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Abstract

This paper provides an introduction to complementarity problems, with an emphasis
on applications and solution algorithms. Various forms of complementarity problems
are described along with a few sample applications, which provide a sense of what
types of problems can be addressed effectively with complementarity problems. The
most important algorithms are presented along with a discussion of when they can
be used effectively. We also provide a brief introduction to the study of matrix
classes and their relation to linear complementarity problems. Finally, we provide
a brief summary of current research trends.

Key words: complementarity problems,variational inequalities, matrix classes

1 Introduction

The distinguishing feature of a complementarity problem is the set of comple-
mentarity conditions. Each of these conditions requires that the product
of two or more nonnegative quantities should be zero. (Here, each quantity
is either a decision variable, or a function of the decision variables). Comple-
mentarity conditions made their first appearance in the optimality conditions
for continuous variable nonlinear programs involving inequality constraints,
which were derived by Karush in 1939. But the significance of complemen-
tarity conditions goes far beyond this. They appear prominently in the study
of equilibria problems and arise naturally in numerous applications from eco-
nomics, engineering and the sciences. There is therefore a great deal of prac-
tical interest in the development of robust and efficient algorithms for solving
complementarity problems.
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The early motivation for studying the Linear Complementarity Problem
(LCP) was because the KKT optimality conditions for linear and Quadratic
Programs (QP) constitute an LCP of the form (1), or a mixed LCP of the
form (2) (see next section for statements of these problems). However, the
study of LCP really came into prominence in 1963 when Howson, in his Ph.D.
thesis, and Lemke and Howson [10] showed that the problem of computing a
Nash equilibrium point of a bimatrix game can be posed as an LCP of
the form (1), and developed an elegant and efficient constructive procedure
(the complementary pivot method) for solving it. In 1968, the unification
of linear and quadratic programs and bimatrix games under the LCP fomat by
Cottle and Dantzig was seen as a fundamental breakthrough, and the study
of complementarity problems suddenly blossomed.

The Nonlinear Complementarity Problem (NCP) was introduced by
Cottle in his Ph.D. thesis in 1964, and the closely related Variational In-
equality Problem (VIP) was introduced by Hartman and Stampacchia in
1966, primarily with the goal of computing stationary points for nonlinear
programs. While these problems were introduced soon after the LCP, most of
the progress in developing algorithms for these problems did not begin until
the late 1970s.

Well over a thousand articles and several books have been published on the
subject of complementarity problems. We limit the scope of this paper. First
we describe what complementarity problems are and try to give a sense of
what types of problems can be addressed effectively within this framework.
This includes a description of the various types of complementarity problems
in Section 2, as well as a discussion of applications in Section 3. In Sections
4 and 5 we describe the most important computational algorithms for solving
complementarity problems and discuss when these methods are most likely to
be successful. In Section 6, we give a brief introduction to the study of matrix
classes, which represents a very rich field within LCP. Finally, in Section 7, we
discuss some of the current trends in complementarity research. For a detailed
comprehensive treatment of the LCP, we refer the reader to the books by
Murty [12] and Cottle, Pang, and Stone [3]. For a general treatment of NCP
and VIP we recommend the reference [8]. Additional references are given in
[2], as well as in the references mentioned above.

2 The Various Complementarity Problems

The simplest and most widely studied of the complementarity problems is
the LCP, which has often been described as a fundamental problem because
the first order necessary optimality conditions for QP involving inequality
constraints in nonnegative variables form an LCP: given M € R™"*" ¢ € R",



find w = (w;) € R,z = (z;) € R" satisfying

w—Mz=¢q;, w,z>0; w'z=0. (1)

We denote this LCP by the symbol (g, M). The name comes from the third
condition, the complementarity condition which requires that at least one vari-
able in the pair (wj, z;) should be equal to 0 in the solution of the problem, for
each j = 1 to n. This pair is therefore known as the jth complementary pair
in the problem, and for each j, the variable w; is known as the complement
of z; and vice versa. The LCP (¢, M) is said to be monotone if the matrix M
is positive semidefinite (PSD).

A slight generalization of the LCP is the mixed LCP (mLCP): given A €
R Be R™™ C e R™™ De R"" a€ R",be R", findu e R",v € R™
satisfying

a+Au+Cv=0, b+ Du+Bv>0, v>0, v (b+ Du+ Bv) =0. (2)

The mLCP is a mixture of the LCP and a system of linear equations, which
correspond to the unrestricted variables u. The first order necessary optimality
conditions for a quadratic program involving some equality and some inequal-
ity constraints are in this form. In (2), if A is nonsingular, then u can be
eliminated from it using u = —A~"(a + Cv) and then (2) becomes the LCP
(b— DA 'a,B— DA'C). This mLCP is said to be monotone if the matrix

AC
D B

in (2) is PSD.

Another generalization of the LCP is the horizontal LCP or hLCP: given
N e R M € R"",q € R" find w € R", 2 € R" satisfying

Nw—-Mz=¢q w,z>0 wlz=0 (3)

The hLCP (3) becomes the standard LCP if N = I. Also, if N is nonsingular,
then (3) is equivalent to the LCP (N~'q, N"'M). The hLCP is said to be
monotone if for any two pairs of points (w', 2') and (w?, 2?) satisfying Nw —
Mz = q we have (w' —w?)" (2! —2%) > 0. Note that if N = I, this is equivalent
to the matrix M being PSD.

For each ¢+ = 1 to n let m; be a positive integer, and m = > 7", m;. The
Vertical LCP or VLCP is another generalization of the LCP for which the



input data are M € R™*", q € R™ partitioned as follows:

Ml ql

where for each i = 1 to n, M* € R™*" ¢' € R™. Given this data, the VLCP
is to find z = (2;) € R™ satisfying

g+Mz>0, z>0, ziH(qi+Miz)j:0, i=1,...,n. (4)

J=1

If m; =1 for all 7, then this VLCP becomes the standard LCP.

In the spirit of the VLCP, we can define a general horizontal linear com-
plementarity problem (HLCP) involving a vector ¢ € R", a square ma-
trix N € R™ ", a rectangular matrix M € R"™ ™ where m > n, and a par-

tition of the vector of variables z = (2',...,2")7 € R™ where each 2 is
again a vector consisting of one or more variables. Given this data, the prob-
lem is to find a w = (w;) € R" and a 2z = (2},...,2")T € R™ satisfying

Nw — Mz = q,w > 0,z > 0, and for each ¢ at least one variable among
{w;, 2'} is 0. Clearly (3) is a special case of this problem.

Then there is the generalized LCP (GLCP) with data A, B € R™*",C €
R™4 and ¢ € R™. The problem is to find (z € R", s € R", z € RY) satisfying
Ar+ Bs+Cz=q, (z,8,2) >0, 2Ts=0.

Now we will present some nonlinear generalizations of the LCP. The most
important of these is the NCP: given a mapping F'(z) = (Fj(z)) : R* — R",
find a z € R" satisfying

z2>0, F(z)>0, 2/ F(z) =0. (5)

If F(2) is the affine function ¢ + Mz, then (5) becomes the LCP (¢, M).

A further generalization of the NCP is the VIP: given a mapping F(z) =
(Fi(z)) : R — R", and ) # K C R", find a 2z* € K satisfying

(y—2)TF(z)>0 forallyc K (6)

denoted by VI(K, F). If K = {2z : z > 0}, then the z* solving (6) also solves
(5). Also, if K is polyhedral and F' is affine, it can be verified that VI (K, F) is



an LCP. When K is a rectangular region defined by K := [T’ [l;, u;], —00 <
l; <u; <oo,i=1,...,n, this is called the Box Constrained VIP (BVIP),

which is also commonly referred to as the (nonlinear) Mixed Complemen-
tarity Problem (MCP).

For any subset K C R", its polar cone, denoted by K*, is defined to be
{y € R* : 27y > 0 for all z € K}. Another generalization of the NCP
is the complementarity problem over a cone: given a mapping F(z) =
(Fi(z)) : R — R™ and a cone K in R", find a z € K satisfying F(z) € K*,
and 2" F(z) = 0. This problem, denoted by CP(K, F), reduces to NCP (5)
if K = R". Also, since K is a cone, CP(K,F) and VI(K, F) have the same
solution set.

3 Example Applications

Complementarity problems arise naturally in the study of many phenomena
in economics and engineering. A comprehensive and excellent treatment of
applications of complementarity problems is provided in [6]. Additionally, a
large collection of problems from a variety of application areas can be found
in the MCPLIB library of test problems [4]. Applications of complementarity
from the field of economics include general Walrasian equilibrium, spatial price
equilibria, invariant capital stock, and game-theoretic models. In engineering,
complementarity problems arise in contact mechanics, structural mechanics,
obstacle and free boundary problems, elastohydrodynamic lubrication, and
traffic equilibrium.

As a rule of thumb, the complementarity framework should be considered
whenever the system being studied involves complementary pairs of variables
(that is, where one or the other member of each pair must be at its bound).
For example, in contact mechanics, the force between two objects is comple-
mentary to the distance between the two objects; there is no force unless the
distance between the objects is zero. As another example, in Walrasian equi-
librium problems, the price of a commodity is complementary to excess supply
of the commodity; if there is excess supply, the price will fall either until the
demand rises to eliminate the excess supply, or until the price is zero.

3.1 Piecewise Linear Equations

Consider the LCP (g, M). For each z € R" define h;(z) = min{z;, (¢ + Mz);},
and let h(z) = (h;(2)). Then h(z) : R* — R™ is a piecewise linear concave func-
tion, and clearly, solving the LCP (¢, M) is equivalent to solving the system of



piecewise linear equations h(z) = 0. Conversely, under a mild nonsingularity
assumption, any piecewise linear system of equations can be reformulated as
a linear complementarity problem.

In the same way, the VLCP (4) is equivalent to the system of piecewise lin-
ear equations H(z) = 0 where H(z) = (H;(z)) and H;(z) = min{z;, (¢" +
Miz)i, ..., (¢" + M'2)y,} for i =1 to n.

3.2 An Application Involving a Smallsize Conver QP Model

Since the optimality conditions for convex QP form an LCP or mLCP, any
application involving convex QP offers an application for LCP or mLCP. We
present a recent application, described by Murty [13], in supply chain man-
agement, which is becoming increasingly popular.

An important issue in supply chain management is to forecast the demand for
each item and to determine when to place orders for it and the order quantities.
Classical analysis in the inventory management literature assumes that the
distribution of demand is known and typically assumes this distribution to be
normal. This assumption confers many theoretical advantages, the principal
among which is the fact that the normal distribution is fully characterized
by only two parameters, the mean and the standard deviation. So, when the
distribution changes, one just has to change the values of these two parameters
in the models.

In recent times, in the computer and electronics industries and many other
manufacturing industries, the rapid rate of technological change is resulting
in new products replacing the old periodically. The result is that product life
cycles are shortened. The short life cycle itself is partitioned into three distinct
periods. A growth period at the beginning of life sees the demand for the item
growing due to gradual market penetration, reaching its peak by the end of
this period. This is followed by a short stable period during which the demand
for the item is relatively stable. This is followed by the final decline period
during which the demand for the item undergoes a steady decline until it is
replaced at the end by a technologically superior one. Because of this constant
change, classical models based on a single stable demand distribution are not
suitable. We need to use models that frequently and periodically update the
demand distribution based on recent data.

Approximating demand distributions by something like the normal or gam-
ma distributions, which are characterized by two or fewer parameters, allows
us the freedom to change only those few parameters when updating the de-
mand distribution. This appears quite inadequate to capture all the dynamic
changes occurring in the shapes of demand distributions. A better strategy



is to approximate the demand distribution by its histogram from past data.
In this approximation, called the discretized demand distribution, the range of
variation of the demand is divided into a convenient number (about 10 to 25 in
practice) demand intervals, and the probability associated with each interval
in the initial distribution is taken to be its relative frequency among historical
data.

Let I,...,I, be the demand intervals and p = (pi,...,pn)T the vector of
probabilities associated with them in the present distribution. For ¢ = 1 to
n, let r; be the relative frequency in I; over the most recent k periods (if the
period is a day for example, k& could be about 50) at the time of updating.
Let x = (x1,...,7,)T denote the unknown current (i.e., updated) probability
vector. r = (rq,...,7,)T is an estimate of z, but it is based on too few (only k)
observations. We can take an estimate of x to be the § which is the optimum
solution of the following quadratic program. This 7 will be used in place of p
in the next planning period.

min B30 (pi—vi)* + (1= B) Xy (ri — ui)?

subject to r,yi=1, andall y; >0

where 0 < 8 < 1 is a weight. Typically 8 = 0.9 works well. The reason
for choosing the weight of the second term in the objective function to be
small is because the relative frequency vector r is based on a small number
of observations. Since the quadratic objective function in this model is the
weighted sum of squared forecast errors over all demand intervals, it has the
effect of tracking gradual changes in the demand distribution when used at
every ordering period. Optimal ordering policies based on discretized demand
distributions are discussed in [13].

The optimum solution for the quadratic program above is § = (Z1, ..., Z, 1, W,)"
where w = (w;)",z = (2;)" is the solution of the LCP with data

1= Blpr - p) — (1= By~ ) 2 1. 11
—1—=B(p2—pn) — (1 = B)(ro — ry) 1 2... 11

q= ' , M=
—1 = B(pn-1—pn) — 1= B)(rn_1 — 1) 1 1... 21
1 -1-1...-10

This LCP is of small order, and it can be solved very conveniently using the
complementary pivot algorithm, or any other pivoting algorithm for the LCP
mentioned above. Simple codes for the complementary pivot algorithm using
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Fig. 1. A Traffic Network.

the explicit inverse of the basis, available from several sources, work very
well on problems of this size. In supply chain management, such a model is
solved for each item at every ordering period, providing an excellent source of
application for the pivoting algorithms for the LCP.

3.3  Traffic Equilibrium

The following traffic equilibrium example from MCPLIB [4] illustrates the
connection between equilibrium and complementarity.

The problem involves five cities, numbered 1 through 5, connected by a net-
work of one-way roads called links, (see Figure 1). Each city ¢ must ship a
quantity d; of a commodity to the third city clockwise from itself. For exam-
ple, city 1 ships to city 4, city 2 to city 5, and so on. Naturally, the goal is
to ship the commodity in the shortest time possible. However, the time to
ship along a given path is determined by the total flow of traffic on the links
making up that path.

From the figure, it is clear that for each city, there are only two possible
shortest paths: shipping counterclockwise along the outside loop or clockwise
along the inside loop. Let x; represent the amount shipped from city 7 to city
i + 3 (modulo 5) along the outside path, and let y; represent the amount
shipped along the inside path. We say that a set of flows z = (z;),y = (y;) is
feasible if it satisfies the demands z + y > d and z,y > 0, where d = (d;).

From the flow vectors = and y, it is possible to determine the traffic on each
link of the network. For example, the outside link between cities 3 and 4 will
have flow given by z; + x5 4+ x3. The delay on a link % is determined by the
total traffic on the link and is assumed to be a convex function of the traffic



flow. The delay for a given path is then given as the sum of the delays of all
the links making up that path. From this discussion, it follows that for each
city 4, the delay O; along the outside path is determined by the flow vector
x, and the delay I; along the inside path is determined by the flow vector y.
This can be encapsulated by defining the two functions O(z) = (O;(x)) and

I(y) = (Li(y)).

We define the effective delay between two cities to be the maximum delay
among paths with nonzero flow between the two cities. Each city chooses
a shipping strategy in order to minimize its effective delay subject to the
shipping strategies of the other cities remaining constant. This minimum is
achieved either when the city ships everything along the path with shortest
delay, or when both the inside and the outside paths have equal delay. To see
this, note that if the delay for the inside path is less than the delay for the
outside path, the shipper can improve the effective delay by shipping more
along the inside path. This reduces the traffic on the outside path, which
reduces the delay on the outside path thereby reducing the effective delay.

An equilibrium traffic pattern emerges when all five cities are shipping opti-
mally subject to the shipping strategies of the other cities remaining constant.
From the above discussion, this is equivalent to the complementarity condi-
tions

0<0(zx)—u, >0, z7(0(x)—u)=0

0<I(y)—u, y>0, y'(I(y)—u)=0

where we have introduced the additional variable u € IR’ to represent the
effective delay. Notice that u is complementary to the demand constraint. In
particular, there can only be excess supply if the effective delay is zero.

The conditions described above lead to the NCP (5), with 2z := (z,y,u) and

x O(z) —u
Fly =] 1y) —u
u r+y—d

It should be noted, however, that this problem can be solved more efficiently
using a generalization of the NCP. In particular, this problem can be refor-
mulated as a BVIP involving only five variables, instead of the fifteen used
above. Details of this are provided in [4].



Fig. 2. An elastic string stretched over an obstacle.

3.4 Obstacle and Free Boundary Problems

The obstacle problem consists of finding the equilibrium position of an elastic
membrane that is held at a fixed position on its boundary and which lies over
an obstacle.

Consider stretching an elastic string fixed at the endpoints (0,0), and (4, 0)
over an obstacle defined by a function f (in this example, we use f(x) =
1 — (z — 2.2)%*-see Figure 2). Notice that the position of the string will be
defined by f(z) for x between the unknown points P and @, and that in the
intervals 0 < x < P, and @ < x < 4, the string will lie along straight line
segments connecting (0,0) to (P, f(P)) and (@, f(Q)) to (4,0), respectively.
If we represent the equilibrium position of the string by the function u, then
u must satisfy the following conditions:

u(0) =0, wu(4)=0,
u'(P) = f(P), (@)= [(Q),
u(z) = f(z) for P <z <Q,

u'(z) =0 for0<z<PorQ<uz<4.

This representation of the problem is complicated by the presence of the free
boundaries P and (). The complementarity framework allows a simpler repre-
sentation, which does not require free boundaries. First, note that since there
is no downward force on the string, v”(x) < 0 for all x, except possibly at
x = P or x = ) where u” may be discontinuous. Also, note that u(z) > f(z)
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everywhere. Finally, at each point z, either v”(z) = 0 or u(x) = f(z). Thus,
if we ignore momentarily the discontinuity of u” at P and (Q, we see that u
must satisfy the conditions

This system can be solved numerically using a finite difference or finite element
scheme. For example, using a central difference scheme on a regular mesh with
step size h = 4/n, u is approximated by the vector v = (ug, uy, ..., u,), where
w; == f(x;),z; := x9g +1ih,i =0,...,n, and o = 0. The above system is then
approximated by

Ug = U, =0
Ui—1 — 2U; + Ujq1

<0
h? - i=1,...,n—1.
Uj—1 — 2u; + Ujqy
(ui — f(xi)) % = =0

Using the simple change of variables z; := u; — f(z;), this system is equivalent
to the linear complementarity problem (¢, M), where M is an (n—1) X (n—1)
matrix and ¢ is an (n — 1)-vector defined by

2210 0 - 0

12 =10 --- 0 —2f (1) + f(22)
Vo 0 -1 2 —1--- 0 L f($1)_2f(‘$2)+f($3)

0 ... 0 —1 2 —1 f(@n-3) = 2f(xn-2) + f(Tn-1)

0 ... 0 -1 9 f(zn_2) = 2f(zn_1)

The solution z = (zy,- -+, 2z,_1) of this LCP then gives the discrete approxi-
mation to u at the interior grid points by the relation w; = 2z; + f(x;), =
1,--n—1.
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4 Algorithms for the LCP

The fascination of the subject stems from the fact that it exhibits enormous
diversity. Depending on the properties of the data matrix M, the LCP can be
so nice at one end that it admits an extremely simple greedy type algorithm
for its solution, or be an intractable NP-hard problem at the other end.

Chung (published in 1989, but result discussed in [12] also) has shown that the
LCP (g, M) with general integer data is NP-hard. The only known algorithms
that are guaranteed to process the LCP (¢, M) with no restrictions on the
data are enumerative algorithms.

A complementary vector of variables in (1) is a vector y = (yi,...,yn)" where
y; € {wj, z;} forall j = 1 ton. A complementary vector is said to be basic if the
set of column vectors associated with them in (1) form a nonsingular matrix,
and it is said to be basic feasible if the basic solution of (1) associated with
it is nonnegative. Clearly, the basic solution associated with a basic feasible
complementary vector is a solution of the LCP.

4.1 Pivotal Methods

The first class of methods to be developed for the LCP are the pivotal methods
which try to obtain a basic feasible complementary vector through a series of
pivot steps. These methods are variants of the complementary pivot method
of Lemke and Howson [10]. The mathematical principle used by Lemke and
Howson in the complementary pivot method has been applied by Scarf in 1967
to develop a method for computing fixed points, and for solving systems of
nonlinear equations, using partitions of R" into sets called primitive sets. In
the 1970’s and early 1980’s a lot of researchers have extended this work and
developed a variety of methods for computing fixed points and for solving
nonlinear equations and complex equilibrium problems using triangulations of
R™. These methods are now called simplicial methods, or piecewise linear
methods because they employ piecewise linear approximations of maps, or
also complementary pivot methods. Prime candidates among these are
the methods of Merrill, and Eaves and Saigal, developed in 1972.

The simplicial methods start at a solution of an artificially set up simple sys-
tem, and trace a path through the n-dimensional simplices of the triangulation,
which, when the method works, terminates with a simplex that contains an
easily computed approximate solution of the original system. Using a homo-
topy interpretation of this path, a variety of other homotopy and path tracing
algorithms have been developed for solving systems of nonlinear equations.

12



Almost all the pivotal methods are guaranteed to process the LCP (g, M)
when the matrix M is PSD; this class of LCPs is equivalent to the class of
convex quadratic programs. All these algorithms are finite procedures when
applied to the classes of problems for which they are guaranteed to work,
and in practice these algorithms are quite efficient on problems of reasonable
size. However, in 1978, Murty showed that in the worst case, two of the most
important among them, Lemke’s method and Murty’s least-index method,
require O(2") pivot steps to solve monotone LCPs of order n; this same result
has been extended to other pivotal methods for the LCP.

The most famous among the pivotal methods for the LCP is Lemke’s method,
which we now describe in some detail. Given an LCP (g, M), define the feasible
region to be the set

F={zlw:=Mz+q>0,2>0}.

Elements of F are called feasible solutions, and extreme points (or vertices)
of F are called basic feasible solutions. A feasible solution z is said to be
complementary if z;w; = 0 for all ¢ and almost complementary if z;w; = 0
for all but one i, where w := Mz + ¢. Clearly, a point z is a complementary
feasible solution if and only if z solves (¢, M).

For simplicity of discussion, we assume that the LCP is nondegenerate, which
means that for every basic feasible solution z, the vector (z,w) has exactly
n nonzero components. Under this nondegeneracy assumption, every comple-
mentary feasible solution is an extreme point of F, and every almost com-
plementary solution lies on an edge of F, where we define an edge to be the
intersection of n — 1 linearly independent hyperplanes of the form z; = 0 or
w; = 0. If every point on the edge is almost complementary, we call the edge
an almost complementary edge. If the edge is unbounded, it is called an almost
complementary ray.

It can be shown that every almost complementary (but not complementary)
extreme point (satisfying, for example, w;z; = 0, for j = 2,...,n) is incident
with exactly two almost complementary edges of F, every point on which also
satisfies the same conditions (w;z; = 0, for j = 2,...,n). Hence, the set of
all such solutions is a collection of paths. Lemke’s method traces exactly one
such path in this collection, beginning with an almost complementary extreme
point incident to an almost complementary ray. Such a path must terminate,
either with a complementary basic feasible solution, or with a secondary almost
complementary ray. In the first case, a solution to the LCP is found. In the
second case, the method has failed to produce a solution to the problem.

To get the algorithm started, it is necessary to construct an almost comple-
mentary extreme point that is incident to an almost complementary ray. Since

13



this may be difficult to find for the original LCP (g, M), we instead solve the
augmented LCP (g, M), where M € R™D*(+1) and § € R™' are defined
by

e M q

where e € R™™! is the vector of all ones. Notice that a point (2, 2) is a
solution to (¢, M) if and only if zp = 0 and z is a solution to (¢, M). Notice
further that by choosing § = max {|¢]|| ¢ < 0}, the point (zp,z) = (4,0) is
an almost complementary extreme point of F that is incident to the almost
complementary ray {(zo,2) = (4,0) +¢(1,0)| ¢t > 0}. Thus, a starting point
for Lemke’s method can easily be generated for this augmented LCP.

When the LCP is degenerate, the above method can be modified using a
degeneracy resolution technique such as lexicographical ordering. For details
of such techniques, we refer the reader to the monographs [12, 3.

4.2 Interior Point Methods

The other important class of methods for the LCP are the interior point
methods. Interior point methods originated from an algorithm introduced by
Karmarkar in 1984 for solving linear programs. The most successful interior
point methods follow a path in F° = {(w,2) : w — Mz = ¢q,w > 0,z > 0}
(hence the name interior point methods) in an effort to reduce w?z to 0.
One such method defines this path as the set of solutions to the following
parameterized system

w— Mz =q,
Wizy = W, 7;:]-7"'7,” (7)
w>0,2z>0,

where each choice of the parameter p yields a different point along the path.
This path is followed by generating a sequence of iterates {(w*, 2*)}, starting
from a feasible point (w?, 2°). Each step is calculated by solving the system

I M Awk whk — M2* — ¢
AR LN RN ~WEZRe + e |
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where W* and Z* are the diagonal matrices whose diagonal components are
defined by Wk = wk and Z& = 2F and py, = (2*)Tw*/n. Note that this system
is just Newton’s method applied to (7).

The next iterate (w®*!, 251) is then determined by

(wk“, zk“) = (wk, zk) + i (Aw, Az)

where the steplength a4 is chosen to ensure that the iterates don’t get too
close to the boundary of the positive orthant.

The mLCP and hLLCP are solved using essentially a similar strategy. In fact,
in a 1995 paper, Guler showed that a monotone hLCP can be reduced to a
monotone LCP in the same variables. This allows any interior point method
for monotone LCPs to be generalized to solve monotone hLCPs. Moreover,
the iterates generated by the interior point method in solving the hLCP cor-
respond directly to iterates that would be produced by applying the interior
point method to the corresponding LCP. Thus, any convergence results that
hold true for the monotone LCP also hold true for the monotone hLCP.

Interior point methods for convex QP essentially use the above methods on
the KKT conditions, which form an LCP or mLCP. These methods have poly-
nomial time worst case complexity for monotone complementarity problems,
which correspond to convex quadratic programs (Convex QPs).

4.8  Computational Applications and Limitations

Convex QP models like the one discussed in Section 3 involving not too large a
number of variables and constraints, appear very commonly in many sciences
and are a major source of application for the pivoting algorithms for the LCP.
These are the algorithms of choice when the number of variables 4+ the number
of constraints in a convex QP is of the order of 100 or less. However, when
a convex QP is a large scale problem (i.e., when the number of variables +
the number of constraints is >> 100) computational tests indicate that the
active set methods of nonlinear programming are much better suited to solve it
than the pivot methods applied to the LCP or mLCP formed by its first order
optimality constraints. The newly developed interior point methods for convex
QP also compete with active set methods for solving large scale problems.

Convex QPs appear very prominently in the Sequential (or Recursive) QP
Approach (SQP) for solving nonlinear programs. The SQP approach solves
nonlinear programs (either convex or nonconvex) using a series of steps; each
step consisting of solving a convex QP to find a search direction and then a
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line search to find an optimum step length in that direction. Most publicly
distributed nonlinear programming software packages based on SQP do not
use the LCP based algorithms for solving the convex QP in each step because
the authors of these codes assume that the users will apply them to solve large
scale nonlinear programs. The convex QP solvers in these codes are usually
based on some type of active set approach.

Methods based on the LCP or mLCP formed by the first order necessary
optimality conditions (i.e., the KKT conditions) are not suitable for handling
nonconvex QPs. This is because all these methods focus only on finding a
KKT point for the problem and never even compute the objective value in
any step or track how it is changing over the steps. Even if these methods
obtain a KKT point, there are no efficient methods known to check whether
that KKT point is even a local minimum for the original nonconvex QP as
shown by Murty and Kabadi in 1987. For handling nonconvex QP, descent
methods, which try to decrease the objective value in each step, are definitely
to be preferred in practice.

In the same way, the complementary pivot or simplicial methods for computing
fixed points and solving nonlinear equations, using triangulations of R", do
not have any measure to track the progress of the algorithm from one step to
the next. For this reason, these methods are currently not popular.

5 Methods for the NCP

We now turn our focus to methods for solving NCPs. For simplicity, we dis-
cuss only the standard NCP defined by (5); although it is straightforward to
implement these methods in the context of some more general formulations.

The first methods we consider are sequential LCP methods. These methods
generate a sequence of iterates {z¥}, such that 2**! is a solution to a linear
complementarity problem (¢*, M*), where ¢* and M* are chosen to approxi-
mate F near z*. Depending on the choice of M* and ¢*, various algorithms
can be generated, each of which is analagous to a standard iterative method
for solving nonlinear systems of equations. Among these are Newton, quasi-
Newton, Jacobi, successive overrelaxation, symmetrized Newton, and projec-
tion methods. Details of how to choose M* and ¢* for each of these methods
can be found in [8]. Here we focus on Newton’s method, which correspond-
s to the choices M* := VF(zF) and ¢* = F(2*) — M*2*. Notice here that
Fk(z) := MP*z + ¢* is the first order Taylor approximation to F', making
this method analagous to Newton’s method for nonlinear equations. Josephy
showed in 1979 that, in a neighborhood of a solution z* to the NCP, the it-
erates produced by this method are well-defined and converge quadratically
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to z* provided that VF'is locally Lipschitzian at z* and that a certain strong
regularity assumption is satisfied.

As with Newton’s method for nonlinear equations, it is desirable to employ
a globalizing strategy to increase the domain of convergence of the method.
One such strategy for nonlinear equations is a backtracking linesearch, in
which a step is chosen along the Newton direction d* := zF*! — 2¥ 50 as to
ensure sufficient descent of a merit function at every iteration. Unfortunately,
attempts to apply this strategy to the NCP have been largely unsuccessful
and have generally required very strong assumptions. The difficulty lies in the
fact that for reasonable choices of merit functions, the Newton direction is not
guaranteed to be a descent direction, even when z* is not a stationary point.
Instead, a backtracking strategy that is not restricted to the Newton direction
is needed.

Such a strategy was proposed by Ralph in 1994. He devised a path search
algorithm in which global convergence is achieved by searching along a piece-
wise linear path connecting z* to the solution of the LCP (¢*, M*). This path
is generated by a complementary pivot algorithm, similar to Lemke’s method,
which is used to solve the LCP subproblem. This path search strategy is the
basis for the highly successful PATH algorithm developed by Dirkse and Ferris
in 1995.

Another class of methods for NCP involves reformulating the problem as a
system of nonlinear equations. This involves constructing a function H : R"” —
IR"™ with the property that zeros of H correspond to solutions of the NCP. Such
a function H is called an NCP-function. Perhaps the simplest example is to
define H by

H;(z) := min(F;(2), z;)

Many other NCP functions have been studied in the literature [7]. Interesting-
ly, while smooth NCP functions exist, they are generally not in favor compu-
tationally since they have singular Jacobian matrices at degenerate solutions
(a degenerate solution is a point z* such that F;(z*) and z; are both zero for
some index ). Thus, the NCP functions of interest are usually only piecewise
differentiable.

Once the NCP function H has been constructed, a generalized Newton method
can be used to find a solution to H(z) = 0. Generalized Newton methods are
similar to Newton’s method except that the Newton equation

VE(")d" = —F(2"),
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which is used to calculate the search direction d¥, is replaced by the equation

VFdE = —F(2"),

where V* is an element of the Clarke subdifferential or the B-subdifferential
of F(2¥).

An alternative approach to applying a generalized Newton method is to ap-
proximate the nonsmooth system by a family of smooth functions. This is the
fundamental idea behind the so-called smoothing methods. An excellent review
of these techniques can be found in [7]. The basic idea of these techniques is to
approximate the function H by a family of smooth approximations H, param-
eterized by the scalar p. Under suitable assumptions, the solutions z(j) to the
perturbed systems H,(z) = 0 form a smooth trajectory parameterized by ,
leading to a zero of H as u | 0. The smoothing methods generate a sequence
of iterates that follow this trajectory, and in that sense are similar to interior
point methods. Numerous smoothers have been proposed in the literature for
complementarity problems.

Another class of algorithms for monotone NCP are interior point algorithms.
In similar fashion to the interior point techniques for LCP, these methods
follow the central path defined by

w=F(z2), (w,z)>0, wgz=pu, (8)

which leads to a solution as p | 0.

The final class of methods we discuss are continuation or homotopy methods.
Like the smoothing and interior point algorithms, these methods work by
introducing an additional variable 1 and then following a path which leads
to a solution. However, unlike the smoothing and interior point methods, the
continuation methods do not assume that g decreases monotonically along
this path.

6 The Geometry of LCP, Matrix Classes

For any matrix D = (d;;) of order m x n we let D ; denote its jth column; for
any J C {1,...,n} we let D ; denote the m x |J| matrix consisting of columns
D for j € J; and for any P C {1,...,m},J C {1,...,n} we let Dp,; denote
the |P| x |J| matrix (d;; : i € P,j € J).

Consider the LCP (1). Let y = (y1, ..., %n)T be a complementary vector for it.
Let A; be the column associated with y; in (1). Hence A ; € {I;,—M ;} for
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each j = 1ton. The cone Pos{Ay,..., A} ={z € R" 12 =Y_ a;A;,a; >
0 Vj} is known as the complementary cone associated with y for (1).
Clearly, there are 2" complementary cones, and the LCP (1) has a solution iff
q belongs to some complementary cone. Hence the LCP (1) is equivalent to
finding a complementary cone containing g. The geometric study of the LCP
using complementary cones has been initiated by Murty in 1968 in his Ph.D.
thesis.

It can be verified that if the matrix M = I, the unit matrix of order n, the com-
plementary cones become the orthants of R". In an earlier paper not focused
on the LCP, Samelson, Thrall, and Wesler defined in 1958 the complementary
cones with respect to a square matrix M as a generalization of orthants, and
investigated the question of what conditions on the matrix M would guarantee
that these complementary cones form a partition of R". They established that
the required condition is that M must be a P-matrix, i.e., a square matrix
all of whose principal subdeterminants are > 0. For the LCP (1), this result
leads to the theorem that (1) has a unique solution for all ¢ € R™ iff M is a
P-matrix.

The geometric study of the LCP has been the object of enduring study in the
literature ever since. This study is purely mathematical in nature, and not
motivated by immediate practical application.

We briefly summarize some of the other major results in this geometric investi-
gation. This research has identified a wide variety of classes of square matrices
that correspond to certain properties related to the LCP. Let S(q, M) = {z :
(w:= Mz + g, 2) is a solution of the LCP (¢, M)}.

The w-part of the solution of the LCP (¢, M) is unique Yq € R™ iff M is a
column adequate matrix (this requires that M must be a Py-matrix (i.e.,
all its principal subdeterminants are > 0), and for any J C {1,...,n} M,  is
singular iff the columns of M ; are themselves linearly dependent).

For all ¢ € R", every solution of the LCP (g, M) is locally unique iff M
is a nondegenerate matrix (M belongs to this class iff all its principal
subdeterminants are nonzero).

The LCP (¢, M) has a unique solution V ¢ > 0 iff M is a semimonotone
matrix (class denoted by Ej) (M belongs to this class if V. J C {1,...,n},
the system Mj;x; < 0,2; > 0 has no solution).

The LCP (g, M) has a unique solution V ¢ > 0 iff M is a strictly semi-
monotone matrix (class denoted by E) (M belongs to this class if V. .J C
{1,...,n}, the system M, ;z; < 0,2; > 0,2; # 0 has no solution).

These are some of the main ones, but there are so many other classes of
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matrices identified, we refer the reader to [3, 12, 1] for a summary and some
recent work in the area. Theoretical studies on the geometry of complementary
cones continues to be very actively pursued.

Given a square matrix M of order n, to check whether M is PSD or positive
definite (PD) requires at most n Gaussian pivot steps, and hence can be carried
out very efficiently. However, for many of the matrix classes defined above,
checking membership is intractable, as shown in [12]

The study of the mathematical aspects of the geometry of LCP, matrix classes,
and establishing connections between LCP and other branches of mathematics
such as degree theory through the study of the degree of piecewise linear
equation formulations of the LCP continue to be pursued very actively.

7 Generalizations and Current Trends

Complementarity problems and variational inequalities remain a vigorous area
of research. While excellent algorithms have been developed, there is still much
attention being devoted to developing new algorithms. Much of this interest
lies in expanding the classes of functions for which algorithms can be proven
effective. In the realm of LCPs, this, in part, has motivated the study of
matrix classes. In the NCP and VI arenas, new algorithms are constantly being
introduced. Some of these are based on new merit or NCP functions [5] leading
to variants of damped Newton-type methods. Others are variants of path-
following algorithms, including homotopy, smoothing [5], interior point [9],
and, recently, non-interior point methods. Also various globalizing strategies,
such as regularizing methods [7], tunneling and filled functions, trust region
methods and proximal perturbation strategies have recently been explored.

Another trend is focused on developing algorithms that do not require Jaco-
bian evaluations. These include projection methods, quasi-Newton methods,
and derivative-free methods [7].

Finally, we mention mathematical programs with equilibrium constraints
(MPECs). These can be defined in the form

min f(x,y)
subject to  (z,y) € Z C R™™
y solves VI(C(z), F(x,"))

where x € TR",y € IR are the decision variables, Z is a closed set, C is a
set-valued mapping, and f : R™" — IR and F : R™™ — R™™ are given
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functions. Here the constraints state that the variable y must be a solution to
a variational inequality that is parameterized by . Numerous applications of
MPECs have been identified. These include misclassification minimization in
machine learning; robotics; continuous network design; discrete transit plan-
ning; optimal design of mechanical structures; and Stackelberg leader-follower
games, which have numerous applications in economics, such as oligopolistic
market analysis.

The MPEC is an extremely difficult problem to solve. This is due largely
to the fact that the feasible region {(z,y) C Z |y solves VI(C(x), F(z,-))}
is not convex, and in some cases, is not even closed. Nevertheless, a number
of reasonable algorithms exist for solving MPECs, and research in this area

remains vigorous. The reader is referred to [11] for a detailed treatment on
MPECs.
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