote by (1e),

Ai.x ≥ bei , for i = 1 to m (1e)

(Note: If constraint normalization is not carried out as discussed above, then we must

take “bei = bi − ∆||Ai.|| for each i = 1 to m.) Also notice that the Blow-up-2 is applied only

to constraints 1 to m in the original system, and not the updating constraint m + 1 in (2)

defining the updated set of feasible solutions Kr+1
e for the expanded system defined below in

15

(6) corresponding to Kr+1 for the original system.

To keep the discussion simple, we will discuss this step under the assumption that each con-

straint in (1) is normalized at the beginning of this D5.8 step to make sure that ||Ai.|| = 1 for

all i = 1 to m, and that ||c|| = 1. Let Ke denote the set of feasible solutions of (1e), Ke includes

the original K as a subset, as each constraint is extended outwards, that is why we will call Ke

the extended set of solutions, and verify that each facetal hyperplane of Ke is parallel to the

corresponding facetal hyperplane of K. Also the following results hold.

Result 1: For each x in the interior of K, δ(x,Ke) = δ(x,K) + ∆.

Result 2: A ball center of Ke is also a ball center of K and vice versa.

How does this Blow-up-2 help avoid doing Phase I ?: If an initial IFS of (1) is

not available, let x0 be any point not in K but close to K, which may be infeasible to the

original system of constraints (1), or if feasible, satisfies at least one of the constraints in

(1) as an equation. So, Minimum{Ai.x
0 − bi : i = 1, ...,m} is ≤ 0. Taking ∆ = 1 + |

Minimum{Ai.x
0 − bi : i = 1, ...,m}| to expand K to Ke will provide x0 as the initial IFS of

Ke to start the algorithm without any Phase I.

When xr in the interior of Ke is the initial IFS for Step r + 1, define the updated set of

solutions to consider in this step to be:

Kr+1
e = {x : Ai.x ≥ bi −∆, i = 1 to m, and Am+1.x ≥ bm+1 (6)

where Am+1. = −c and bm+1 = −cxr − ε}. Kr+1
e is called the updated extended set of

solutions in this iteration.

Apply the centering routine (using LSFN discussed in [13], and the centering step discussed

in Section 2) beginning with the initial IFS xr of Kr+1
e to find the ball center of Kr+1

e ; and let

x̄r denote the output of this centering step. Now define:

16

Be = B(x̄r,Kr+1
e), the largest insphere of Kr+1

e with x̄r as center

Te = T (x̄r,Kr+1
e), the touching set of constraint indices for the updated extended set of

solutions Kr+1
e at x̄r.

Let xire for i ∈ Te be the touching points of Be with its touching facetal hyperplanes of Ke .

Join xire to x̄r and extend this line until it intersects the boundary Kr+1
e at the other end

at a point denoted by x̄ire , and denote this line segment by Le
i . To find x̄ire , compute γe

= Minimum{(−Ar
i.x

ir
e + ber)/Ar

i.(x̄
r − xire) : over all i satisfying Ar

i.(x̄
r − xire) < 0}. Then

x̄ire = xire + γe(x̄
r − xire); and Li

e = {x : x = xire + α(x̄r − xire) : 0 ≤ α ≤ γe}.

In general, Le
i can be divided into 3 parts, the two end parts are in Kr+1

e but not in the

original Kr+1, while the middle part is in Kr+1. These various parts can be identified as follows:

In the system of constraints Ar(xire + α(x̄r − xire)) − beri ≥ 0 all quantities except α are

given. When expanded and simplified, these constraints just become lower and upper boundes

for α, let these be α1 ≤ α ≤ α2. Then the various parts of Le
i are Le

i1, L
e
i2, L

e
i3 consisting of

all x = xiri +α(x̄r−xire) for α in the intervals 0 ≤ α ≤ α1, α1 ≤ α ≤ α2, α2 ≤ α ≤ γe respectively.

However, when x̄ire satisfies the (m+1)th constraint in the definition of Kr+1
e as an equation,

there is no Le
i3; in this case Le

i consists of only two parts Le
i1, L

e
i2.

For each i ∈ T , find the set of all p such that Ap.x̄
ir
e = berp , and among all these p call the one

which minimizes −c(cp) as ī. Then x̄ire ∈ F e
ī
, the facet of Ke corresponding to the constraint ī.

For each i ∈ T , (i, ī) form a pair of indices corresponding to the facets of Ke on which the end

points of Le
i lie.

Options for descent directions y for descent steps in D5.8: As in D5.7 these are

−ct,−(ci),−(ci + cī)/2). Compare performance in computational tests and select the best.

17

Once a y is chosen, the step length γi(α) for descent step from xi(α) = xire + α(x̄r − xire) on

Le
i to a point in the interior of Kr+1 while still remaining at a distance of ε from the boundary;

and the objective value f i(α) at the output point is discussed below:

(i) When α1 ≤ α ≤ α2 : In this case γi(α) = Minimum{(−Ar
i.x(α) + bri + ε)/(Ai.y) : over

all i = 1 to m satisfying Ar
i.y < 0}, and f i(α) = cx(α) + cyγi(α).

Discussion relating to descent steps from x(α) for 0 ≤ α ≤ α1 and α2 ≤ α ≤ γei
In these cases, a descent step from x(α) in the direction y may not intersect the original

set Kr+1 at all. So first we need to determine the subset of α in these intervals satisfying

the property that x(α) + λy lies in the original Kr+1 for some λ ≥ 0. Here is the procedure

for that. For x(α)+λy to be in Kr+1 it should satisfy Ai.(x(α)+λy)−bi ≥ 0 for all i = 1 to m; i.e.

λ ≥ (bi −Ai.x(α))/(Ai.y): for all i satisfying Ai.y > 0

λ ≤ (bi −Ai.x(α))/(Ai.y) : for all i satisfying Ai.y < 0

Now Define

λ1(α) = Maximum{0, (bi −Ai.x(α))/(Ai.y : over all i satisfying Ai.y > 0}
λ2(α) = Minimum{(bi −Ai.x(α))/(Ai.y : over all i satisfying Ai.y < 0} (7)

then we need λ1(α) ≤ λ ≤ λ2(α) for (x(α) + λy) to be in Kr+1.

So if λ2(α) < λ1(α) then there is no λ ≥ 0 such that (x(α) + λy) ∈ Kr+1. Remembering

that x(α) = xire + α(x̄r − xire), the condition λ2(α) ≥ λ1(α) is:

Minimum{(bi −Ai.(x
ir
e + α(x̄r − xire)/(Ai.y : over all i satisfying Ai.y < 0} (8)

− Maximum{0, (bi −Ai.(x
ir
e + α(x̄r − xire))/(Ai.y : over all i satisfying Ai.y > 0} ≥ 0

In the left hand expression above in (8), everything is known except α; so the above leads

18

to bounds on α. Find the smallest value of α, say ᾱ1, satisfying the above condition. Similarly

determine the largest value of α, say ᾱ2 satisfying the above condition.

(ii) When 0 ≤ α ≤ α1 : Since our goal is to get an output point in the original Kr+1 ,

if ᾱ1 > α1 , we do not perform descent steps in this case. On the other hand if ᾱ1 < α1, we

carry out descent steps in the direction y in the subinterval ᾱ1 ≤ α ≤ α1. The maximum step

length will be λ2(α)− ε where λ2(α) is defined in (7). The output point is x(α) + (λ2(α)− ε)y,

and the objective value at this output point for α in this interval is f(α) = cx(α)+(λ2(α)−ε)cy.

(iii) When α2 ≤ α ≤ γe : Since our goal is to get an output point in the original Kr+1 ,

if ᾱ2 < α2 , we do not perform descent steps in this case. On the other hand if ᾱ2 > α2, we

carry out descent steps in the direction y in the subinterval α2 ≤ α ≤ ᾱ2. The maximum step

length will be λ2(α)− ε where λ2(α) is defined in (7). The output point is x(α) + (λ2(α)− ε)y,

and the objective value at this output point for α in this interval is f(α) = cx(α)+(λ2(α)−ε)cy.

Bisection Searches Carry out bisection searches to minimize f(α) in each of the 3 intervals

ᾱ1 ≤ α ≤ α1. α1 ≤ α ≤ α2, α2 ≤ α ≤ ᾱ2. Take the output point corresponding to the best

objective value as the initial IFS for the next iteration for repeating this work.

3 Method Used for Solving 2-variable LPs of the Form (5)

In SMs, we solve 2-variable LPs in variables (δ, α) of the form (5) in various stages. All these

problems arise in finding the optimum step length (value of α that maximizes δ) from an IFS x̄

of the current set of feasible solutions, with δ(x̄) = δ̄, in a profitable direction y. So in all such

instances we have an initial feasible solution (δ, α) = (δ̄, 0) for the instance of (5) being solved.

We use the following method to solve this instance.

Let Γ denote the set of feasible solutions of the instance of (5) in the 2-dimensional space

of (δ, α) with α plotted on the horizontal axis, and δ plotted on the vertical axis. The method

performs a series of iterations. The first iteration begins with (δ̄, 0) on the boundary of Γ. Each

iteration begins with a feasible solution on the boundary of Γ, performs a (horizontal move

+ a vertical move) twice, and finally a diagonal move. We will now discuss a general iteration

19

beginning with the intial solution (δ0, α0).

Set Γ of feasible solution (δ, α) of the 2-variable LP (5) when y is not a profitable direction in

(5). It can be verified that the maximum possible value of δ in Γ with α fixed at a nonnegative

value α̂, decreases as α̂ increases from 0. So in this case the optimum value of α in the 2-variable

LP (5) is zero.

Set of feasible solution (δ, α) of 2-variable LP (5) when y is a profitable direction. It can be

verified that with α fixed at a value α̂ say, the maximum possible value of δ in Γ increases as α̂

increases from 0.

The first horizontal move: Keeping δ = δ0, find α1 = the value of α at the mid-point

of the line segment {(δ0, α) ∈ Γ}. Given δ = δ0, we know from the constraints in (5) that

θ1(δ0) ≤ α ≤ θ2(δ0) where

θ1(δ0) = Maximum{0, (Ai.x̄− bi − δ0)/(−Ai.y) : over i such that Ai.y > 0}
θ2(δ0) = Minimum{(Ai.x̄− bi − δ0)/(−Ai.y) : over i such that Ai.y < 0}.

It can be verified that θ1(δ0) = 0 whether the direction y chosen for this line search step is

profitable or not. Also, if y is not profitable, then θ2(δ0) = 0, since for y not profitable Ai.y < 0

for at least one i ∈ T (x̄,Kr+1). So, if a y not profitable is chosen by mistake, we will terminate

at this first horizontal move with the conclusion that the point (δ0, α0 = 0) is an optimum

solution of this 2-variable LP.

So assuming that θ2(δ0) > 0, we know that the α1 mentioned above is (θ1(δ0) + θ2(δ0))/2.

We will call the corresponding point (δ0, α1) in Γ as the Center of Γ on δ = δ0.

The vertical move: In this move α is held constant at present value α1, and the maximum

value of δ subject to the constraint that (δ, α1) ∈ Γ is computed. This is equal to:

δ1 = γ(α1) = Minimum{Ai.x̄− bi + α1Ai.y : i = 1 to m}.

and the point in Γ achieving this value of δ is (δ1, α1).

The 2nd (horizontal + vertical) moves: In the 2nd horizontal move, keeping δ fixed at

δ1, find lower and upper bounds θ1(δ1), θ2(δ1) for α such that (δ1, α) ∈ Γ using the formulas

given above. If θ1(δ1) = θ2(δ1), then (δ = δ1, α = θ1(δ1)) is an optimum solution of this

20

2-variable LP, terminate.

On the other hand, if θ1(δ1) < θ2(δ1), let α2 = (θ1(δ1) + θ2(δ1))/2, it is the center of Γ on

δ = δ1. Now carry out the 2nd vertical move keeping α fixed at α2 to find the maximum value

δ2 of δ in Γ on δ = δ2 attained at (δ2, α2) ∈ Γ.

Illustration of the horizontal, vertical and diagonal moves. The dotted lines are the horizontal

moves, the large dashed lines are the vertical moves, and the medium dashed line is the diagonal

moves.

The diagonal move: This move involves finding the maximum value of δ for points along

the line joining the two centers of Γ obtained in the two horizontal moves in this iteration. The

two centers are (δ0, α1), (δ1, α2), where δ1 > δ0. Let L denote the line joining these two centers.

From the coordianates of these two centers we know that L is defined by the equation

δ = δ0 + s(α− α1)

where s = (δ1 − δ0)/(α2 − α1). Let

β1 = minimum value of α in L ∩ Γ is = maximum{(0, Ai.x̄− bi − δ0 + sα1)/(s−Ai.y) : over

i such that s−Ai.y < 0}.

β2 = maximum value of α in L ∩ Γ is = minimum{(Ai.x̄− bi − δ0 + sα1)/(s−Ai.y) : over i

such that s−Ai.y > 0}.

So, the maximum value of δ on L ∩ Γ is δ3, where

δ3 = δ0 + (β2 − α1)s attained at the point (δ3, β2) if α2 > α1, or

δ3 = δ0 + (β1 − α1)s attained at the point (δ3, β1) if α2 < α1.

Let δ4 = maximum{δ2, δ3}; and denote the associated value of α for it given above by α4,

i.e., α4 = α2 if δ4 = δ2; and if δ4 = δ3 then α4 = β2 or β1 depending on whether α2 > α1 or

α2 < α1.

Then (δ4, α4) is the output of this iteration. With this point go to the next iteration.

21

Terminate the method with the output in an iteration when the improvement in the value

of δ becomes small.

4 Computational results

5 References

1. K. L. Clarkson, “Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm”,

Journal ACM Transactions on Algorithms (TALG), Volume 6 , Issue 4, August 2010 ACM New

York, NY, USA

2. G. B. Dantzig and M. N. Thapa, 1997, Linear Programming, Vol. 1. Introduction , Vol. 2.

Theory and Extensions, Springer-Verlag New York.

3. M. Kojima, S. Mizuno, and A. Yoshise, 1989, “A primal-dual interior point algorithm for

linear programming”, Progress in Mathematical Programming: Interior Point and Related Meth-

ods, N. Megiddo, ed., Springer-Verlag, New York, ch. 2 (29-47).

4. N. Megiddo, 1989, “Pathways to the optimal set in linear programming”, Progress in Mathe-

matical Programming: Interior Point and Related Methods, N. Meggiddo, ed., Springer-Verlag,

New York, ch. 8 (131-158).

5. S. Mehrotra, 1992, “On the implementation of a primal-dual interior point method”, SIAM

Journal on Optimization, 2 (575-601).

6. R. D. C. Monteiro and I. Adler, 1989, “Interior path-following primal-dual algorithms, Part

I: Linear programming”, Mathematical Programming 44 (27-41).

7. K. G. Murty, 1980, “Computational Complexity of Parametric Linear Programming”, Math-

ematical Programming, 19 (213-219).

8. K. G. Murty, 1983, Linear Programming, Wiley, NY.

9. K. G. Murty, 2006-1 “A new practically efficient interior point method for LP”, Algorithmic

Operations Research, 1 (3-19); paper can be seen at the

website: http://journals.hil.unb.ca/index.php/AOR/index.

10. K. G. Murty, 2006-2, “Linear equations, Inequalities, Linear Programs (LP), and a New

Efficient Algorithm” Pages 1-36 in Tutorials in OR, INFORMS.

11. K. G. Murty, 2009-1, “Ball Centers of Special Polytopes”, IOE Dept., University of Michi-

22

gan, Ann Arbor, MI-48109-2217.

12: K. G. Murty, 2009-2, “New Sphere Methods for LP”, Tutorials in OR, INFORMS.

13. K. G. Murty, 2009-3, Optimization for Decision Making: Linear and Quadratic Models,

Springer, NY.

14. K. G. Murty, and S. N. Kabadi, 2008, “Additional Descent Steps in the Sphere Method”,

Dept. IOE, University of Michigan, Ann Arbor.

15. K. G. Murty, and M. R. Oskoorouchi, 2008, “Note on implementing the new sphere method

for LP using matrix inversions sparingly”, Optimization Letters, 3, 1, 137-160.

16. K. G. Murty, and M. R. Oskoorouchi, 2010, “ Sphere Methods for LP”, Algorithmic Opera-

tions Research, 5, 21-33.

17. K. G. Murty, and M. R. Oskoorouchi, 2011, “Fast descent methods for LPs with minimal or

no matrix inversions”, Department of Systems Engineering, King Fahd University of Petroleum

and Minerals, Dhahran-31261, Saudi Arabia.

18. R. Saigal, 1995, Linear Programming A Modern Integrated Analysis. Kluwer Academic

Publishers, Boston, MA.

19. G. Sonnevend, J. Stoer, and G. Zhao, 1989, “On the complexity of following the central

path of linear programming by linear extrapolation”, Mathematics of Operations Research 62

(19-31).

20. L. T. Watson, 2010, Personal Communication. Computer Science, Virginia Tech.

21. S. J. Wright, 1997, Primal-Dual Interior-Point Methods. SIAM, Philadelphia, PA.

22. Y. Ye, 1997, Interior Point Algorithms, Theory and Analysis, Wiley-Interscience, New York.

23 Yulai Xie, Jack Snoeyink, Jinhui Xu,, 2006, “ Efficient Algorithm for Approximating Max-

imum Inscribed Sphere in High Dimensional polytope”, Proc. 22nd Annual ACM Symposium

on Computational Geometry (SoCG06), pp. 21-29, June 5-7, Sedona, Arizona, USA.

23

NOTES ON SM-17.PDF

PAGE 6: Reason for ε-term in the RHS vector in (4)

This is to make sure when we get X ′ = (x′, x′n+1) at which x′n+1 is close to 0, then x′ is an

IFS for (1).

PAGE 8: BOTTOM AND PAGE 9 TOP: Suggestions in coding the Centering Step:

Let current point at any stage of this centering cycle be xr,k. The centering cycle continues if

the Q obtained in this step satisfies the following consistency condition, which is

Ai.Q 6= 0 but has the same sign (+ve, or −ve) for all i ∈ T (xr,k,Kr+1).

Take y = Q or −Q such that Ai.y > 0 for all i ∈ T (xr,k,Kr+1); hence y is a profitable

direction to move at xr,k. Solve 2-variable LP of form (5) to select step length ᾱ > 0 to

maximize δ(xr,k + αy) over α ≥ 0; and define xr,k+1 = xr,k + ᾱy; and repeat this centering step

with this as the new current point.

Stop centering cycle when the Q obtained in a centering step does not satisfy consistency

condition, or when improvement in the value of δ becomes small in some step. At that stage,

take the current point in the sequence xr,k generated as the output of this centering cycle, i.e.,

the center.

Actually Mike implemented this centering cycle and tested it too during my stay in Sandia.

You should be able to get this from him, check it, and use it for your implementation.

PAGE 19: INSERTING FIGURE 8 HERE illustrating D5.8 will be good. When you are

ready I will scan it and send you.

PAGE 22 ABOVE SECTION 4: INSERTING A FIGURE 9 HERE TO ILLUSTRATE THIS

2-VAR. ALGO WILL BE GOOD. AGAIN can scan and send when you are ready.

ON DESCENT STEPS : MY suggestion is to go to D5.8 directly, and if needed use also D5.7.

Both these steps together help improve the “aspect ratio” of K, which Reference 23 mentions as

24

being important for centering to work well. Seshadri at Sandia was also mentioning this “aspect

ratio”. I feel that these two steps may be adequate to get good performance.

A good “line search subroutine” from NLP codes is needed for good performance through

D5.7, D5.8. Hope you will be able to dowbload a good one to use.

CLARIFICATIONS: If I can clarify anything, please let me know. Also if you can give some

tentative results, I can try to make changes appropriately.

I believe this will work, but remember “proof of the pudding is in the eating”. We cannot

be sure until tested.

25

