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Abstract

The dawn of mathematical modeling and algebra occurred well over
3000 years ago in several countries (Babylonia, China, India,...). The ear-
liest algebraic systems constructed are systems of linear equations, and
soon after, the famous elimination method for solving them was discov-
ered in China and India. This effort culminated in the writing of two
books that attracted international attention by the Arabic mathemati-
cian Muhammad ibn-Musa Alkhawarizmi in the first half of 9th century.
The first, Al-Maqala fi Hisab al-jabr w’almuqabilah (An essay on Alge-
bra and equations), was translated into Latin under the title Ludus Al-
gebrae, the name “algebra” for the subject came from this Latin title,
and Alkhawarizmi is regarded as the father of algebra. Linear algebra
is the branch of algebra dealing with systems of linear equations. The
second book Kitab al-Jam’a wal-Tafreeq bil Hisab al-Hindi appeared in
Latin translation under the title Algoritmi de Numero Indorum (mean-
ing Alkhawarizmi Concerning the Hindu Art of Reckoning), and the word
“algorithm” for procedures for solving algebraic systems originated from
this Latin title.

The elimination method for solving linear equations remained un-
known in Europe until Gauss rediscovered it in 19th century while ap-
proximating by a quadratic formula the orbit of the asteroid Ceres based
on recorded observations in tracking it earlier by the Italian astronomer
Piazzi. Europeans gave the names “Gaussian elimination method”, “GJ
(Gauss-Jordan) elimination method” for this method.

However, there was no computationally viable method until recently
to solve systems of linear constraints including inequalities. Examples of
linear constraints with inequalities started appearing in published liter-
ature in mid-18th century. In the 19th and early 20th century Fourier,
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De la Vallée Poussin, Farkas, Kantarovich, and others did initial work for
solving such systems. This work culminated in the 1947 paper on the
Simplex method for linear programming (LP) by George Dantzig. The
simplex method is a 1-dimensional boundary method, it quickly became
the leading algorithm to solve LPs and related problems. Its computa-
tional success made LP a highly popular modeling tool for decision making
problems, with numerous applications in all areas of science, engineering,
and business management. From the nature of the simplex method, LP
can be viewed as the 20th century extension of linear algebra to handle
systems of linear constraints including inequalities.

Competing with the simplex method now are a variety of interior point
methods for LP developed in the last 20 years stimulated by the pioneer-
ing work of Karmarkar, these follow a central path using a logarithmically
defined centering strategy. All these methods and also the simplex method
need matrix inversions; their success for large scale problem solving re-
quires taking careful advantage of sparcity in the data.

I will discuss a new interior point method based on a much simpler
centering strategy that I developed recently. It is a fast efficient descent
method that can solve LPs without matrix inversions, hence it can handle
dense problems, and is also not affected by redundant constraints in the
model.

Key words: Linear programming (LP), Dantzig’s simplex method,
boundary methods, gravitational methods, interior point methods, solving
LPs without matrix inversions.

1 Historical Overview

1.1 Mathematical Modeling, Algebra, Systems of Linear
Equations and Linear Algebra

One of the most fundamental ideas of the human mind, discovered more than
5000 years ago by the Chinese, Indians, Iranians, and Babylonians, is to repre-
sent the quantities that we like to determine by symbols; usually letters of the
alphabet like x, y, z; and then express the relationships between the quantities
represented by these symbols in the form of equations, and finally use these
equations as tools to find out the true values represented by the symbols. The
symbols representing the unknown quantities to be determined are nowadays
called unknowns or variables or decision variables.
The process of representing the relationships between the variables through

equations or other functional relationships is called modeling or mathemat-
ical modeling. The earliest mathematical models constructed are systems of
linear equations, and soon after, the famous elimination method for solving
them was discovered in China and India. The Chinese text Chiu-Chang Suanshu
(9 Chapters on the Mathematical Art) composed over 2000 years ago describes
the method using a problem of determining the yield (measured in units called
“tou”) from three types of grain: inferior, medium, superior; given the yield data
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from three experiments each using a separate combination of the three types of
grain (see [Kangshen, Crossley and Lun, 1999] for information on this ancient
work, also a summary of this ancient Chinese text can be seen at the website:
http://www-groups.dcs.st-and.ac.uk/˜ history/HistTopics/Nine chapters.html ).
Ancient Indian texts Sulabha suutrah (Easy Solution Procedures) with origins
to the same period describe the method in terms of solving systems of two
linear equations in two variables (see [Lakshmikantham and Leela, 2000] for
information on these texts, and for a summary and review on this book see:
http://www.tlca.com/adults/origin-math.html).
This effort culminated around 825 AD in the writing of two books that

attracted international attention, by the Arabic mathematician Muhammad ibn-
Musa Alkhawarizmi . The first was Al-Maqala fi Hisab al-jabr w’almuqabilah
(An essay on Algebra and equations). The term “al-jabr” in Arabic means
“restoring” in the sense of solving an equation. In Latin translation the title
of this book became Ludus Algebrae, the second word in this title surviving
as the modern word algebra for the subject, and Alkhawarizmi is regarded as
the father of algebra. Linear algebra is the name given subsequently to the
branch of algebra dealing with systems of linear equations. The word linear in
“linear algebra” refers to the “linear combinations” in the spaces studied, and
the linearity of “linear functions” and “linear equations” studied in the subject.
The second book Kitab al-Jam’a wal-Tafreeq bil Hisab al-Hindi appeared

in a Latin translation under the title Algoritmi de Numero Indorum meaning
Al-Khwarizmi Concerning the Hindu Art of Reckoning, it was based on earlier
Indian and Arabic treatises. This book survives only in its Latin translation,
as all the copies of the original Arabic version have been lost or destroyed. The
word algorithm for procedures for solving algebraic systems originated from
the title of this Latin translation. Algorithms seem to have originated in the
work of ancient Indian mathematicians on rules for solving linear and quadratic
equations.

1.2 Elimination Method for Solving Linear Equations

We begin with an example application that leads to a model involving simulta-
neous linear equations. A steel company has four different types of scrap metal
(called SM-1 to SM-4) with compositions given in the table below. They need
to blend these four scrap metals into a mixture for which the composition by
weight is: Al - 4.43%, Si - 3.22%, C - 3.89%, Fe - 88.46%. How should they
prepare this mixture ?

Type % in type, by weight, of element
Al Si C Fe

SM-1 5 3 4 88
SM-2 7 6 5 82
SM-3 2 1 3 94
SM-4 1 2 1 96
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To answer this question, we first define the decision variables, denoted by
x1, x2, x3, x4, where for j = 1 to 4, xj = proportion of SM-j by weight in the
mixture to be prepared. Then the percentage by weight, of the element Al in
the mixture will be, 5x1 + 7x2 + 2x3 + x4, which is required to be 4.43.
Arguing the same way for the elements Si, C, and Fe, we find that the decision
variables x1 to x4 must satisfy each equation in the following system of linear
equations in order to lead to the desired mixture:

5x1 + 7x2 + 2x3 + x4 = 4.43

3x1 + 6x2 + x3 + 2x4 = 3.22

4x1 + 5x2 + 3x3 + x4 = 3.89

88x1 + 82x2 + 94x3 + 96x4 = 88.46

x1 + x2 + x3 + x4 = 1

The last equation in the system stems from the fact that the sum of the
proportions of various ingradients in a blend must always be equal to 1. From the
definition of the variables given above, it is clear that a solution to this system of
equations makes sense for the blending application under consideration, only if
all the variables in the system have nonnegative values in it. The nonnegativity
restrictions on the variables are linear inequality constraints. They cannot
be expressed in the form of linear equations, and since nobody knew how to
handle linear inequalities at that time, they ignored them and considered this
system of equations as the mathematical model for the problem.
To solve a system of linear equations, each step in the elimination method

uses one equation to express one variable in terms of the others, then uses that
expression to eliminate that variable and that equation from the system leading
to a smaller system. The same process is repeated on the remaining system.
The work in each step is organized conveniently through what is now-a-days
called the Gauss-Jordan (GJ) pivot step. We will illustrate this step on
the following system of 3 linear equations in 3 decision variables given in the
following detached coefficient tableau at the top. In this representation, each
row in the tableau corresponds to an equation in the system, and RHS is the
column vector of right hand side constants in the various equations. Normally
the equality symbol for the equations is omitted.

Basic Variable x1 x2 x3 RHS

1 −1 −1 10
−1 2 −2 20
1 −2 −4 30

x1 1 −1 −1 10
0 1 −3 30
0 −1 −3 20

In this step on the system given in the top tableau, we are eliminating the
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variable x1 from the system using the equation corresponding to the first row.
The column vector of the variable eliminated, x1, is called the pivot column, and
the row of the equation used to eliminate the variable is called the pivot row for
the pivot step, the element in the pivot row and pivot clolumn, known as the
pivot element, is boxed. The pivot step converts the pivot column into the unit
column with “1” entry in the pivot row and “0” entries in all the other rows. In
the resulting tableau after this pivot step is carried out, the variable eliminated,
x1, is recorded as the basic variable in the pivot row. This row now contains
an expression for x1 as a function of the remaining variables. The other rows
contain the remaining system after x1 is eliminated, the same process is now
repeated on this system.
When the method is continued on the remaining system two things may

occur: (a): all the entries in a row may become 0, this is an indication that
the constraint in the corresponding row in the original system is a redundant
constraint, such rows are eliminated from the tableau; and (b): the coefficients
of all the variables in a row may become 0, while the RHS constant remains
nonzero, this indicates that the original system of equations is inconsistent, i.e.,
it has no solution, if this occurs the method terminates.
If the inconsistency termination does not occur, the method terminates after

performing pivot steps in all the rows. If there are no nonbasic variables at that
stage, equating each basic variable to the RHS in the final tableau gives the
unique solution of the system. If there are nonbasic variables, from the rows of
the final tableau we get the general solution of the system in parametric form
in terms of the nonbasic variables as parameters.
The elimination method remained unknown in Europe until Gauss rediscov-

ered it at the beginning of the 19th century while calculating the orbit of the
asteroid Ceres based on recorded observations in tracking it earlier. It was lost
from view when the astronomer tracking it, Piazzi, fell ill. Gauss got the data
from Piazzi, and tried to approximate the orbit of Ceres by a quadratic formula
using that data. He designed the method of least squares for estimating the best
values for the parameters to give the closest fit to the observed data, this gives
rise to a system of linear equations to be solved. He rediscovered the elimination
method to solve that system. Even though the system was quite large for hand
computation, Gauss’s accurate computations helped in relocating the asteroid
in the skies in a few months time, and his reputation as a mathematician soared.
Europeans gave the namesGaussian elimination method,Gauss-Jordan

elimination method to two variants of the method at that time. These meth-
ods are still the leading methods in use today for solving systems of linear
equations.

1.3 Lack of a Method To Solve Linear Inequalities Until
Modern Times

Even though linear equations had been conquered thousands of years ago, sys-
tems of linear inequalities remained inaccessible until modern times. The set of
feasible solutions to a system of linear inequalities is called a polyhedron or
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convex polyhedron, and geometric properties of polyhedra were studied by
the Egyptians earlier than 2000 BC while building the pyramids, and later by
the Greeks, Chinese, Indians and others.
The following theorem (for a proof see [Murty, 2006]) relates systems of

linear inequalities to systems of linear equations.

Theorem 1: If the system of linear inequalities: Ai.x ≥ bi, i = 1 to m
in variables x = (x1, . . . , xn)

T has a feasible solution, then there exists a subset
P = {p1, . . . , ps} ⊂ {1, . . . ,m} such that every solution of the system of linear
equations: Ai.x = bi, i ∈ P is also feasible to the orignal system of linear
inequalities.

A paradox: Theorem 1 presents an interesting paradox.
As you know, linear equations can be transformed into linear inequalities by

replacing each equation with the opposing pair of inequalities. But there is no
way a linear inequality can be transformed into linear equations. This indicates
that linear inequalities are more fundamental than linear equations.
But this theorem shows that linear equations are the key to solving linear

inequalities, and hence are more fundamental. This is the paradox.

Theorem 1 provides an enumerative approach for solving a system of linear
inequalities, involving enumeration over subsets of the inequalities treated as
equations. But the effort required by the method grows exponentially with the
number of inequalities in the system in the worst case.

1.4 The Importance of Linear Inequality Constraints, and
Their Relation to Linear Programs

The first interest in inequalities arose from studies in mechanics, beginning with
the 18th century.

Linear programming (LP) involves optimization of a linear objective
function subject to linear inequality constraints. Crude examples of LP models
started appearing in published literature from about the mid-18th century. We
will now present an example of a simple application of LP from the class of
product mix models from [Murty, 2005-2, or 1983].

A fertilizer company makes two kinds of fertilizers called Hi-phosphate (Hi-
ph) and Lo-phosphate (Lo-ph). The manufacture of these fertilizers requires
three raw materials called RM 1, 2, 3. At present their supply of these raw
materials comes from the company’s own quarry which is only able to supply
maximum amounts of 1500, 1200, 500 tons/day respectively of RM 1, RM 2,
RM 3. Even though there are other vendors who can supply these raw materials
if necessary, at the moment they are not using these outside suppliers.
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They sell their output of Hi-ph and Lo-ph fertilizers to a wholesaler who is
willing to buy any amount that they can produce, so there are no upper bounds
on the amounts of Hi-ph and Lo-ph manufactured daily.
At the present rates of operation their Cost Accounting Department esti-

mates that it is costing the quarry $50, 40, 60/ton respectively to produce
and deliver RM 1, RM 2, RM 3 at the fertilizer plant. Also, at the present
rates of operation, all other production costs (for labor, power, water, mainte-
nance, depreciation of plant and equipment, floorspace, insurance, shipping to
the wholesaler, etc.) come to $7/ton to manufacture Hi-ph or Lo-ph and to
deliver them to the wholesaler.
The sale price of the manufactured fertilizers to the wholesaler fluctuates

daily, but their averages over the last one month have been $222, 107/ton re-
spectively for Hi-Ph, Lo-ph fertilizers.
The Hi-ph manufacturing process needs as inputs 2 tons of RM 1, and 1 ton

each of RM 2, RM 3 for each ton of Hi-ph manufactured. Similarly the Lo-ph
manufacturing process needs as inputs 1 ton of RM 1, and 1 ton of RM 2 for each
ton of Lo-ph manufactured. So, the net profit/ton of fertilizer manufactured is
$(222 − 2 × 50 − 1 × 40 − 1 × 60 − 7) = 15, (107 − 1 × 50 − 1 × 40 − 7) =
10/respectively for Hi-ph, Lo-ph.
We will model the problem with the aim of determining how much of Hi-

ph and Lo-ph to make daily to maximize the total daily net profit from these
fertilizer operations. There are clearly two decision variables; these are:

x1 = the tons of Hi-ph made per day

x2 = the tons of Lo-ph made per day

Since all the data is given on a per ton basis, it provides an indication that the
linearity assumptions (proportionality, additivity) are quite reasonable in this
problem to express each of the constraint and the objective functions. Also, the
amount of each fertilizer manufactured can vary continuously within its present
range. So, LP is an appropriate model for this problem. The LP formulation of
this fertilizer product mix problem is given below. Each costraint in the model
is the material balance inequality of the item shown against it.

Maximize z(x) = 15x1 + 10x2 Item
Subject to 2x1 + x2 ≤ 1500 RM 1

x1 + x2 ≤ 1200 RM 2 (1)
x1 ≤ 500 RM 3
x1 ≥ 0, x2 ≥ 0

In this example all the constraints on the variables are inequality constraints.
In the same way, inequality constraints appear much more frequently and promi-
nently than equality constraints in most real world applications. In fact we can
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go as far as to assert that in most applications in which a linear model is the
appropriate one to use, most of the constraints are actually linear inequalities,
and linear equations play only the role of a computational tool through approx-
imations, or through results similar to Theorem 1. Linear equations were used
to model problems mostly because an efficient method to solve them is known.

Fourier was one of the first to recognize the importance of inequalities as
opposed to equations for applying mathematics. Also, he is a pioneer who
observed the link between linear inequalities and linear programs, in early the
19th century.
For example, the problem of finding a feasible solution to the following sys-

tem of linear inequalities (2) in x1, x2, can itself be posed as another LP for
which an initial feasible solution is readily available. Formulating this problem
known as a Phase I problem introduces one or more nonnegative variables
known as artificial variables into the model. All successful LP algorithms
require an initial feasible solution at the start, so the Phase I problem can be
solved using any of those algorithms, and at termination it either outputs a
feasible solution of the original problem, or an evidence for its infeasibility. The
Phase I model for finding a feasible solution for (2) is (3), it uses one artificial
variable x3.

x1 +2x2 ≥ 10
2x1 −4x2 ≥ 15 (2)
−x1 +10x2 ≥ 25

Minimize x3
Subject to x1 +2x2 +x3 ≥ 10

2x1 −4x2 +x3 ≥ 15 (3)
−x1 +10x2 +x3 ≥ 25

x3 ≥ 0

For the Phase I problem (3), (x1, x2, x3)
T = (0, 0, 26)T is a feasible solution.

In fact solving such a Phase I problem provides the most efficient approach for
solving systems of linear inequalities.
Also, the duality theory of linear programming shows that any linear pro-

gram can be posed as a problem of solving a system of linear inequalities without
any optimization. Thus solving linear inequalities, and LPs, are mathemati-
cally equivalent problems. Both problems of comparable sizes can be solved
with comparable efficiencies by available algorithms. So, the additional aspect
of “optimization” in linear programs does not make LPs any harder either the-
oretically or computationally.
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1.5 Elimination Method of Fourier for Linear Inequalities

By 1827 Fourier generalized the elimination method to solve a system of lin-
ear inequalities. The method now known as the Fourier or Fourier-Motzkin
elimination method is one of the earliest methods proposed for solving sys-
tems of linear inequalities. It consists of successive elimination of variables from
the system. We will illustrate one step in this method using an example in
which we will eliminate the variable x1 from the following system.

x1 − 2x2 + x3 ≤ 6
2x1 + 6x2 − 8x3 ≤ −6
−x1 − x2 − 2x3 ≤ 2

−2x1 − 6x2 + 2x3 ≤ 2

x1 appears with a positive coefficient in the 1st and 2nd constraints; and a
negative coefficient in the 3rd and 4th constraints. By making the coefficient of
x1 in each constraint into 1, these constraints can be expressed as:

x1 ≤ 6 + 2x2 − x3
x1 ≤ −3− 3x2 + 4x3

−2− x2 − 2x3 ≤ x1

−1− 3x2 + x3 ≤ x1

The remaining system after x1 is eliminated is therefore:

−2− x2 − 2x3 ≤ 6 + 2x2 − x3
−2− x2 − 2x3 ≤ −3− 3x2 + 4x3
−1− 3x2 + x3 ≤ 6 + 2x2 − x3
−1− 3x2 + x3 ≤ −3− 3x2 + 4x3

and then max{−2−x2−2x3,−1−3x2+x3} ≤ x1 ≤ min{6+2x2−x3,−3−3x2+
4x3} is used to get a value for x1 in a feasible solution when values for other
variables are obtained by applying the same steps on the remaining problem
successively.
However starting with a system of m inequalities, the number of inequalities

can jump to O(m2) after eliminating only one variable from the system, so this
method is not practically viable except for very small problems.

1.6 History of the Simplex Method for LP

In 1827 Fourier published a geometric version of the principle behind the sim-
plex algorithm for a linear program (vertex to vertex descent along the edges
to an optimum, a rudimentary version of the simplex method) in the context
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of a specific LP in 3 variables (an LP model for a Chebyshev approximation
problem), but did not discuss how this descent can be accomplished computa-
tionally on systems stated algebraically. In 1910 De la Vallée Poussin designed
a method for the Chebyshev approximation problem that is an algebraic and
computational analogue of this Fourier’s geometric version, this procedure is
essentially the primal simplex method applied to that problem.
In a parallel effort [Gordon, 1873], [Farkas, 1895], and [Minkowski, 1896]

studied linear inequalities, and laid the foundations for the algebraic theory of
polyhedra and derived necessary and sufficient conditions for a system of linear
constraints including linear inequalities to have a feasible solution.
Studying LP models for organizing and planning production, [Kantarovich,

1939] developed ideas of dual variables (‘resolving multipliers’) and derived a
dual-simplex type method for solving a general LP.
Full citations for references before 1939 mentioned so far can be seen from

the list of references in [Danizig, 1963] or [Schrijver, 1986].
This work culminated in mid-20th century with the development of the pri-

mal simplex method by Dantzig. This was the first complete, practically and
computationally viable method for solving systems of linear inequalities. So,
LP can be considered as the branch of mathematics which is an extension of
linear algebra to solve systems of linear inequalities. The development of LP is
a landmark event in the history of mathematics, and its application brought our
ability to solve general systems of linear constraints (including linear equations,
inequalities) to a state of completion.

Linear Algebra

Study of linear equations.
Originated over 2000 years ago.

→

Linear Programming

Study of linear constraints in-
cluding inequalities.
20th century extension of lin-
ear algebra.

2 The Importance of LP

LP has now become a dominant subject in the development of efficient compu-
tational algorithms, study of convex polyhedra, and in algorithms for decision
making. But for a short time in the beginning, its potential was not well recog-
nized. Dantzig tells the story of how when he gave his first talk on LP and his
simplex method for solving it at a professional conference, Hotelling (a burly
person who liked to swim in the sea, the popular story about him was that
when he does, the level of the ocean raises perceptibly, see Figures 1, 2; my
thanks to Katta Sriramamurthy for these figures) dismissed it as unimportant
since everything in the world is nonlinear. But Von Neumann came to the

10



Figure 1: Hotelling (a whale of a man) getting ready to swim in the ocean.

defense of Dantzig saying that the subject will become very important. (For
an account of Von Neumann’s comments at this conference see Page xxvii of
[Dantzig, Thapa, 1997]). The preface in this book contains an excellent account
of the early history of LP from the inventor of the most successful method in
OR and in the mathematical theory of polyhedra.
Von Neumann’s early assessment of the importance of LP (Von Neumann

[40]) turned out to be astonishingly correct. Today, the applications of LP in
almost all areas of science are so numerous, so well known and recognized that
they need no enumeration. Also, LP seems to be the basis for most of the
efficient algorithms for many problems in other areas of mathematical program-
ming. Many of the successful approaches in nonlinear programming, discrete
optimization, and other branches of optimization are based on LP in their it-
erations. Also, with the development of duality theory and game theory [Gale,
1960], LP has also assumed a central position in economics.
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Figure 2: Hotelling swimming in the ocean. Watch the level of the ocean go up.

3 Dantzig’s contributions to linear algebra, con-
vex polyhedra, OR, computer science

A lot has been written about Dantzig’s contributions. Also, he has a personal
assessment of his own contributions in Chapter 1 of his book [Dantzig, 1963]. As
someone who started learning LP from his course at Berkeley, I will summarize
here some of his contributions that are usually overlooked in other statements
(for a brief account of my experiences with Dantzig see [Murty, 2005-3]).

Contributions to OR

The simplex method is the first effective computational algorithm for one of
the most versatile mathematical models in OR. Even though LP and also the
simplex method for solving it originated much earlier than Dantzig’s work as
explained in Section 1.6, it started becoming prominent only with Dantzing’s
work, and OR was just beginning to develop around that time. The success of
the simplex method is one of the root causes for the pheonominal development
and the maturing of LP, mathematical programming in general, and OR, in the
2nd half of the 20th century.
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Contributions to Linear Algebra and Computer Science

Recognizing the Irrelevance of the “RREF” Concept Emphasized
in Mathematics Books on Linear Algebra: Dantzig contributed important
pedagogic improvements to the teaching of linear algebra. He would state all
the algorithmic steps in the GJ elimination method using the fundamental tool
of row operations on the detached coefficient tableau for the system with the
variable corresponding to each column entered in a top row in every tableau.
This makes it easier for young students to see that the essence of this method is
to take linear combinations of equations in the original system to get an equiv-
alent but simpler system from which a solution can be read out. In descriptions
of the GJ method in most mathematics books on linear algebra, the variables
are usually left out.
Also, these books state the termination condition in the GJ elimination

method to be that of reaching the RREF (reduced row echelon form, a tableau
is defined to be in RREF if it contain a full set of unit vectors in proper order at
the left end). Dantzig (and of course a lot of other OR people) realized that it
is not important that all unit vectors be at the left end of the tableau (they can
be anywhere and can be scattered all over); also it is not important that they
be in proper order from left to right. He developed the very simple data struc-
ture (this phrase means a strategy for storing information generated during
the algorithm, and using it to improve the efficiency of that algorithm (perhaps
this is the first instance of such a structure in computational algorithms)) of
associating the variable corresponding to the rth unit vector in the final tableau
as the rth basic variable (or basic variable in the rth row); and storing these
basic variables in a column on the tableau as the algorithm progresses. This
data structure makes it easier to read the solution directly from the final tableau
of the GJ elimination method by making all nonbasic variables = 0; and the
rth basic variable = the rth updated RHS constant, for all r. Dantzig called
this final tableau the canonical tableau to distinguish it from the mathemat-
ical concept of RREF. It also opened the possibility of pivot column selection
strategies instead of always selecting the leftmost eligible column in this method.
Even today it is sad that in courses on linear algebra in mathematics depart-

ments, the RREF is emphasized as the output of the GJ elimination method.
For a more realistic statement of the GJ method from an OR perspective see
[Murty, 2004].

Evidence (or Certificate) of Infeasibility: A fundamental theorem of
linear algebra asserts that a system of linear equations is infeasible iff there
is a linear combination of equations in the system which is the fundamental
inconsistent equation “0 = a” (where a is some nonzero number). Math-
ematically in matrix notation the statement of this theorem is: “Either the
system Ax = b has a solution (column) vector x, or there exists a row vector
π satisfying πA = 0,πb W= 0”. The coefficient vector π in this linear combi-
nation is called an evidence (or certificate) of infeasibility for the original

13



system Ax = b.
But with the usual descriptions of the GJ elimination method to get an

RREF or canonical tableau, this evidence is not available when the infeasibility
conclusion is reached. An important contribution of Dantzig, the revised sim-
plex method, has very important consequences to the GJ elimination method.
When the GJ elimination method is executed in the revised simplex format,
pivot computations are not performed on the original system (it remains un-
changed throughout the algorithm), but only carried out on an auxiliary matrix
set up to accumulate the basis inverse, and all the computations in the algo-
rithm are carried out using this auxiliary matrix and the data from the original
system. We will call this auxiliary matrix the memory matrix. For solving
Ax = b where A is of order m× n, the initial memory matrix is the unit ma-
trix of order m set up by the side of the original system. For details of this
implementation of the GJ elimination method see Section 4.11 in [Murty, 2004].
We will illustrate this with a numerical example. At the top in the tableau

given below is the original system in detached coefficient form on the right, and
the memory matrix on its left. At the bottom we show the final tableau (we
show the canonical tableau on the right just for illustration, actually it will not
be computed in this implementation). BV = basic variable selected for the row,
MM = memory matrix.

BV MM Original system RHS
x1 x2 x3 x4

1 0 0 1 −1 1 −1 5
0 1 0 −1 2 2 −2 10
0 0 1 0 1 3 −3 17

Canonical tableau
x1 2 1 0 1 0 4 −4 20
x2 1 1 0 0 1 3 −3 15

−1 −1 1 0 0 0 0 2

The third row in the final tableau represents the inconsistent equation “0
= 2” which shows that the original system is infeasible. The row vector of the
memory matrix in this row, (1, 1,−1), is the coefficient vector for the linear
combination of equations in the original system that produces this inconsistent
equation, it is the certificate of infeasibility for this system.

Contributions to the Mathematical Study of Convex Polyhedra

Dantzig has made fundamental contributions to the mathematical study of
convex polyhedra (a classical subject being investigated by mathematicians for
more than 2000 years) when he introduced the complete version of the primal
simplex method as a computational tool.
We could only see drawings of 2-dimensional polyhedra before this work.

Polyhedra in higher dimensions could only be visualized through imagination.
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The primal simplex pivot step is the first computational step for actually tracing
an edge (either bounded or unbounded) of a convex polyhedron. It opened a
revolutionary new computational dimension in the mathematical study of con-
vex polyhedra, and made it possible to visualize and explore higher dimensional
polyhedra through computation. At a time when research on convex polyhedra
was beginning to stagnate, the simplex method has reignited the spark, and
enriched their mathematical study manyfold.

4 Algorithms used for solving LPs today

Now we will summarize the main ideas behind algorithms used for solving LPs
today.

4.1 Objective Plane Sliding Geometric Method for 2-Varia-
ble LPs

This simple visual geometric method is useful for solving LPs involving only 2
variables by hand. Let z(x) be the linear objective function that we are trying
to optimize. First the feasible region is drawn on paper by hand, and then a
feasible solution x̄ identified in it visually. Then the objective plane (a straight
line in R2) through x̄ represented by z(x) = z(x̄) is drawn. Changing the
RHS constant in the equation for this line (i.e., changing the objective value) is
equivalent to moving this straight line parallel to itself. This objective straight
line is moved parallelly in the desired direction until it reaches a stage where
it is still intersecting the feasible region, but any further move in the desired
direction will make it loose contact with the feasible region. The intersection
of the objective straight line in this final position with the feasible region is the
set of optimum solutions of the problem.

In the fertilizer product mix problem (1) from Section 1.4, we start with the
feasible point x̄ = (0, 0) with an objective value z0 of 0. As z0 is increased from
0, the line 15x1+10x2 = z0 moves up keeping a nonempty intersection with the
feasible region, until the line coincides with the dashed line 15x1+10x2 = 13, 500
in Figure 3 passing through the point of intersection of the two lines:

2x1 + x2 = 1500

x1 + x2 = 1200

which is x̂ = (300, 900). For any value of z0 > 13, 500 the line 15x1+10x2 = z0
does not intersect the feasible region. Hence, the optimum objective value in this
problem is $13,500, and the optimum solution of the problem is x̂ = (300, 900).
Hence the fertilizer maker achieves his maximum daily net profit of $13,500 by
manufacturing 300 tons of Hi-ph and 900 tons of Lo-ph daily.
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Figure 3: Solution of the Fertilizer product mix problem by the geometric
method.

We cannot draw feasible regions for higher dimensional LPs, so we cannot
select an initial feasible solution for them visually (this itself requires solving
another LP, a Phase I problem), and we cannot visually check whether the
objective plane can be moved further in the desired direction without losing
contact with the feasible region. Because this geometric method requires such
a high degree of visibility, it has not been generalized to solving LPs of higher
dimensions so far. We will show later that the new algorithm discussed in
Section 6 is a generalization of this geometric method to higher dimensions
made possible computationally through the centering step in it.

4.2 The Simplex Family of Methods (1-Dimensional Boun-
dary Methods)

The simplex method is still the dominant algorithm in use for solving LPs. It
exhibits exponential growth in the worst case, but its performance in practice
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has been outstanding, and is being improved continually by developments in
implementation technologies. There are many variants of the simplex method,
the most prominent being the primal simplex method. This method needs an
initial feasible basic vector for the primal. If a primal feasible basic vector is
not available, the method introduces artificial varibles into the problem and sets
up a Phase I problem with a readily available feasible basic vector consisting
of artificial basic variables. When this Phase I problem is solved by the same
algorithm, at termination it either provides a feasible basic vector for the original
primal, or a proof that it is infeasible.
Initiated with a feasible basic vector for the problem, the method goes

through a series of GJ pivot steps exchanging one nonbasic variable for a basic
variable in each (this type of basic vector change by one variable is the common
feature of all variants of the simplex method). In each nondegenerate pivot
step the method moves along an edge (a 1-dimensional boundary face or
corner) of the feasible region from one basic feasible solution to an adjacent
one, and the objective value strictly improves. We will illustrate with a pivot
step carried out for solving the fertilizer problem (1). To solve this problem
by the primal simplex method, the constraints are converted into equations by
introducing slack variables s1, s2, s3. Here is the original tableau which is also
the canonical tableau with respect to the basic vector (s1, s2, s3). BV = basic
variable selected in the row, PC = pivot column, PR = pivot row.

Original tableau
BV x1 x2 s1 s2 s3 −z RHS Ratio
s1 2 1 1 0 0 0 1500 1500/2
s2 1 1 0 1 0 0 1200 1200/1

s3 1 0 0 0 1 0 500 500/1 PR
−z 15 10 0 0 0 1 0 Min = 500

All variables ≥ 0, maximize z
Tableau after the pivot step

BV x1 x2 s1 s2 s3 −z RHS
s1 0 −1 1 0 −2 0 500
s2 0 1 0 1 −1 0 700
x1 1 0 0 0 1 0 500
−z 0 10 0 0 −15 1 −7500

The initial basic vector (s1, s2, s3) corresponds to the initial BFS (x
1
1, x

1
2, s

1
1,

s12, s
1
3)
T = (0, 0, 1500, 1200, 500)T which corresponds to the point x1 = (x11, x

1
2)
T =

(0, 0)T in the x1, x2-space in Figure 3 of the feasible region for this problem.
A nonbasic variable is eligible to enter this basic vector if its updated objec-

tive coefficient (i.e., coefficient in the objective row in the canonical tableau) has
the appropriate sign to improve the objective value (positive for maximization,
negative for minimization). If there are no nonbasic variables eligible to enter
the present feasible basic vector, the present BFS is an optimum solution to the
problem, and the method terminates.
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In this tableau both nonbasic variables x1, x2 are eligible to enter the basic
vector, among them we selected x1 as the entering variable, and its column
vector in the present canonical tableau becomes the pivot column for this pivot
step. If there are no positive entries among the constraint rows in the pivot
column, the objective function is unbounded (unbounded above if the original
problem is a maximization problem, or unbounded below if it is a minimization
problem) on the feasible region, and again the method terminates.
If unbounded termination did not occur, the dropping basic variable that the

entering variable will replace is determined using the primal simplex minimum
ratio test to guarantee that the next basic vector will also remain feasible. For
this in each row in which the pivot column has a positive entry, the ratio of the
updated RHS constant in that row divided by the entry in the pivot column is
computed. The smallest of these ratios is called the minimum ratio, and a row
in which it occurs is selected as the pivot row for the pivot operation, and the
present basic variable in that row is the dropping variable that will be replaced
by the entering variable in the next basic vector.
It is s3 here, hence the row in which s3 is basic, row 3, is the pivot row

for this pivot step. The tableau at the bottom is the canonical tableau with
respect to the basic vector (s1, s2, x1)

T obtained after this pivot step. Its BFS
corresponds to the extreme point solution x2 = (x21, x

2
2)
T = (500, 0)T in the

x1, x2-space of Figure 3, it is an adjacent extreme point of x
1. Thus in this

pivot step the primal simplex method has moved from x1 to x2 along the edge
of the feasible region joining them, increasing the objective value from 0 to
$7500 in this process. The method continues from x2 in the same way.
Each step of the simplex method requires the updating of the basis inverse

as the basis changes in one column.
Since the method follows a path along the edges (one-dimensional boundary

faces or corners) of the set of feasible solutions of the LP, it is classified as a
one-dimensional boundary method.

4.3 Introduction to Earlier Interior Point Methods for LP

In early 1980s Karmarkar pioneered a new method for LP, an interior point
method [Karmarkar, 1984]. Claims were made that this method would be many
times faster than simplex method for solving large scale sparse LPs, these claims
helped focus researchers attention on it. His work attracted worldwide attention,
not only from operations researchers, but also from scientists in other areas. Let
me relate a personal experience. When news of his work broke out in world press
I was returning from Asia. The person sitting next to me on the flight was a
petroleum geologist. When he learned that I am on the OR faculty at Michigan,
he asked me excitedly “I understand that an OR scientist from India at Bell
labs made a discovery that is going to revolutionize petroleum exploration. Do
you know him?!”
In talks on his algorithm that he gave at that time Karmarker repeatedly

emphasized the following points: (I) the boundary of a convex polyhedron with
its faces of varying dimensions has a highly complex combinatorial structure.
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Any method that operates on the boundary or close to the boundary will get
caught up in this combinatorial complexity, and there is a limit on improvements
we can make to its efficiency, (II) methods that operate in the central portion of
the feasible region in the direction of descent of the objective function have the
ability to take longer steps towards the optimum before being stopped by the
boundary, and hence have the potential of being more efficient than boundary
methods for larger problems, (III) from an interior point, one can move in
any direction locally without violating feasibility, hence powerful methods of
unconstrained optimization can be brought to bear on the problem.
Researchers saw the validity of these arguments, hence his talks stimulated a

lot of work on these methods that stay “away” from the boundary. In the tidal
wave of research that ensued, many different classes of interior point methods
have been developed for LP, and extended to wider classes of problems including
convex quadratic programming, monotone linear complementarity problem, and
semidefinite programming problems.

Definition of An Interior Feasible Solution, and How to Modify
the Problem to Have an Initial Interior Feasible Solution Available

In LP literature, an interior feasible solution, (also called strictly fea-
sible solution) to an LP model is defined to be a feasible solution at which
all inequality constraints including bound restrictions on individual variables in
the model are satisfied as strict inequalities, but any equality constraints in the
model are satisfied as equations. Most interior point methods need an initial
interior feasible solution to start the method. If an interior feasible solution
to the model is not available, the problem can be modified by introducing one
artificial variable using the big-M strategy into a Phase I problem for which an
initial interior feasible solution is readily available. We show these modifications
first. Suppose the problem to be solved is in the form:

Minimize cx

subject to Ax ≥ b

where A is a matrix of order m × n. For LPs in this form, typically m ≥ n.
Introducing the nonnegative artificial variable xn+1, the Phase I modification
of the original problem is:

Minimize cx+Mxn+1

subject to Ax+ exn+1 ≥ b

xn+1 ≥ 0

where e = (1, . . . , 1)T ∈ Rm, and M is a positive number significantly larger
than any other number in the problem. Let x0n+1 > max{0, b1, b2, . . . , bm}.
Then (0, . . . , 0, x0n+1)

T is an interior feasible solution of the Phase I modification

19



which is in the same form as the original problem. If the original problem has an
optimum solution, and M is sufficiently large, then the artificial variable xn+1
will be 0 at an optimum solution of the Phase I modification.
Now suppose the original problem is in the form:

Minimize cx

subject to Ax = b

x ≥ 0

where A is a matrix of orderm×n. For LPs in this form typically n > m, and an
interior feasible solution is one which is strictly > 0. Select an arbitrary vector
x0 ∈ Rn, x0 > 0; generally one chooses x0 = (1, . . . , 1)T , the n-vector of all 1s.
If x0 happens to be feasible to the problem, it is an interior feasible solution,
done. Otherwise, let A.n+1 = b −Ax0. The Phase I modification including the
nonnegative artificial variable xn+1 is:

Minimize cx+Mxn+1

subject to Ax+A.n+1xn+1 = b

x, xn+1 ≥ 0.

It is easily confirmed that (x0, x0n+1), where x
0
n+1 = 1 is an interior feasible

solution of the Phase I problem which is in the same form as the original problem.
Again, if the original problem has an optimum solution and M is sufficiently
large, then the artificial variable xn+1 will be 0 at an optimum solution of the
Phase I modification.
Similar modifications can be made to a general LP in any form, to get a

Phase I modification in the same form with an interior feasible solution.

The Structure of the General Step in Interior Point Methods

Assume that the problem being solved is a minimization problem. All in-
terior point methods start with a known interior feasible solution x0 say, and
generate a descent sequence of interior feasible solutions x0, x1, . . .. Here a de-
scent sequence means a sequence along which either the objective value, or
some other measure of optimality strictly decreases. The general step in all the
interior point methods has the following structure:

General Step

Substep 1: Let xr be the current interior feasible solution. Generate a
search direction dr at xr, a descent direction.

Substep 2: Compute the maximum step length θr, the maximum value of
λ that keeps xr+λdr feasible to the original problem. This is like the minimum
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ratio computation in the simplex method. Determine the step length fraction
parameter αr, 0 < αr < 1 and take xr+1 = xr + αrθrd

r. With xr+1 as the
next interior feasible solution, go to the next step.

The various methods differ on whether they work on the primal system
only, dual system only, or the system consisting of the primal and dual systems
together; on the strategy used to select the search direction dr; and on the choice
of the step length fraction parameter.
To give an idea of the main strategies used by interior point methods to

select the search directions, we will discuss the two most popular interior point
methods.
The first is in fact the first interior point method discussed in the literature,

the primal affine scaling method [Dikin, 1967], which predates Karmarkar’s
work, but did not attract much attention until after Karmarkar made the study
of interior point methods popular. This method works on the system of con-
straints in the original problem (primal) only. To get the search direction at
the current interior feasible solution xr, this method creates an ellipsoid Ēr cen-
tered at xr inside the feasible region of the original LP. Minimizing the objective
function over Ēr is an easy problem, its optimum solution x̄r can be computed
directly by a formula. The search direction in this method at xr is then the
direction obtained by joining xr to x̄r.
The second method that we will discuss is a central path-following primal-

dual interior point method. It works on the system of constraints of both the
primal and dual put together. In this method the search directions used are
modified Newton directions for solving the optimality conditions. The class
of path-following primal-dual methods evolved out of the work of many au-
thors including [Bayer and Lagarias, 1989]; [Güler, Roos, Terlaky and Vial,
1995]; [Kojima, Mizuno and Yoshishe, 1989]; [McLinden, 1980], [Meggido, 1989],
[Mehrotra, 1992], [Mizuno, Todd and Ye, 1993], ; [Monteiro and Adler, 1989];
[Sonnevend, 1985]; [Sonnevend, Stoer, and Zhao, 1989], and others. For a com-
plete list of references to these and other authors see the list of references in
[Saigal, 1995], and [Wright, 1997].

4.4 The Primal Affine Scaling Method

This method is due to [Dikin, 1967]. We describe the method when the original
LP is in the following standard form:

Minimize cx

subject to Ax = b

x ≥ 0

where A is of order m× n and rank m. Let x0 be an available interior feasible
solution, i.e., Ax0 = b and x0 > 0 for initiating the method. The method
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generates a series of interior feasible solutions x0, x1, . . .. We will discuss the
general step.

Strategy of the General Step

Let xr = (xr1, . . . , x
r
n)
T be the current interior feasible solution. The method

creats an ellpsoid with xr as center inside the feasible region of the original LP.
It does this by replacing the nonegativity restrictions “x ≥ 0” by “x ∈ Er
= {x :�n

i=1((xi − xri )/(xri ))2 ≤ 1}”. Er is an ellipsoid in Rn with its center at
xr. The ellipsoidal approximating problem is then

Minimize cx

subject to Ax = b
n3
i=1

((xi − xri )/(xri ))2 ≤ 1

It can be shown that Er ⊂ {x : x ≥ 0}. The intersection of Er with the
affine space defined by the system of equality constraints Ax = b is an
ellipsoid Ēr with center xr inside the feasible region of the original LP. The
ellipsoidal approximating problem given above is the problem of minimizing the
objective function cx over this ellipsoid Ēr. Its optimum solution x̄r = (x̄rj) can
be computed by the formula:

x̄r = xr − [XrPrXrcT ]/(||PrXrcT ||) = xr − [X2
r s
r]/(||Xrsr||)

where ||.|| indicates the Euclidean norm, and

Xr = diag(xr1, . . . , x
r
n), the diagonal matrix of order n with diagonal en-

tries xr1, . . . , x
r
n and off-diagonal entries 0

I = unit matrix of order n
Pr = (I −XrAT (AX2

rA
T )−1AXr), a projection matrix

yr = (AX2
rA

T )−1AX2
r c
T , known as the tentative dual solution cor-

responding to the current interior feasible solution xr

sr = cT −AT yr, tentative dual slack vector corresponding to xr

It can be shown that if x̄rj = 0 for at least one j, then x̄r is an optimum
solution of the original LP, and the method terminates. Also, if the tentative
dual slack vector sr is ≤ 0, then the objective value is unbounded below in the
original LP, and the method terminates. If these termination conditions are not
satisfied, then the search direction at xr is

dr = x̄r − xr = −(X2
r s
r)/(||Xrsr||)

is known as the primal affine scaling direction at the primal interior feasible
solution xr. Since both xr, x̄r are feasible to the original problem, we have

22



Axr = Ax̄r = b, hence Adr = 0. So, dr is a descent feasible direction for the
primal along which the primal objective value decreases. The maximum step
length θr that we can move from xr in the direction dr is the maximum value
of λ that keeps xrj + λdrj ≥ 0 for all j. It can be verified that this is

∞ if sr ≤ 0 (this leads to the unboundedness condition stated above);
and if sr W≤ 0 it is equal to

θr = min{(||Xrsr||)/(xrjsrj): over j such that srj > 0}.

It can be verified that θr = 1 if x̄rj = 0 for some j (in this case x̄r is an
optimum solution of the original LP as discussed above). Otherwise θr > 1. In
this case the method takes the next iterate to be xr+1 = xr + αθrd

r for some
0 < α < 1. Typically α = 0.95 in implementations of this method. This α is the
step length fraction parameter. Then the method moves to the next step
with xr+1 as the current interior feasible solution. Here is a summary statement
of the general step in this method.

General Step

Substep 1: Let xr = (xr1, . . . , x
r
n)
T be the current interior feasible solution

of the problem. Let Xr = diag(x
r
1, . . . , x

r
n).

Substep 2: Compute the tentative dual solution yr = (AX2
rA

T )−1AX2
r c
T ,

the tentative dual slack sr = ct − AT yr, and the primal affine scaling search
direction at xr which is dr = −(X2

r s
r)/(||Xrsr||).

If sr ≤ 0, {xr + λdr : λ ≥ 0} is a feasible half-line for the original problem
along which the objective function cx→ −∞ as λ→ +∞, terminate.

Substep 3: If sr W≤ 0, compute the maximum step length that we can
move from xr in the direction dr, this is the maximum value of λ that keeps
xrj+λd

r
j ≥ 0 for all j. It is θr = min{(||Xrsr||)/(xrjsrj): over j such that srj > 0}.

If θr = 1, x
r + dr is an optimum solution of the original LP, terminate.

Otherwise let xr+1 = xr + αθrd
r for some 0 < α < 1 (typically α = 0.95).

With xr+1 as the current interior feasible solution, go to the next step.

Under some minor conditions it can be proved that if the original problem
has an optimum solution, then the sequence of iterates xr converges to a strictly
complementary optimum solution, and that the objective value cxr converges at
a linear or better rate. Also if the step length fraction parameter α is< 2/3, then
the tentative dual sequence yr converges to the analytic center of the optimum
dual solution set. For proofs of these results and a complete discussion of the
convergence properties of this method see [Saigal, 1995]. So far this method has
not been shown to be a polynomial time method.
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Versions of this method have been developed for LPs in more general forms
like the bounded variable form, and the form in which the LP consists of some
unrestricted variables too. When the original LP has unrestricted variables,
instead of an ellipsoid, the method creates a hyper-cylinder with an elliptical
cross section inside the feasible region centered at the current interior feasible
solution. The point minimizing the objective function over this hyper-cylinder
can also be computed directly by a formula, and other features of the method
remain essentially similar to the above.

A version of this method that works on the constraints in the dual problem
only (instead of those of the primal) has also been developed, this version is
called the dual affine scaling method. There is also a primal-dual affine
scaling method that works on the system consisting of both the primal and
dual constraints together, search directions used in this version are based on
Newton directions for the system consisting of the complementary slackness
conditions.

4.5 Primal-Dual Interior Point Methods for LP

The central path following primal-dual interior point methods are some of the
most popular methods for LP. They consider the primal LP:

minimize cTx, subject to Ax = b, x ≥ 0;
and its dual in which the constraints are: AT y + s = c, s ≥ 0;

where A is a matrix of order m×n and rank m. The system of primal and dual
constraints put together is:

Ax = b

AT y + s = c (4)

(x, s) ≥ 0

A feasible solution (x, y, s) to (4) is called an interior feasible solution if
(x, s) > 0. Let F denote the set of all feasible solutions of (4), and F0 the set of
all interior feasible solutions. For any (x, y, s) ∈ F0 define X = diag(x1, . . . , xn),
the square diagonal matrix of order n with diagonal entries x1, . . . , xn; and S =
diag(s1, . . . , sn).
For each j = 1 to n, the pair (xj , sj) is known as the j-th complementary

pair of variables in these primal, dual pair of problems. The complementary
slackness conditions for optimality in this pair of problems are: the product
xjsj = 0 for each j = 1 to n; i.e., XSe = 0 where e is a vector of all 1s. Since
each product is ≥ 0, these conditions are equivalent to xT s = 0.

The Central Path
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The central path, C for this family of primal-dual path-following methods is
a curve in F0 parametrized by a positive parameter τ > 0. For each τ > 0, the
point (xτ , yτ , sτ ) ∈ C satisfies: (xτ , sτ ) > 0 and

AT yτ + sτ = cT

Axτ = b

xτj s
τ
j = τ, j = 1, . . . , n

If τ = 0, the above equations define the optimality conditions for the LP.
For each τ > 0, the solution (xτ , yτ , sτ ) is unique, and as τ decreases to 0 the
central path converges to the center of the optimum face of the primal, dual
pair of LPs.

Optimality Conditions

From optimality conditions, solving the LP is equivalent to finding a solution
(x, y, s) satisfying (x, s) ≥ 0, to the following system of 2n + m equations in
2n+m unknowns:

F (x, y, s) =

⎡⎣ AT y + s− cAx− b
XSe

⎤⎦ = 0 (5)

This is a nonlinear system of equations because of the last equation.

Selecting the Directions to Move

Let the current interior feasible solution be (x̄, ȳ, s̄). So, (x̄, s̄) > 0. Also,
the variables in y are unrestricted in sign in the problem.
Primal-dual path-following methods try to follow the central path C with τ

decreasing to 0. For points on C, the value of τ is a measure of closeness to
optimality, when it decreases to 0 we are done. Following C with τ decreasing
to 0 keeps all the complementary pair products xjsj equal and decreasing to 0
at the same rate.

However there are two difficulties for following C. One is that it is difficult to
get an initial point on C with all the xjsj equal to each other, the second is that C
is a nonlinear curve. At a general solution (x, y, s) ∈ F0, the products xjsj will
not be equal to each other, hence the parameter µ = (

�n
j=1 xjsj)/n = x

T s/n,
the average complementary slackness violation measure, is used as a measure of
optimality for them. Since path-following methods cannot exactly follow C, they
stay within a loose but well defined neighborhood of C while steadily reducing
the optimality measure µ to 0.
Staying explicitly within a neighborhood of C serves the purpose of excluding

points (x, y, s) that are too close to the boundary of {(x, y, s) : x ≥ 0, s ≥ 0},
to make sure that the lengths of steps towards optimality remain long.
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To define a neighborhood of the central path, we need a measure of deviation
from centrality, this is obtained by comparing a measure of deviation of the
various xjsj from their average µ to µ itself. This leads to the measure

(||(x1s1, . . . , xnsn)T − µe||)/µ = (||XSe− µe||)/µ
where ||.|| is some norm. Different methods use neighborhoods defined by dif-
ferent norms.
The parameter θ is used as a bound for this measure when using the Euclid-

ean norm. A commonly used neighborhood based on the Euclidean norm ||.||2,
called the 2-norm neighborhood, defined by

N2(θ) = {(x, y, s) ∈ F0 : ||XSe− µe||2 ≤ θµ}
for some θ ∈ (0, 1). Another commonly used neighborhood based on the ∞-
norm is the N−∞(γ) defined by

N−∞(γ) = {(x, y, s) ∈ F0 : xjsj ≥ γµ, j = 1, . . . , n}
parametrized by the parameter γ ∈ (0, 1). This is a one-sided neighborhood
that restricts each product xjsj to be at least some small multiple γ of their
average µ. Typical values used for these parameters are θ = 0.5, and γ = 0.001.
By keeping all iterates inside one or the other of these neighborhoods, path-
following methods reduce all xjsj to 0 at about the same rates.
Since the width of these neighborhoods for a given µ depends on µ, these

neighborhoods are conical (like a horn), they are wider for larger values of µ,
and become narrow as µ→ 0.

Once the direction to move from the current point (x̄, ȳ, s̄) is computed,
we may move from it only a small step length in that direction, and since
(x̄, s̄) > 0 such a move in any direction will take us to a point that will continue
satisfying (x, s) > 0. So, in computing the direction to move at the current point,
the nonnegativity constraints (x, s) ≥ 0 can be ignored. The only remaining
conditions to be satisfied for attaining optimality are the equality conditions
(5). So the direction finding routine concentrates only on trying to satisfy (5)
more closely.
Ignoring the inactive inequality constraints in determining the direction to

move at the current point is the main feature of barrier methods in nonlinear
programming, hence these methods are also known as barrier methods.
(5) is a square system of nonlinear equations (2n + m equations in 2n +

m unknowns, it is nonlinear because the third condition in (5) is nonlinear).
Experience in nonlinear programming indicates that the best directions to move
in algorithms for solving nonlinear equations are either the Newton direction,
or some modified Newton direction. So, this method uses a modified Newton
direction to move. To define that, a centering parameter σ ∈ [0, 1] is used.
Then the direction for the move denoted by (Px,Py,Ps) is the solution to the
following system of linear equations
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⎛⎝ 0 AT I
A 0 0
S 0 X

⎞⎠⎛⎝ PxPy
Ps

⎞⎠ =
⎛⎝ 0

0
−XSe+ σµe

⎞⎠ (6)

where 0 in each place indicates the appropriate matrix or vector of zeros, I the
unit matrix of order n, and e indicates the column vector of order n consisting
of all 1s.

If σ = 1, the direction obtained will be a centering direction, which is a
Newton direction towards the point (xµ, yµ, sµ) on C at which the products
xjsj of all complementary pairs in this primal, dual pair of problems are = µ.
Moving in the centering direction helps to move the point towards C, but may
make little progress in reducing the optimality measure µ. But in the next
iteration this may help to take a relatively long step to reduce µ. At the other
end the value σ = 0 gives the standard Newton direction for solving (5). Many
algorithms choose σ from the open interval (0, 1) to trade off between twin goals
of reducing µ and improving centrality.

We will now describe two popular path-following methods.

The Long-Step Path-Following Algorithm (LPF)

LPF generates a sequence of iterates in the neighborhood N−∞(γ), which
for small values of γ (for example γ = 0.001) includes most of the set of interior
feasible solutions F0. The method is initiated with an (x0, y0, s0) ∈ F0. In each
step the method chooses the centering parameter σ between two selected limits
σmin,σmax where 0 < σmin < σmax < 1. The neighborhood defining parameter
γ is selected from (0, 1). Here is the general step in this algorithm.

General Step k

Let (xk, yk, sk) be the current interior feasible solution, and µk = (x
k)T sk/n

the current value of the optimality measure corresponding to it. Choose σk ∈
[σmin,σmax]. Find the direction (Pxk,Pyk,Psk) by solving⎛⎝ 0 AT I

A 0 0
Sk 0 Xk

⎞⎠⎛⎝ PxkPyk
Psk

⎞⎠ =
⎛⎝ 0

0
−XkSke+ σkµke

⎞⎠ (7)

Find αk = the largest value of α ∈ [0, 1] such that (xk, yk, sk) + α(Pxk,
Pyk, Psk) ∈ N−∞(γ).
Setting (xk+1, yk+1, sk+1) = (xk, yk, sk) + αk(Pxk,Pyk,Psk) as the new

current interior feasible solution, go to the next step.

The Predictor-Corrector Path-Following Method (PC)
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Path-following methods have two goals, one to improve centrality (closeness
to the central path while keeping optimality measure unchanged), and the other
to decrease the optimality measure µ. The PC method takes two different
steps alternately to achieve each of these twin goals. The PC uses two N2
neighborhoods nested one inside the other. They are N2(θ1),N2(θ2) for selected
0 < θ1 < θ2 < 1. For example θ1 = 0.25, θ2 = 0.5. In some versions of this
method values of θ larger than 1 are also used successfully.

Every second step in this method is a “predictor” step, its starting point will
be in the inner neighborhood. The direction to move in this step is computed
by solving the system (7) corresponding to the current solution with the value
of σ = 0. The step length in this step is the largest value of α that keeps the
next point within the outer neighborhood. The gap between the inner and outer
neighborhoods is wide enough to allow this step to make significant progress in
reducing µ.

The step taken after each predictor step is a “corrector” step, its starting
point will be in the outer neighborhood. The direction to move in this step is
computed by solving the system (7) corresponding to the current solution with
the value of σ = 1. The step length in this step is α = 1, which takes it back
inside the inner neighborhood to prepare for the next predictor step.

It has been shown that the sequence of interior feasible solutions obtained in
this method converges to a point in the optimum face. All these path-following
methods have been shown to be polynomial time algorithms.

Each step of these interior point methods requires a full matrix inversion,
a fairly complex task in solving large scale problems, this involves much more
work than a step of the simplex method. But the number of steps required by
these interior point methods is smaller than the number of steps needed by the
simplex method.

5 Gravitational MethodsWith Small Balls (Higher
Dimensional Boundary Methods)

[Chang, 1988], pointed out that the path taken by the simplex algorithm to
solve an LP can itself be interpreted as the path of a point ball falling under
the influence of a gravitational force inside a thin tubular network of the one
dimensional skeleton of the feasible region in which each vertex is open to all
the edges incident at it. See Figure 4 for a 2-dimensional illustration.
[Murty, 1986, 1988] introduced newer methods for LP based on the principle

of the gravitational force, [Chang and Murty, 1989] extended this further. They
consider an LP in the form
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Gravitational

force

Figure 4: The gravitational interpretation of the simplex method. The dashed
lines indicate the path taken by a point ball beginning at the top vertex in-
side a tubular network for the edges of the feasible region of an LP under the
gravitational force pulling it towards the optimum.

maximize πb (8)

subject to πA = c, π ≥ 0
where A is a matrix of orderm×n, π ∈ Rm is the row vector of primal variables.
As explained in Section 1, for problems in this form typically n ≤ m. Its dual is

minimize z(x) = cx (9)

subject to Ax ≥ b

where x ∈ Rn is the column vector of dual variables.
We use the symbols Ai., A.j to denote the i-th row vector, j-th column vector

of the matrix A. We assume that the rows of A have all been normalized so
that ||Ai.|| = 1 for all i, where ||.|| is the Euclidean norm. We also assume that
c W= 0 and that it is normalized so that ||c|| = 1.
The method is applied on (9). We denote its feasible region {x : Ax >

= b} by
K, and its interior {x : Ax > b} by K0. The method needs an initial interior
point x0 ∈ K0. It introduces a spherical drop (we will refer to it as the drop or
the ball) of small radius with center x0 lying completely in the interior of K, and
traces the path of its center as the drop falls under a gravitational force pulling
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everything in the direction −cT . The drop cannot cross the boundary of K, so
after an initial move in the direction −cT it will be blocked by the face of K that
it touches; after which it will start rolling down along the faces of K of varying
dimensions. Hence the center of the drop will follow a piecewise linear descent
path completely contained in the interior of K, but since the drop’s radius is
small, the center remains very close to the boundary of K after the first change
in direction in its path. Therefore the method is essentially a boundary method.
However, unlike the simplex method which follows a path strictly along the one
dimensional boundary of K, this method is a higher dimensional boundary

Gravitational

force

x
0

x
0

Figure 5: A 2-dimensional polytope and its faces on which the ball rolls down
(dashed path) to the optimum.

method in which the path followed remains very close to faces of K of varying
dimensions. See Figures 5, 6, for 2-, 3-dimensional illustrations.
After a finite number of changes in the direction of movement, the drop will

reach the lowest possible point in the direction −cT that it can reach within
K and then halt. If the radius of the drop is sufficiently small, the touching
constraints (i.e., those whose corresponding facets of K are touching the ball)
in (9) at this final halting position will determine an actual optimum solution
of the LP (8). If its radius is not small enough, the direction finding step in the
method at the final halting position with center x∗ yields a feasible solution π̃
of (8) and the optimum objective value in (8) lies in the interval [π̃b, cx∗]. Then
the radius of the drop is reduced and the method continues the same way. In [3]
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Figure 6: The ball rolling (dashed path, with dots indicating where its direction
changes) inside a 3-dimensional polyhedron. Only the faces along which it rolls
to the optimum are shown.

finite termination of the method to find an optimum solution has been proved.
The algorithm consists of one or more stages. In each stage the diameter of

the ball remains unchanged, and consists of a series of iterations. Each iteration
consists of two steps, a step that computes the gravitational direction for moving
the entire ball, and a step in which the step length for the move is computed
and the ball moved. The stage ends when the ball cannot move any further
and halts. In the very first iteration of each stage the ball will be strictly in the
interior of K without touching any of the facets of K. In subsequent iterations
it will always be touching one or more facets of K. We will now describe a
general stage.

A Stage in the Gravitational Method

First Iteration: Let x0 be the present interior feasible solution. The largest
sphere we can construct withinK with x0 as center has radius = min{Ai.x0−bi :
i = 1 to m}. Let B(x0, 6) = {x : ||x − x0|| ≤ 6} be the present ball. In this
iteration we will have 0 < 6 < min{Ai.x0 − bi : i = 1 to m}, so B(x0, 6) is not
touching any of the facets of K.
In this iteration the entire ball is moved in the direction −cT . The step

length is the maximum value of λ satisfying Ai.(x
0 − λcT )− bi ≥ 6 for all i.

So, it is
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γ =

l
∞ if Ai.c

T ≤ 0 for all i
min{Ai.x0−bi−6Ai.cT

: i such that Ai.c
T > 0} otherwise.

If γ = ∞, the objective function in (9) is unbounded below on its feasible
set, and (8) is infeasible, terminate. Otherwise move the center of the ball from
x0 to x1 = x0 − γcT . With the new position B(x1, 6) of the ball go to the next
iteration.

General Iteration r ≥ 1

Let xr−1 be the current interior feasible solution and B(xr−1, 6) the present
ball. Let

J(xr−1, 6) = {i : Ai.xr−1 = bi + 6}, the index set of touching constraints for
B(xr−1, 6)

Q = the matrix consisting of rows Ai. for i ∈ J(xr−1, 6)

G(xr−1, 6) = {y :cy < 0, Ai.y
>
= 0 for all i ∈ J(xr−1, 6)}, the set of descent feasible

directions for the ball B(xr−1, 6).

Step 1: Selecting the Gravitational Direction at xr−1 for moving
the entire current ball B(xr−1, 6)

The SDGM (Steepest Descent Gravitational Method) developed in [3] takes
this direction to be the steepest direction among all those in G(xr−1, 6). This
direction, called the SDGD (steepest descent gravitational direction) at xr−1 is
the optimum solution of

Minimize cy

subject to Qy
>
= 0 (10)

1− yT y >
= 0

This problem is equivalent to

Minimize (c− ηQ)(c− ηQ)T
subject to η

>
= 0 (11)

which is the same as that of finding the nearest point by Euclidean distance to
c in the cone Rpos(Q) = the nonnegative hull of row vectors of Q. This is a
quadratic program, but is expected to be small as the number of variables in it is
equal to the number of touching constraints at xr−1 which is likely to be small.
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Also, this is a special quadratic program of finding the nearest point to c in a cone
expressed as the nonnegative hull of row vectors of a matrix, for which efficient
geometric methods are available [Wolfe, 1974, 1976]; [Wilhelmsen, 1976]; [Murty
and Fathi, 1982].

If η̄ is an optimum solution of (11), let

ȳr−1 =
F
0 if ξ̄ = (c− η̄Q) = 0
−ξ̄T /||ξ̄|| otherwise

then ȳr−1 is an optimum solution of (10).
If ξ̄ = ȳr−1 = 0, then G(xr−1, 6) = ∅, this implies that the drop B(xr−1, 6)

cannot move any further in gravitational descent with gravity pulling everything
in the direction of −cT , hence it halts in the present position, and the method
moves to the final step in this stage.

If ȳr−1 W= 0, it is selected as the gravitational direction for the ball B(xr−1, 6)
to move, and the method goes to Step 2 in this iteration.

Reference [3] also discusses simpler methods for choosing the gravitational
direction for the ball B(xr−1, 6) to move, by solving the nearest point problem
(11) approximately rather than exactly based on efficient geometric procedures
discussed in [Murty and Fathi, 1982].

Step 2: Step length determination and moving the ball: The maxi-
mum step length that the ball B(xr−1, 6) can move in the direction ȳr−1 is the
maximum value of λ that keeps Ai.(x

r−1 + λȳr−1) ≥ bi + 6 for all i = 1 to
m. It is

γr−1 =

l
∞ if Ai.ȳ

r−1 ≥ 0 for all i
min{Ai.xr−1−bi−6−Ai.yr−1 : i such that Ai.y

r−1 < 0} otherwise.

If γr−1 =∞, the algorithm terminates with the conclusion that the objective
function is unbounded below in (9) (in fact the half-line {xr−1+λyr−1 : λ ≥ 0}
is a feasible half-line in K along which z → −∞), and (8) is infeasible. If γr−1
is finite, the center of the drop is moved from xr−1 to xr = xr−1 + γr−1yr−1.
With the ball in the new position B(xr, 6) the method now moves to the next
iteration.

The Final Step in a Stage

Suppose the ball halts in some iteration r with the ball in position B(xr−1, 6).
J(xr−1, 6) is the index set of touching constraints in this iteration, and let η̄r−1

be the optimum solution of (11). Then it can be verified that if we define

π̄i =

F
η̄r−1i for i ∈ J(xr−1, 6)
0 otherwise
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then π̄ = (π̄i) is a feasible solution to (8). In this case both (8) and (9) have
optimum solutions and the optimum objective value z∗ in them satisfies π̄b ≤
z∗ ≤ cxr−1. If the difference cxr−1 − π̄b is sufficiently small there are several
results in LP theory to obtain an optimum solution to (8) from π̄ that require
a small number of pivot steps. Also, let F = {i : π̄i > 0}, and E ⊂ F such
that {Ai. : i ∈ E} is a maximal linearly independent subset of {Ai. : i ∈ F},
and d = (bi : i ∈ E). Let x̂ = xr−1 + ET (EET )−1(d − Exr−1), the orthogonal
projection of xr−1 on the flat {x : Ai.x = bi, i ∈ E}. If x̂ is feasible to (9), then
it is optimal to (9), and π̄ is optimal to (8), terminate the algorithm.
Suppose x̂ is not feasible to (9), then reduce the radius of the ball to half its

present value, and with B(xr−1, 6/2) go to the next stage.

In [3] finite convergence of this algorithm has been proved. In a computa-
tional experiment on LPs with up to 200 variables, an experimental code for
this method performed up to 6 times faster than versions of simplex method
professional software available at that time.

In the simplex method and all the interior point methods discussed earlier,
all the constraints in the problem including any redundant constraints play a
role in the computations (i.e., pivot steps or matrix inversions) in every step.
One of the biggest advantages of the gravitational methods is that in each step
only a small locally defined set of constraints (these are the touching constraints
in that step) play a role in the major computation, and in particular redundant
constraints can never enter the touching set, therefore the computational effort
in each iteration is significantly less than in other methods.

The radius of the ball is kept small, and after the first move in the direction
−cT the ball keeps rolling on the boundary faces of K of various dimensions,
hence as explained earlier this method can be classified as a higher dimensional
boundary method. The worst case complexity of this method when the ball
has positive radius that chages over the algorithm has not been established, but
[Morin, Prabhu, Zhang, 2001] showed that the version of the method with a
point ball having 0 radius or any fixed radius has exponential complexity in the
worst case.

6 A New Predictor-Corrector Type Interior Point
Method Based on a New Simpler Centering
Strategy that Can be Implemented Without
Matrix Inversions

We will now discuss a new interior point method developed recently in [Murty,
2005, 2006]. We have seen that in the gravitational methods discussed in Section
5 using balls of small radius, the path traced by the center of the ball, even
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though it is strictly in the interior of the set of feasible solutions of the LP,
essentially rolls very close to the boundary, hence making the method behave
like a boundary method rather than a truely interior point method.
To make the gravitational method follow a path truely in the central part of

the feasible region and benefit from the long steps towards optimality possible
under it, this new method modifies it by using balls of the highest possible
radius obtained through a special centering strategy.
In the gravitational methods of Section 5 majority of work goes into com-

puting the descent directions for the ball to move. In the new method however,
much of the work is in centering steps. The method considers LPs in the form

Minimize z(x) = cx

subject to Ax ≥ b (12)

where A is a matrix of order m × n. In this form typically m ≥ n. We let
K denote the set of feasible solutions of this LP and K0 = {x : Ax > b} its
interior. The method needs an initial interior feasible solution x0 ∈ K0 to start,
if such a solution is not available, the problem can be modified using an artificial
variable and the big-M augmentation technique into another one for which an
initial interior feasible solution is readily available as explained in Section 4.3.
We assume c W= 0 as otherwise x0 is already an optimum solution of this LP and
0 is the optimum solution of its dual. We normalize so that ||c|| = ||Ai.|| = 1
for all i, here Ai. is the i-th row vector of A.
The method consists of a series of iterations; each consisting of two steps,

a centering step and a descent step. The first iteration begins with the initial
interior feasible solution x0, subsequent iterations begin with the interior feasible
solution obtained at the end of the previous iteration. For any interior feasible
solution x, the radius of the largest ball with center at x that can be constructed
within K is denoted by:

δ(x) = minimum {Ai.x− bi : i = 1 to m}
Also, in this method 6 denotes a small positive tolerance number for “inte-

riorness” (i.e., for δ(x)) for the feasible solution x to be considered an interior
feasible solution. We will now describe the steps in a general iteration.

General Iteration r + 1

Step 1: Centering: Let xr be the current interior feasible solution for
initiating this iteration. With xr as center, the largest ball we can construct
within K has radius δ(xr), which may be too small. To construct a larger ball
inside K this step tries to move the center of the ball from xr to a better interior
feasible solution while keeping the objective value unchanged. So, starting with
xr it tries to find a new position x for the center of the ball in K0 ∩H where
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H = {x : cx = cxr} is the objective plane through xr, to maximize δ(x). The
model for this choice is

Maximize δ

subject to δ ≤ Ai.x− bi, i = 1 to m (13)

cx = cxr

This is another LP with variables (δ, x). It may have alternate optimum
solutions with different x-vectors, but the optimum value of δ will be unique.
If (x̄r, δ̄r) is an optimum solution for it, x̄r is taken as the new center for the
drop, and δ̄r = δ(x̄r) is the maximum radius for the drop within K0 subject to
the constraint that its center lie on K0 ∩H.
But this itself is another LP, this type of model may have to be solved several

times before we get a solution for our original LP, so solving this model (13)
exactly will be counterproductive. But (13) has a very special structure, using
it we discuss procedures to get an approximate solution for it later on.

Step 2: Descent Move Following Centering: Let x̄r denote the center
of the ball selected in Step 1. The ball is B(x̄r, δ(x̄r)). Unlike the gravitational
methods discussed in Section 5 in which the entire ball is moved, this method
does not move the ball B(x̄r, δ(x̄r)) at all, but only uses the center x̄r and its
property of being close to the center of K0 ∩ H . It takes a step of maximum
possible length from x̄r in a descent direction for cx.
If r = 0 (i.e., this is the first iteration in the method), the only descent

direction that we have readily available at this time is −cT , and we use that as
the direction to move from x̄0.
If r ≥ 1, besides −cT we have another descent direction for cx namely the

direction of the path of centers (the path of the center of the drop in its
descent to the optimum face of (12) in this algorithm) at the current center x̄r,
which can be approximated by x̄r− x̄r−1 where x̄r−1 was the center of the drop
in the previous iteration. See Figure 7.
If d ∈ {−cT , x̄r − x̄r−1} is the direction selected for moving from x̄r, we

will move in this direction the maximum distance possible while still remaining
inside K0 which is:

γ = min{−Ai.x̄
r + bi + 6

Ai.d
: i such that Ai.d < 0}

If γ =∞, the objective function is unbounded below in (12), and its dual is
infeasible, terminate the algorithm.
If γ is finite, the decrease in the objective value in this move is |γcd|. Select

the direction d from {−cT , x̄r − x̄r−1} to be the one which yields the maximum
decrease in the objective value in this move. With the point obtained after the
move, xr+1 = x̄r + γd go to the next iteration.
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Figure 7: The two descent directions to move in Step 2 when the center is at
x̄r in an iteration. One is x̄r − x̄r−1 where x̄r−1 is the center in the previous
iteration, another is −cT (here shown as pointing downsouth). The dashed lines
are the objective planes in the two iterations.

Other Descent Directions

Suppose r iterations have been carried out so far. Then x̄q − x̄p is a descent
direction for the objective function in (12) for all 1 ≤ p < q ≤ r. Among all
these descent directions, the ones obtained using recent pairs of centers may have
useful information about the shape of the feasible region between the objective
value at present and at its optimum. So, using a weighted average of these
descent directions as the direction to move next (instead of using either −cT or
x̄r − x̄r−1 as discussed above) may help in maximizing the improvement in the
objective value in this move. The best weighted average to use for maximum
practical effectiveness can be determined using computational experiments.

Convergence Results

We will summarize the main convergence results on this algorithm under the

37



assumption that centering is carried to optimality in each iteration. Proofs are
not given, for them see [Murty, 2006].
Here t is a parameter denoting the objective value cx. tmin, tmax denote the

minimum and maximum values of cx over K. For any t between tmin and tmax,
δ[t] denotes the maximum value of δ(x) over x ∈ K0 ∩ {x : cx = t}, it is the
radius of the largest sphere that can be constructed within K with its center
restricted to K0 ∩ {x : cx = t}, it is the optimum value of δ in the LP

δ[t] = Maximum value of δ

subject to δ −Ai.x ≤ −bi, i = 1, . . . , n (14)

cx = t

The set of touching constraints at t is the set of all inequality constraints
in (14) satisfied as equations by any of the optimum solutions of (14).
The essential touching constraint index set at t is the set J(t) =

{i : Ai.x = bi + δ[t]} for every optimum solution (δ[t], x) of (14)}. The i-th
constraint in (12), (14) is said to be in the set of essential touching constraints
at t if i ∈ J(t).

We assume that the center selected in the centering strategy is an x(t) sat-
isfying the property that the facets of K touching the ball B(x(t), δ[t]) (the ball
with x(t) as center and δ[t] = δ(x(t)) as radius) are those corresponding to the
essential touching constraint set J(t).

The Path of Centers P

In primal-dual path following interior point algorithms discussed in Section
4.5, we defined the central path C in the space of primal, dual variables, para-
metrized by the parameter τ (the common complementary slackness violation
parameter, for points on the central path this violation is equal in all comple-
mentary pairs in this primal, dual pair of LPs). Analogous to that we have the
path {x(t) : tmax ≥ t ≥ tmin} in the space of the variables in the original LP (12)
being solved in this algorithm, parametrized by the parameter t denoting the
objective function value. We will call this the path of centers in this method,
and denote it by P . We also have the associated path {δ[t] : tmax ≥ t ≥ tmin}
of the radii of the balls, which is piecewise linear concave (see Theorem 2 next).
Notice the differences. The point on the central path C is unique for each posi-
tive value of the parameter τ . The point x(t) on the path of centers P however
may not be unique.

Theorem 2: δ[t] is a piecewise linear concave function defined over tmin ≤
t ≤ tmax.

Let t∗ = the value of t where δ[t] attains its maximum value. So, δ[t] is
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monotonic increasing as t increases from tmin to t
∗, and from t∗ it is monotonic

decreasing as t increases on to tmax.

Theorem 3: If J(t) remains the same for all t1 ≤ t ≤ t2, then δ[t] is linear
in this interval.

Theorem 4: For t in the interval tmin to t
∗, x(t), an optimum solution of

(14), is also an optimum solution of

minimize cx

subject to Ax ≥ b+ eδ[t]

where e is the column vector of all 1s of appropriate dimension. And for t in
the interval t∗ to tmax, x(t) is also an optimum solution of

maximize cx

subject to Ax ≥ b+ eδ[t]

Theorem 5: Suppose for t1 ≥ t ≥ t2 the index set of essential touching
constraints J(t) does not change. Then the method will descend from objective
value t1 to t2 in no more than three iterations.

Theorem 6: As t, the value of cx, decreases to tmin, the set of essential
touching constraints can change at most 2m times.

Theorems 5, 6 together show that this algorithm is a strongly polynomial
algorithm in terms of the number of centering steps, if centering is carried out
exactly. So, if the centering steps are carried to good accuracy, these results
indicate that this method will have superior computational performance.

Procedures for Getting Approximate Solutions to Centering Steps
Efficiently

Consider the centering step in iteration r + 1 of the method when xr is
the interior feasible solution at the start of this iteration. We discuss three
procedures for solving this step approximately. Procedures 1, 2 use a series of
line searches on K0 ∩ {x : cx = cxr}. Each line search involves only solving a
2-variable linear programming problem, so can be solved very efficiently without
complicated matrix inversions. So, these searches generate a sequence of points
which we denote by x̂1, x̂2, . . . in K0 ∩ {x : cx = cxr} beginning with x̂1 = xr,
along which δ(x̂s) is strictly increasing.
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Let x̂s be the current point in this sequence. Let T (x̂s) = {q : q ties for
the minimum in {Ai.x̂s − bi : i = 1 to m}}. In optimization literature, when
considering a line search at x̂s in the direction P , only moves of positive step
length α leading to the point x̂s + αP are considered. Here our step length α
can be either positive or negative, so even though we mention P as the direction
of movement, the actual direction for the move may be either P or −P . With
x̂s + αP as the center, the maximum radius of a ball inside K has radius

f(α) = min{Ai.(x̂s + αP )− bi : i = 1, . . . ,m}
Since we want the largest ball inside K with its center inK0∩{x : cx = cxr},

we will only consider directions P satisfying cP = 0, and call such a direction
P to be a

profitable direction to move at x̂s if f(α) increases as α changes
from 0 to positive or negative values (i.e., max{f(α) over α} is at-
tained at some α W= 0).
unprofitable direction to move at x̂s if max{f(α) over α} is at-
tained at α = 0.

We have the following results.

Result 1: x̂s is an optimum solution for the centering problem (14) iff 0 is
the unique feasible solution for the following system in P

Ai.P ≥ 0 for all i ∈ T (x̂s) (15)

cP = 0

Any nonzero solution to this system is a profitable direction to move at x̂s

for this centering step. Hence a direction P is a profitable direction to move at
x̂s if cP = 0 and all Ai.P for i ∈ T (x̂s) have the same sign.

Result 2: Suppose P is a profitable direction to move at x̂s, and let ᾱ
denote the value of α that maximizes f(α), and θ̄ = f(ᾱ). Then (θ̄, ᾱ) is an
optimum solution of the following 2-variable LP in which the variables are θ,α.

Maximize θ

subject to θ − αAi.P <
= Ai.x̂

s − bi 1 = 1, . . . ,m (16)

θ
>
= 0, α unrestricted in sign.

The optimum solution of (16) can be found by applying the simplex algo-
rithm. Transform (16) into standard form. Let u1, . . . , um denote the slack vari-
ables corresponding to the constraints in (16) in this order. Then (u1, . . . , uq−1,
θ, uq+1, . . . , um) is a feasible basic vector for this standard form for q ∈ T (x̂s).
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The BFS corresponding to this basic vector for the standard form corresponds
to the extreme point (δ(x̂s), 0) of (16) in the (θ,α)-space. Starting from this
feasible basic vector, the optimum solution of (16) can be found efficiently by
the primal simplex algorithm with at most O(m) effort. It may be possible to
develop even more efficient ways for finding the optimum value of α in (16), that
value is the optimum step length for the move at x̂s in the profitable direction
P .

Using these results, we discuss two procedures for approximating the cen-
tering problem (16).

Procedure 1 for Getting an Approximate Solution to the Centering
Step: Since our goal is to increase the minimum distance of x to each of the
facetal hyperplanes of K, this procedure considers only moves in directions

H
0

x
0

x
*

K

F
1

Figure 8: Moving the center from x0 along the direction P.1 to x
∗, leads to a

larger ball inside K.

perpendicular to the facetal hyperplanes of K, these are the directions ATi. for i
= 1 to m. Let P.i = (I − cT c)ATi. (where I is the unit matrix of order n), it is
the orthogonal projection of ATi. on {x : cx = 0}.
This procedure looks for profitable directions to move at current point x̂s
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only among the set {P.1, . . . , P.m}. If a profitable direction P in this set is found,
it finds the optimum solution (θ̄, ᾱ) of (16) with this P , takes x̂s+1 = x̂s + ᾱP
if ᾱ is finite, and continues the same way with x̂s+1 as the new point in the
sequence. See Figure 8.
If ᾱ = ∞, then the objective value in the original LP (12) is unbounded

below and its dual infeasible, and so the whole method terminates.
This procedure stops when there are no profitable directions in the set {P.1,

. . . , P.m}, or when the improvement in the radius of the ball becomes small.
When there are several profitable directions to move at the current point x̂s

in the set {P.1, . . . , P.m} in this procedure, efficient selection criteria to choose
the best among them can be developed. In fact the best may be among the P.i
that correspond to i that tie for the minimum in δ(x̂s) = min{Ai.x̂s− bi : i = 1
to m}, or a weighted average of these directions (even though this direction is
not included in our list of directions to pursue).

As can be seen, the procedure used in this centering strategy does not need
any matrix inversion, and only solves a series of 2-variable LPs which can be
solved very efficiently.

Procedure 2 for Getting an Approximate Solution to the Centering
Step: We noticed that at the beginning of solving this centering step, T (x̂s)
for small s has small cardinality and usually the set of row vectors {c,Ai. for
i ∈ T (x̂s)} tends to be linearly independent. Whenever this set of row vectors
is linearly independent, a profitable direction to move at x̂s can be obtained by
solving the following system of linear equations in P

Ai.P = 1 for each i ∈ T (x̂s)
cP = 0

This system has a solution because the coefficient matrix has full row rank.
Finding a solution to this system of course requires one matrix inversion oper-
ation.
Using a solution P of this system as the profitable direction to move has the

advantage that if the next point in the sequence is x̂s+1 then the corresponding
set T (x̂s+1) ⊃ T (x̂s). The same process can be continued if {c, Ai. for i ∈
T (x̂s+1)} is again linearly independent. This process can be continued until we
reach a point x̂u for which {c, Ai. for i ∈ T (x̂u)} is linearly dependent. At that
stage this procedure shifts to Procedure 1 and continues as in Procedure 1.

Procedure 3 for Getting an Approximate Solution to the Centering
Step: Suppose the value of the objective function at the current interior feasible
solution is t. Then the centering step at it is to

maximize δ(x) = min {Ai.x−bi : i = 1 to m} subject to cx = t.
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This is a nonsmooth optimization problem, efficient schemes for solving such
max-min problems have been developed in non-smooth convex minimization
literature. One good example is [Nestrov, 2005], which can be used to solve it.
Also, the effectiveness of Procedure 1 can be improved by including in it some
of the line search directions used in these methods.

Numerical example: We apply one iteration of this method on the fer-
tilizer product mix problem (1) of Section 1.4 to illustrate the method, both
numerically and with a figure. We will use Procedure 1 for the centering step.
Here is the problem in minimization form.

Minimize z = −15x1 − 10x2
subject to 1500− 2x1 − x2 ≥ 0

1200− x1 − x2 ≥ 0

500− x1 ≥ 0

x1 ≥ 0

x2 ≥ 0

Normalizing the coefficient vectors of all the constraints and the objective
function to Euclidean norm 1, here it is again:

Minimize z = −0.832x1 − 0.555x2
subject to 670.820− 0.894x1 − 0.447x2 ≥ 0

848.530− 0.707x1 − 0.707x2 ≥ 0 (17)

500− x1 ≥ 0

x1 ≥ 0

x2 ≥ 0

The Centering Step

Let K denote the set of feasible solutions, and let x0 = (10, 1)T be the ini-
tial interior feasible solution. When we plug in x0 in the constraints in (17),
the left hand side expressions have values 661.433, 840.753, 490, 10, 1 respec-
tively. So, the radius of the largest ball inside K with x0 as center is δ0 =
min{661.433, 840.753, 490, 10, 1} = 1.
The objective plane through x0 is the straight line in R2 defined by−0.832x1−

0.555x2 = −8.875. This is the straight line joining (10.667, 0)T and (0, 15.991)T
in the x1, x2-plane. So, the only direction on it is P.1 = (10.667,−15.991)T .
Moving from x0 in the direction of P.1 a step length α leads to the new point
(10 + 10.667α, 1 − 15.991α)T . Finding the optimum step length α leads to the
following 2-variable LP in variables θ,α:
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θ α

1 2.388
<
= 661.433

1 −3.765 <
= 840.753

1 10.667
<
= 490

1 −10.667 <
= 10

1 15.991
<
= 1

1 0 Maximize

θ
>
= 0, α unrestricted

Since the minimum RHS constant in this problem occurs in only one row,
from Result 1 we know that the optimum value of α in this problem will be
nonzero. Actually the optimum solution of this problem is (θ̄, ᾱ)T = (6.4,−0.338)T .
See Figure 9. The new position for the center is x̂1 = x0−0.338P.1 = (10, 1)T −
0.338(10.667,−15.991)T = (6.4, 6.4)T , and the maximum radius ball with it as
center has radius 6.4. Since P.1 is the only direction in K ∩ {x : cx = cx0}
in this case, this ball is the maximum radius ball inside K with center on the
objective plane through x0.
If we try to get a larger ball by moving from x1 in the direction P.1 a step

length of α, it can be verified that in the 2-variable LP to find the optimum
step length α, the entries in the RHS vector are: 662.238, 839.48, 493.6, 6.4,
6.4; and the coefficient vector of α remains the same as in the above table. In
this problem the minimum RHS constant occurs in both rows 4 and 5; and the
coefficients of α in these two rows have opposite signs, indicating by Result 1
that the optimum value for step length α will be 0. This indicates that x̂1 is
the best position for the center of the ball on the objective plane through x0 in
this problem, which in the algorithm is denoted by x̄0.

Descent Move Following Centering

The current center is x̄0 = (6.4, 6.4)T . In this initial iteration, the only
descent direction we have available at x̄0 is −cT = (0.832, 0.555)T . Moving from
x̄0 a step length γ in the direction −cT leads to the point (6.4 + 0.832γ, 6.4 +
0.555γ)T . Taking the tolerance 6 = 1, we see that the maximum step length is
γ = min{666.571, 854.72, 592.067} = 592.067. Fixing γ = 592.067, we get the
new interior feasible solution x1 = (499, 335)T .
With x1, we need to go to the next iteration and continue in the same way.

Figure 9 illustrates both the centering step carried out beginning with the initial
interior feasible solution x0, and the descent move carried out here.
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Figure 9: Figure (not drawn to scale) shows feasible region K with 5 facets,
each has an arrow pointing its feasible side. Only a small sphere of radius 1 can
be drawn inside K with initial point x0 as center. Dashed line through x0 is the
objective plane, centering strategy moves point to x̄0 = (6.4, 6.4)T on this plane.
With x̄0 as center, a sphere of radius 6.4 can be inscribed inside K. The descent
move from x̄0 in Step 2 in direction −cT (dotted line) leads to x1 = (499, 335)T
with objective value -10835. The dashed line through x1 is the objective plane
{x : −15x1 − 10x2 = −10835}. Another iteration begins with x1.
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Some Advantages of This Method

Redundant constraints in a linear program can effect the efficiency for solving
it by the simplex method, or the earlier interior point methods. In fact in
[Deza, Nematollahi, Peyghami, Terlaky, 2004] they show that when redundant
constraints are added to the Klee-Minty problem over the n-dimensional cube,
the central path in these methods takes 2n − 2 turns as it passes through the
neighborhood of all the vertices of the cube before converging to the optimum
solution.

Since gravitational methods and this method operate only with the touching
constraints, their performance is not affected by redundant constraints. Also,
redundant constraints in (12) do not correspond to facets of K. So, in the
centering step, having redundant constraints in (12) just adds some additional
directions P.i in the set of directions used in the centering Procedure 1. Pro-
gramming tricks can be developed for efficiently selecting promising directions
in this set to search for improving the value of f(α) in this procedure, and keep
this centering procedure and this method efficient.
Also, since this method needs no matrix inversions when Procedure 1 is used

for centering, it can be used even when A is dense.

Interpretation as a Predictor-Corrector Path-Following Interior
Point Method

This method is a path-following interior point method that tries to follow
the path of centers P defined above, just as the methods discussed in Section
4.5 try to follow the central path C defined there. This method is like the
predictor-corrector path-following method PC discussed in Section 4.5. In each
iteration of this method, Step 1 (the centering step) is like a corrector step, it
tries to move the current interior feasible solution towards the path of centers P
while keeping the objective value constant, using line searches based on solving
2-variable LP models if Procedure 1 is employed. Step 2 (the descent step) is
like a predictor step moving the longest possible step in a descent direction.
The central path of Section 4.5 depends on the algebraic representation of

the set of feasible solutions through the constraints in the problem being solved ,
and may become very long and crooked if there are many redundant constraints
in the model. The path of centers P followed by this algorithm however, is
unaffected by redundant constraints in the model and only depends on the set
of feasible solutions K of the problem as a geometric set.

Relation to the Geometric Method of Section 4.1

We will now show that this method can be viewed as computationally dupli-
cating the geometric algorithm for solving 2-variable LPs discussed in Section
4.1. In that method, the graph of the feasible region K is drawn on paper, a
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point x0 ∈ K is selected visually, and the straight line z(x) = cx = cx0 (objec-
tive plane through x0) is drawn. Looking at the picture of the feasible region,
the objective plane is moved parallel to itself in the desirable direction as far as
possible until any further move will make the line loose contact with the feasible
region K. The intersection of K with the final position of the line is the set of
optimum solutions of the LP.
Due to lack of visibility in higher dimensional spaces to check if the objective

plane can be moved further in the desirable direction while still keeping its
contact with the feasible region, this simple geometric method could not be

generalized to dimensions
>
= 3. In this method, the centering step guarantees

that in the descent step, the objective plane through the center x̄r of the current
ball B(x̄r, δ(x̄r)) can move a distance of δ(x̄r) in the descent direction and still
keep its contact with the feasible region. Thus this method can be viewed as a
generalization of the objective plane moving step in the geometric method for
two dimensional LPs.

7 An Iterative Method for LP

The name iterative method usually refers to a method that generates a se-
quence of points using a simple formula for computing the (r + 1)th point in
the sequence as an explicit function of the rth point: like ξr+1 = f(ξr). An
iterative method begins with an initial point ξ0 (often chosen arbitrarily, or
subject to simple constraints that are specified, such as ξ0 ≥ 0), and generates
the sequence ξ0, ξ1, ξ2, . . . using the above formula.
Their advantage is that they are extremely simple and easy to program

(much more so than the methods discussed so far) and hence may be preferred
for tackling very large problems lacking special structure. A variety of iterative
methods have been developed for LP and shown to converge to an optimum
solution in the limit under some assumptions. But so far these methods have
not been popular because in practice then convergence rate has been observed
to be very slow.
As an example, we discuss an iterative method known as the saddle point

algorithm recently developed by [Yi, Choi, Saigal, Zhu and Troutt, 1999] (see
also [Kallio and Rosa, 1999], and [Choi, 2001] ) that shows promise. They
consider:

the primal LP: minimixe z = cx, subject to Ax = b, x ≥ 0
and the dual: maximize bT y, subject to AT y ≤ cT

where A is a matrix of order m × n. The Lagrangian function for this primal,
dual pair of LPs is L(x, y) = cx− (Ax− b)T y defined over x ∈ Rn+, y ∈ Rm.
Starting with an arbitrary (x0, y0) satisfying x0 ≥ 0 and y0 ∈ Rm, this

algorithm generates a sequence of points (xr, yr) always satisfying xr ≥ 0, r =
0, 1, . . .. For r = 0, 1, . . . we define corresponding to (xr, yr)
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the dual slack vector sr = cT −AT yr = ∇xL(xr, yr), and the primal
constriaint violation vector vr = b−Axr = ∇yL(xr, yr).

In (xr, yr), even though xr ≥ 0, vr may be nonzero, and sr may not be
nonnegative, so xr may not be primal feasible and yr may not be dual feasible.

The pair (x̄, ȳ) is said to be a saddle point for this primal, dual pair of LPs
if

L(x̄, y) ≤ L(x̄, ȳ) ≤ L(x, ȳ) for all x ≥ 0, and for all y.
In LP theory these conditions are called saddle point optimality conditions, if

they are satisfied (x̄, ȳ) is called a saddle point for this primal, dual pair of LPs,
and then x̄ is an optimum solution for the primal, and ȳ is an optimum solution
for the dual. The aim of this algorithm is to generate a sequence converging to
a saddle point.
For any real number γ define γ+ = maximum{γ, 0}. For any vector ξ = (ξj)

define ξ+ = (ξ+j ). We will now describe the general iteration in this algorithm.
α > 0,β > 0 are two step length parameters used in the iterative formula,
typical values for them are: α (step length parameter in the x-space), β (step
legth parametr in the y-space) both equal to 10.

General Iteration r + 1

Let (xr, yr) be the current point in the sequence. Compute xrI = (xr −
αsr)+, yrI = yr + βvr, frx = L(xr, yr) − L(xrI , yr), fry = L(xr, yrI ) − L(xr, yr),
fr = frx + fry.

It can be shown that frx, f
r
y are both ≥ 0. If fr = 0, then (xr, yr) is a saddle

point, terminate the algorithm.
If fr > 0, then compute srI = c

T − AT yrI , vrI = b − AxrI , ρr = fr/(||srI ||2 +
||vrI ||2), where ||.|| denotes the Euclidean norm. Let xr+1 = (xr + ρrs

r
I)
+,

yr+1 = yr + ρrv
r
I . With (x

r+1, yr+1) as the new current pair, go to the next
iteration.

Under the assumption that both the primal and dual have feasible solutions,
this algorithm has been proved to generate a sequence converging to a saddle
point. In implementing this algorithm, instead of keeping the step length para-
meters α,β fixed, their values can be chosen by line searches to optimize L(x, y)
(minimize with respect to x, maximize with respect to y).

8 Summary/Conclusion

We traced the history of mathematical models involving systems of linear con-
straints including linear inequalities, and linear programs; and algorithms for
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solving them. All existing methods in use for solving them need complicated ma-
trix inversion operations, and are suitable for solving large scale problems only
when the data is very sparse. These methods encounter difficulties for solving
large scale dense problems, or even those that only have some important dense
columns. We also discussed in Section 6 a new efficient descent method that
does not need matrix inversion operations, that shows great promise for solving
large scale problems fast.

9 References

[1] D. A. Bayer and J. C. Lagarias, 1989. The Nonlinear Geometry of Linear
Programming, I. Affine and Projective Scaling Trajectories, II. Legendre
Transform Coordinates and Central Trajectories, III. Projective Legen-
dre Transform Coordinates and Hilbert Geometry”. Transactions of the
American Mathematical Society 314:499-581, 1989.

[2] S. Y. Chang, 1988. The Steepest Descent Gravitational Method for
Linear Programming. Ph. D. dissertation, University of Michigan, Ann
Arbor, MI.

[3] S. Y. Chang and K. G. Murty, 1989. The Steepest Descent Gravitational
method for Linear Programming. Discrete Applied Mathematics 25:211-
239.

[4] B. Choi, 2001. Theory and Algorithms for Semidefinite Programming.
Ph.D. Dissertation, University of Michigan, Ann Arbor.

[5] G. B. Dantzig, 1963. Linear Programming and Extensions. Princeton
University Press, NJ.

[6] G. B. Dantzig and M. N. Thapa, 1997. Linear Programming, 1. Intro-
duction. Springer-Verlag New York.

[7] A. Deza, E. Nematollahi, R. Peyghami, T. Terlaky, 2004. The Central
Path Visits All the Vertices of the Klee-Minty Cube. AdvOL-Report
No. 2004/11, McMaster University, Hamilton, Ontario, Canada.

[8] I. I. Dikin, 1967. Iterative Solution of Problems of Linear and Quadratic
Programming. Soviet Mathematics Doklady, 8:674-675.

[9] J. Farkas, 1895. Über die Anwendungen des mechanischen Princips
von Fourier. Mathematische und natur wissenschaftliche Berichte aus
Ungarn, 12:263-281.

[10] D. Gale, 1960. The Theory of Linear Economic Models. McGraw-Hill,
NY.

[11] P. Gordan, 1873. Ueber die Auflösung linearer Gleichungen mit reellen
Coefficienten. Mathematische Annalen, 6:23-28.
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