
Note on Implementing the New Sphere Method

for LP Using Matrix Inversions Sparingly

Katta G. Murty
Department of Industrial and Operations Engineering,

University of Michigan,
Ann Arbor, MI 48109-2117, USA

Phone: 734-763-3513,
Fax: 734-764-3451
murty@umich.edu

www-personal.engin.umich.edu/˜ murty

Mohammad R. Oskoorouchi
Department of Information Systems and Operations Management,

College of Business Administration,
California State University San Marcos,
San Marcos, CA 92096-0001, USA,

moskooro@csusm.edu
www.csusm.edu/oskoorouchi

January 2008, revised July 2008

Abstract

A new IPM (Interior Point Method) for LPs has been discussed in [9,
10] based on a centering step that attempts to maximize the radius of
the inscribed sphere with center on the current objective plane, and using
descent directions derived without using matrix inversions. The method
is a descent method and may be called the sphere method for LP. In
contrast to all the existing IPMs which involve heavy matrix inversions in
each step, an advantage of the new method is that it can be implemented
with no matrix inversions, or using them only sparingly. We discuss var-
ious techniques for implementing this method. These implementations
offer the prospect of extending the superior performance of existing soft-
ware systems for LP, to models that do not have the property of being
very sparse.

Key words: Linear programming (LP), interior point methods
(IPMs), solving LPs without matrix inversions, ball center of a polytope,

1

ball center on the objective plane, descent directions.

1 Introduction

The celebrated simplex method, and the interior point methods (IPMs) devel-
oped subsequent to the introduction of Karmarkar’s projective scaling method
in 1984, are currently the main algorithms used in software for solving linear
programs (LPs). All these algorithms are based on matrix inversion opera-
tions. Also, in every step of these methods, the matrix inversion operations
involve every constraint in the problem including any redundant constraints in
the model. These matrix inversion operations limit the application of these al-
gorithms in large scale applications to only those in which the coefficient matrix
is very sparse.
Real life LP models usually contain quite a few redundant constraints. The

process of identifying and eliminating them from the model using the methods
available in theory is prohibitively expensive (in fact the effort needed by these
methods to identify and weed out all the redundant constraints from an LP
model, is many times more than that needed to solve the original model with
all the redundant constraints in it), and hence is not practical. Presolvers based
on various heuristics are commonly employed in LP solvers to identify and
eliminate redundant constraints in the model, they are reported to be effective,
albeit not optimal (see Cartis and Gould [2006]). Instead of depending on these
presolvers, methods which have the ability to avoid redundant constraints in
their computational work by themselves, have a definite advantage over existing
methods.
The density of an LP (or its coefficient matrix) refers to the percentage

of nonzero entries in the data. Problems in which this percentage is small
(typically ≤ 1%) are said to be sparse; as this percentage increases, the problem
becomes more and more dense. Many LP models in real world applications
tend to be very sparse. Programmers have developed techniques to exploit
this sparcity, in matrix inversion operations of the simplex and interior point
methods. Using these they produced implementations with reasonable memory
requirements that can solve large scale models fast. However, the effectiveness
of these techniques fades as the density of the coefficient matrix increases, that’s
why solving large scale dense LPs is hard by existing methods.
In several important application areas, dense LP models do arise. For ex-

ample, a typical LP model for a Data Envelopment Analysis (DEA) problem
has a coefficient matrix that is essentially 100% dense [1, 3]. Also many LP
models arising in location problems, distribution problems, and supply chain
problems are typically dense. That’s why there is a lot of research being carried
out targeting dense LP models. In solving LPs which are not very sparse, it is
definitely advantageous to have to deal with smaller number of constraints.
It seems that practitioners are quite content with obtaining solutions not

necessarily optimal, but close to being so; but they want a method that can
obtain this approximate solution faster than existing methods. In many ap-

2

plications, this requires algorithms that can give good performance on models
that may not be very sparse. For this, we need to investigate fast methods that
satisfy the following properties:

1. Should be a descent method (i.e., starting with a feasible soultion the
method should maintain feasibility throught, and the objective value should
improve monotonically in every step)

2. Should be implementable with no matrix inversions, or using matrix in-
version opertations only sparingly

3. If matrix inversion operations are used, they should never involve redun-
dant constraints in the model, and should only involve a small subset of
constraints selected intelligently.

We believe that the future of algorithmic research in LP is in this
area.
The sphere method that we will discuss in this paper is an IPM that is a

descent method, and in contrast to all other IPMs developed earlier, this method
can be implemented with no matrix inversions, or using them only sparingly.
Another advantage of this method is that if matrix inversion operations are used
in any iteration of the algorithm, only a small subset of constraints (called the
touching set of constraints in that iteration) will be involved in those matrix in-
version operations. Also, amazingly, redundant constraints, if any in the model,
never enter into the touching set. So, it offers the prospect of extending the
superior performance of existing software systems for LP, to models that do not
have the property of being very sparse. So, it seems to be well suited to the
goals mentioned above.
The sphere method belongs to the class of predictor-corrector type IPMs,

early versions of it are discussed in [9, 10]. In this paper we discuss some
improvements in that algorithm, and some techniques useful in implementing
it. First we will discuss the concepts used in the algorithm. It considers LP in
the form

minimize z(x) = cx (1)

subject to Ax ≥ b

where A is an m×n data matrix, with a known initial interior feasible solution
x0 (i.e., Ax0 > b). If the set of feasible solutions does not have an interior; or if
it does, but an interior feasible solution is not known; we modify the problem
with the usual big-M augmentation involving one artificial variable as follows:

minimize z(x) = cx+Mx0

subject to Ax+ ex0 ≥ b

x0 ≥ 0

3

where e is the column vector of all 1s in Rm, and M is a large positive penalty
parameter. (x0 = 0, x00) where x

0
0 is a sufficiently large positive number, gives an

initial interior feasible solution to this Phase I problem. This Phase I problem
is in the same form as (1), we solve it instead. For other such Phase I strategies,
see (Cartis, Gould [2006]).

How to Implement the Algorithm for Solving a General
LP ?

The most popular IPM for software implementations is the primal-dual IPM
[4 to 8, 11 to 14], because: (i) it gives optimum solutions to both the primal and
the dual when both have feasible solutions; and (ii) it provides a lower bound
that serves as an indicator to check how far left to go to reach the optimum.
Also, in many algorithms, specifying a good termination condition to be used
in practice is not easy . The lower bound in the primal-dual format provides an
automatic practical termination condition.
We will show how to convert our algorithm into a primal-dual algorithm

for LPs in general form. Consider an LP in general form in which there may
be equality constraints on the variables, inequality constraints, and bounds on
individual variables. By combining the bounds on individual variables with the
inequality constraints, the problem is in the form

Minimize fξ

subject to F ξ = h (2)

Gξ ≥ g

where F is a matrix of order p×q, say. Let π,μ be dual vectors corresponding to
the constraints in the two lines in (2). Solving (2) and its dual involves finding
a feasible solution to the following system

F ξ = h

πF + μG = f (3)

(Gξ,μ,−fξ + πh+ μg) ≥ (g, 0, 0)

.
Solving (3) is the same as solving the LP

Minimize

p3
i=1

(Fi.ξ − hi) +
q3
j=1

(πF.j + μG.j − fj) subject to

(F ξ, Gξ,πF + μG,μ,−fξ + πh+ μg) ≥ (h, g, f, 0, 0) (4)

4

(4) is in same form as (1). Also, since we are applying the algorithm without
matrix inversions or using them sparingly, having all these additional constraints
over those in the original LP (2) in the model may not make it numerically diffi-
cult to handle. If both (2) and its dual have feasible solutions, at the optimum,
the objective value in (4) will be 0, so this provides a convenient lower bound
to judge how far is left to go. So, in the sequel we will discuss the method for
solving the LP in the form (1).

We assume that the rows of A, denoted by Ai. for i = 1 to m, have been
normalized, so ||Ai.|| = 1 (||.|| denotes the Euclidean norm) for all i = 1 to m;
also ||c|| = 1. We will use the following notation:

K = Set of feasible solutions of (1).
K0 = {x : Ax > b} = interior of K.
δ(x) = Min{Ai.x − bi : i = 1 to m}, defined for x ∈ K0, it is

the radius of the largest ball inside K with x as its center,
since ||Ai.|| = 1 for all i.

B(x, δ(x)) = Defined for x ∈ K0, it is the largest ball inside K with x
as its center.

T (x) = Defined for x ∈ K0, it is the set of all indices i satisfying:
Ai.x−bi = Minimum{Ap.x−bp : p = 1 to m} = δ(x). The
hyperplane {x : Ai.x = bi} is a tangent plane to B(x, δ(x))
for each i ∈ T (x), therefore T (x) is called the index set
of touching constraints in (1) at x ∈ K0. See Figure
1.

tmin, tmax = Minimum, maximum values of z(x) over K respectively.
δ[t] = It is the Maximum{δ(x) : x ∈ {x : cx = t}}, i.e., the maxi-

mum radius of the ball that can be inscribed inside K with
its center restricted to {x : cx = t}. Notice the difference
between δ(x) defined over K0; and this δ[t] defined over
the interval [tmin, tmax] of the real line.

t∗ = Value of t ∈ [tmin, tmax] that maximizes δ[t].

Each iteration of the sphere algorithm consists of only two steps, a centering
step and a descent step. The centering step is a corrector step, it tries to move
the current interior feasible solution into another one with higher value for δ(x)
without sacrificing objective quality. The descent step is a predictor step, that
results in a strict decrease in objective value.

5

K

0x

1

2

Figure 1: x0 ∈ K0, and the ball shown is B(x0, δ(x0)), the largest ball inside K
with x0 as center. Facetal hyperplanes of K corresponding to indices 1, 2 are
tangent planes to this ball, so T (x0) = {1, 2}.

2 The Ball Center of a Polytope as a whole, and
Ball Center of a Polytope On a Given Objec-
tive Plane; and How to Compute these Ball
Centers Approximately

In this section we first give the theoretical definition of the ball center of the given
polytope K, and the ball center of K on a given objective plane intersecting
K; these are important concepts used in the sphere method. Then we discuss
methods for computing these ball centers approximately.
An earlier version of this method was discussed in [9]. In the centering step

in that version, the concept of the “center” of a polytope is defined as a point
which is the center of a largest radius ball inscribed inside the polytope; i.e.,
for K it will be a point x that is optimal to the LP (5). But the optimum face
for (5) in the x-space may contain multiple points, in that case the description
of the algorithm in [9] did not clearly specify which of those multiple optimum
points of (5) in the x-space should be selected as the “center” of the polytope K
defined by (1). Here, we will specify rules that will make that choice “precise”.
For this we introduce the concepts of the ball center of a polytope, and the ball
center of a polytope on a given objective plane {x : cx = t}.
The definition of the “center” of a polytope used in our algorithm is very

different from that used in earlier IPMs [4 to 8; 11 to 14]. To distinguish, since
the “center” that we use is the center of a largest ball inside the polytope, we
will use the word ball center of the polytope for the center that we use.
Our definitions guarantee that every polytope K (i.e., a bounded convex

polyhedron) has a well defined and unique ball center for the polytope as a
whole. Also, when H is a hyperplane having a nonempty intersection with the
polytope K, the ball center for K on H is again well defined and unique.
These concepts are well defined only for convex polytopes, and may not really

6

work for unbounded convex polyhedra, we discuss this issue at the end of this
section. For this reason, we will first give the definitions under the assumption
that the set of feasible solutions of the LP (1), K, is a polytope.
Even though the Conceptual Algorithm discussed in Section 3 is based on

the ball centers, in practice in implementations of the algorithm, in every it-
eration we will only compute the ball center on the current objective plane
approximately.
What happens to the LP (1) if we do not know whether its set of feasible

solutions is bounded or not, or if we know that it is unbounded? In the un-
bounded case, even though the concepts of ball centers may not be well defined,
the implementation of the algorithm based on the approximate computation of
ball centers can be carried out as usual. In this case in one of the descent steps,
the step length for the move may turn out to be +∞. That is an indication that
the objective value in (1) is unbounded below on its set of feasible solutions;
and the algorithm terminates if this happens.
Even though the sphere method uses only ball centers of K on objective

planes H , we will also discuss the related concept of the ball center of a polytope
as a whole (and how to compute it approximately), becuse it can be used in the
approximate computation of the ball center of the polytope on a hyperplane.

The Ball Center of a Polytope

Now we will continue with the definition of the ball center of a whole poly-
tope. A polytope of dimension 1 is a line segment, its ball center is its unique
midpoint. See Figure 2.

∗x

Figure 2: The ball center of a 1-dimensional polytope (a line segment) is its
mid-point x∗.

Now consider the polytope K of dimension n represented by (1). Its ball
center x∗ is a point in K0 which is the center of a largest radius ball inscribed
inside K. Letting δ∗ = δ(x∗), (x∗, δ∗) is therefore an optimum solution of the
LP

Maximize δ

subject to δ ≤ Ai.x− bi, i = 1 to m (5)

7

∗x

Figure 3: When the largest inscribed ball in K is unique, its center x∗ is the
ball center of K.

If the optimum solution of this LP is unique, it will be (x∗, δ∗), and x∗ is
the ball center of K. See Figure 3.
If the optimum solution of (5) is not unique, all of its optimum solutions are

of the form (x, δ∗) for x ∈ S, where S is the optimum face of (5) in the x-space.
In this case the ball center of K is defined recursively by dimension to be the
ball center of the lower dimensional polytope S. This definition guarantees that
every polytope has a unique ball center. See Figure 4 for an illustration.

∗x

Figure 4: A 2-dimensional polytope K for which the largest inscribed ball is not
unique. S, the set of centers of all such balls, the optimum face of (5) in the
x-space, is the dashed line segment in this polytope. So here the ball center of
K is the ball center of S, which is its mid-point x∗.

Ball Centre for (1), On the Objective Plane {x : cx = t}
for Given t

Each iteration of the sphere method begins with the current point, which
is the interior feasible solution obtained at the end of the previous iteration.
Consider Iteration r+1, suppose it begins with the current point xr. Let cxr = t
be the current objective value in (1). The centering step in this iteration tries
to find the point x ∈ K0 ∩ {x : cx = t} which maximizes δ(x), it is an optimum
solution of the LP

8

Maximize δ

subject to δ − Ai.x ≤ −bi, i = 1 to m (6)

cx = t

If the optimum solution x for (6) is unique, denote it by x(t), it is called the
ball center for (1) (or for its set of feasible solutions K) on the current
objective plane {x : cx = t}. In this case, the unique optimum solution of (6)
is (x(t), δ[t] = δ(x(t))). See Figure 5.

rx
)(tx

tcx =

Figure 5: When the optimum solution for (6) is unique, the largest ball inside K
with center on the current objective plane {x : cx = t} is unique (like here, it is
the large ball in the figure), its center is x(t), the ball center for (1) corresponding
to the present objective value t.

In general, even though the optimum δ in (6) is always unique, there may
be multiple points x which are optimal. So, let S(t) denote the optimum face
of (6) in the x-space. In this case, the ball center for (1) on the objective plane
{x : cx = t} is defined to be the ball center of the polytope S(t) as defined
earlier.
This definition guarantees that for each t ∈ (tmin, tmax), the ball center for

(1) on the objective plane {x : cx = t} is unique.

The Case of Unbounded Convex Polyhedra

Suppose the set of feasible solutions, K of (1) is an unbounded polyhedron.
Typically, the radius of a maximum inscribed ball in K will be ∞ (i.e., δ is
unbounded above in the LP (5)). Even if the radius of the maximum inscribed
ball is finite, the optimum face of (5) in the x-space may be an unbounded
polyhedron itself, so the ball center of K is not defined.
Even when K is an unbonded convex polyhedron, the hyperplane H may be

such that K ∩H is bounded, i.e., is a polytope; in this case the ball center of

9

K on H is well defined. If K ∩H is also unbounded, then the ball center of K
on H is also not defined.

Computation of Approximate Ball Centers

Several techniques have been discussed in [9, 10] to compute these ball cen-
ters approximately. In Sections 2.1, 2.2 we give mathematical descriptions of
some techniques used for computing approximately the ball center of the poly-
tope K, and the ball center of K on the objective plane {x : cx = t} for given
t.

2.1 Approximate Computation of the Ball Center of a
Polytope

We consider (5), the problem of computing the ball center of the whole polytope
K beginning with an initial interior feasible xr. We summarize these techniques
and discuss ways to implement them.

2.1.1 LSFN, Using Line Search Steps in Facetal Normal Directions

One advantage of this technique is that it needs no matrix inversions. Beginning
with the initial xr,0 = xr, it generates a sequence of points xr,k, k = 1, 2, ...
along which the radius of the ball δ is strictly increasing.
At the current point xr,k, a direction y is called a profitable direction, if

δ(xr,k+αy) strictly increases as α increases from 0. [9] has the following result,
which makes it easy to check whether any given direction y is profitable at the
current point.

Result: A given direction y ∈ Rn is a profitable direction at the current
interior feasible solution xr,k iff Ai.y ≥ 0 for all i ∈ T (xr,k). Also, xr,k is an
optimum solution for (5) iff there is no profitable direction at it, i.e., iff the
system: Ai.y ≥ 0 for all i ∈ T (xr,k), has no nonzero solution y.

Since the goal in this centering step is to increase the minimum distance
of x from each facetal hyperplane of K, the procedure uses only the directions
normal to the facetal hyperplanes of K for the line searches, i.e., directions in
Γ1 = {ATi. ,−ATi. : i = 1 to m}. This is the set of directions normal to facetal hy-
perplanes of K. The procedure continues as long as profitable directions for line
search are found in Γ1, and terminates with the final point as an approximate
center of K, which is denoted by x̄r. See Figure 6.
Once a profitable direction y at the current point xr,k, has been found, the

optimum step length α in this direction that maximizes δ(xr,k+αy) over α ≥ 0
is ᾱ, where (δ̄, ᾱ) is the optimum solution of the 2-variable LP (7).

10

rx
)(tx

tcx =

Normal
Direction

Figure 6: Moving from the current point xr, in the direction which is the orthog-
onal projection of the normal to the facet of K on the right, on the objective
plane {x : cx = t}, leads to x(t).

Maximize δ

subject to δ − αAi.y ≤ Ai.x
r,k − bi i = 1, . . . ,m (7)

δ,α ≥ 0

and δ̄ is the optimum objective value δ(xr,k + ᾱy). So, the line search for the
maximum value of δ in the direction y involves solving this 2-variable LP, which
can be carried out efficiently (e.g., by the simplex algorithm) as discussed in [9,
10].

In every pivot step of the simplex method, we have to select an entering
variable to enter the current basic vector, among all those eligible in that step.
In extensive computational research carried out over the last 60 years for imple-
menting the simplex method, programmers have developed strategies to search
for eligible variables and select one among them as the entering variable, to
make the code for the simplex method work well. Exactly the same strategies
can be used to select a profitable direction among the facetal normal directions
from Γ1 to carry out the line search, to make sure that the implementation of
this technique works well.

2.1.2 LSCPD, Sequence of Line Search Steps Using Computed Prof-
itable Directions

This technique, discussed in [10], consists of a sequence of at most n line search
steps in profitable directions computed by solving a system of linear equations.
After each step in the sequence, the index set of touching constraints at the
current solution x keeps growing by at least one more constraint; and we will
stop the sequence when the set of coefficient vectors of the touching set of

11

constraints becomes linearly dependent. That’s why the number of steps in the
sequence is at most n. The entire sequence needs a single matrix inversion,
carried out in stages adding one row and column to the matrix at a time; so it
uses matrix inversion operations sparingly.
The sequence begins with the initial point in the sequence xr,0 = xr. When

xr,k is the current solution, from the Result discussed in Section 2.1.1, we know
that any solution y of the system

Ai.y = di for all i ∈ T (xr,k) (8)

where d = (di : i ∈ T (xr,k)) W= 0 is any nonnegative vector, is a profitable
direction to move at xr,k.
We will use (8) with d = e, the column vector of all 1s of appropriate

dimension; to generate a profitable direction which is a basic solution of (8), to
move. Once a profitable direction y is determined, the step length to move in
this direction is determined by solving the 2-variable LP (7) as in Section 2.1.1
So, this sequence begins with the initial point xr,k for k = 0, solves (8) with

d = e for a basic solution. If this system has no solution, then this technique is
terminated with the initial point as the center obtained in it.
If it does yield a solution y0, suppose it is the basic solution with respect to

a basic vector yB0 and basis B0 for the system. If α0 is the optimum step length
maximizing δ(xr,0 + αy0), notice that as α increases from 0, Ai.(x

r,0 + αy0) =
Ai.x

r,0+α increases at the same rate as α for all i ∈ T (xr,0). This implies that
at the solution xr,1 = xr,0 + α0y0 obtained after this line search step, we will
have T (xr,1) ⊃ T (xr,0).
The sequence will now continue the same way with xr,1 as the initial solution

for the next step. Suppose T (xr,0) = {1, ..., s} and T (xr,1) = {1, ..., s, s + 1}.
Then the profitable direction y1 to be used at xr,1 is computed by solving the
system

Ai.y = 1 for all i ∈ {1, ..., s+ 1} (9)

Let A0 = (B0...D0) denote the coefficient matrix of (8) for k = 0 with rows
{Ai. : i ∈ T (xr,0)}, with columns partitioned into the basic, nonbasic parts
with respect to the basic vector yB0 for it; and (AB

0

s+1., A
D0

s+1.) the corresponding
partition of As+1..
The set of touching constraint coefficient vectors {Ai. : i ∈ T (xr,1)} is lin-

early independent iff AD
0

s+1. −AB
0

s+1.(B
0)−1D0 W= 0.

Therefore if AD
0

s+1. − AB
0

s+1.(B
0)−1D0 = 0, terminate the sequence with xr,1

as the final center obtained in it. On the other hand if this vector is W= 0, select
a nonzero entry in it, suppose it is in the column of the variable yj , then let
A.j be the column corresponding to yj in A, the coefficient matrix of (9). Then
yB1 = (yB0 , yj) is a basic vector for (9). The corresponding basis for (9) is

12

B1 =

⎛⎜⎜⎝ B0
... A.j

.

AB
0

s+1.

... as+1,j

⎞⎟⎟⎠ .
where as+1,j is the coefficient corresponding to yj in As+1.. Hence

(B1)−1 =

⎛⎜⎜⎝ P
... Q

.

R
... S

⎞⎟⎟⎠
where

S = 1/(as+1,j −AB0

s+1.(B
0)−1A.j)

R = (−AB0

s+1.(B
0)−1)/(as+1,j −AB0

s+1.(B
0)−1A.j)

Q = −(B0)−1A.jS
P = (B0)−1 +QR/S

So, (B1)−1 can be obtained by updating (B0)−1 using the above formulas.

The sequence repeats the same way with xr,1, until it terminates at some
stage. Thus, in this sequence, whenever system (8) is augmented by a new
constraint in a step, the basic vector and basis inverse in this step can be
updated quite efficiently for the next step as discussed above.

2.2 Computing an Approximate Ball Center of K on the
Current Objective Plane

There are two different ways for computing the ball center of K on the objec-
tive plane {x : cx = t} for any given value of t. We discuss them separately.
Which among the two performs better has to be determined by computational
experiments.

2.2.1 Computing the Ball Center on the Objective Plane Directly

Consider the current objective value t, and the current objective plane {x : cx =
t}. The model for finding the ball center on this objective plane is (6); the only
difference between this and (5) is the additional constraint cx = t in (6).
So, an approximate solution to (6) can be obtained directly by adopting the

line search techniques discussed in Sections 2.1, 2.1.1, 2.1.2 to this situation.
The only change required to adopt the line search techniques LSFN in

Section 2.1.1 to this problem is to look for profitable directions from the set

13

Γ2 = {P.1, ..., P.m,−P.1, ...,−P.m}, where P.i = (I − cT c)ATi. , the orthogonal
projection of Ai. (the direction normal to the facet of K defined by the i-th
constraint in (1)) on the hyperplane {x : cx = 0}, for i = 1 to m, instead of
the set Γ1. Since Γ2 is the set of directions which are orthogonal projections of
the directions in Γ1 on the plane {x : cx = 0}, any step length from a point in
the current objective plane, in a direction from Γ2, will keep the point on the
current objective plane.
To adopt the line search sequence LSCPD discussed in Section 2.1.2 to this

problem, right from the initial step in this sequence, we include the additional
constraint cy = 0 in all systems of the form (8) in the sequence; and continue
as discussed in Section 2.1.2.
However, for implementing LSCPD in centering steps in various iterations

of the sphere method, we will adopt a slightly different strategy which provides
additional advantages. This strategy is discussed in Section 4.1.

2.2.2 Transforming the Problem of Finding An Approximate Ball
Center On the Current Objective Plane into that of Finding
An Approximate Ball Center of a Polytope

For any given value, t, of the objective function cx, the set of feasible solutions
of (1) with this objective value is K ∩ {x : cx = t}, represented by

Ax ≥ b (10)

cx = t

Take any nonzero entry in c, say cn. Then in (10), we can use the equality
constraint to express the variable xn as (t− c1x1 − ...− cn−1xn−1)/cn in terms
of the objective value t and the other variables. Substituting this expression for
xn in all the inequality constraints in (10), we get a representation of K ∩ {x :
cx = t} in terms of the remaining variables X = (x1, ..., xn−1)T in the form

DX ≥ d+ td∗ (11)

say. We will denote the set of feasible solutions of (11) for given t by K(t)
in the X-space. Each point X ∈ K(t) corresponds to a unique point x in
K ∩ {x : cx = t} through the expression given above for xn.
Let X(t) denote the approximate ball center for the polytope K(t) obtained

using the line search techniques discussed in Sections 2.1, 2.1.1, 2.1.2. The
point in the x-space corresponding to X(t) can be taken as the approximate
ball center on the objective plane {x : cx = t}.

14

3 The Concept of the Sphere Method

We will now provide a description of the algorithm as discussed in [9]. Iteration
1 begins with the initial interior feasible solution x0 that is available. We will
discuss the steps in the general iteration r + 1 conceptually.

Iteration r + 1: It begins with xr, the current point, the interior feasible
solution obtained at the end of the previous iteration. Let t = cxr be the
current objective value in (1). Go to the centering step.

Centering step: Starting with the current point xr, find the ball center
for (1) on the current objective plane {x : cx = t}, which we will denote by x̄r.
So, (x̄r, δ(x̄r)) is an optimum solution of the LP, (6), defining it.

The reason for getting a ball with the maximum possible radius with center
on the current objective plane in the centering step is this: from the center of
a ball with radius δ, we can move a step length of at least δ in any direction.
Maximizing δ helps to make longer steps towards optimality in the descent steps
in each iteration.
The centering problem (6) is itself another LP of the same size as the original

LP (1). But it is an LP with a very special structure. For example, it is a
parametric right hand side LP with the parameter t. Also, to implement this
algorithm for solving (1), an exact solution of (6) is not essential, and we show
that the special structure of (6) can be exploited to get a good approximate
solution for it fast. So, even though in concept x̄r is defined to be the ball
center of K on the current objective plane, in implementation we will take it as
an approximation of this ball center.

Descent step: In all the earlier metods for solving LPs (simplex method,
earlier interior point methods), in each iteration only one descent step is taken;
and the method begins the next iteration with the point obtained at the end of
this descent step.
Among the two steps in each iteration of the sphere method, the centering

step is the most expensive. Once the center is computed in an iteration, the
effort needed for a descent step in a given descent direction is just one minimum
ratio computation, which is cheap in comparison. That’s why, in contrast to
earlier methods, we carry out descent steps in five different descent directions
(all obtained directly without additional computation) in each iteration, and
take the best result obtained from all of them as the output of this iteration. In
this section, we explain what these five descent directions are.
Let x̄r denote the approximate ball center on the current objective plane

obtained in Iteration r + 1 of the algorithm. From [9, 10] we get the following
descent directions.

d1 = −cT , negative objective coefficient vector, and

15

d2 = x̄r−x̄r−1 = direction of the path of ball centers being generated

Our computational work has indicated some additional descent directions
that give good results too. We discuss these here. Let ci denote the orthogonal
projection of cT on {x : Ai.x = 0}, i.e.,

ci = (I −Ai.(Ai.)T)cT , for i = 1 to m. (12)

The directions −ci for i ∈ T (x̄r) are called GPTC (gradient projection on
touching constraint) directions. We found that carrying out descent steps at x̄r

in each of these GPTC directions leads to good improvements in the objective
value. For referencing it, we will denote

d3 = direction among the GPTC directions that gives maximum
reduction in objective value when the descent step is taken from the
center x̄r.

d3 will only be determined after descent steps in each direction −ci for
i ∈ T (x̄r) are carried out from x̄r.
As another descent direction from x̄r, we also try

d4 = (
�
(−ci : for i ∈ T (x̄r))/|T (x̄r)|, the average direction of all

the GPTC directions.

Also, for i ∈ T (x̄r), let xir denote the orthogonal projection of the center
x̄r on the touching facetal hyperplane {x : Ai.x = bi}; it is the point where this
facetal hyperplane touches the ball B(x̄r, δ(x̄

r)). The points xir for i ∈ T (x̄r)
are called the touching points (TPs) of the ball B(x̄r, δ(x̄

r)) with its touching
facetal hyperplanes of K.

16

1

2

K

P

rx

ˆ irx

Q

-c T
-c 1

Figure 7: Descent steps in a GPTC direction. Here x̄r is the current center,
T (x̄r) = {1, 2}. Directions −cT pointing down south, −c1 = orthogonal pro-
jection of −cT on facetal hyperplane of constraint 1, are shown. x1r = TP of
constraint 1, x̂1r = NTP corresponding to constraint 1. Descent step from x̄r

[x̂1r] in direction −c1 are shown, leading to points P [Q] respectively. Here Q
is a much better point than P .

Let 0 < 6 < 1 be a small positive tolerance (6 = 0.1 works well). Then for
i ∈ T (x̄r), the point on the line segment joining x̄r and xir close to the TP xir,

x̂ir = 6x̄r + (1− 6)xir

is called the near touching point (NTP) corresponding to the tangent plane
{x : Ai.x = bi} of the ball B(x̄r, δ(x̄r)).

We found that carrying out a descent step in the GPTC −ci from the NTP
x̂ir, for each i ∈ T (x̄r); produces good reductions in objective value, particularly
as x̄r is getting closer to an optimum solution of the original LP. We will denote

d5 = the GPTC direction −ci that gives maximum reduction in ob-
jective value when the descent step is taken from the corresponding
NTP x̂ir.

Each descent step carried out in this iteration requires one minimum ratio
computation. For example, consider a descent step from the current center x̄r in
thr descent direction y (i.e., satisfying cy < 0). If the step length is λ, the move
leads to the point x̄r + λy. Select a small positive number 61 as the tolerance
for minimum {Ai.x− bi : i = 1 to m} for the point x to be in the interior of K.

17

Then we will take the step length from x̄r in the direction y to be: (−61) +
(the maximum step length possible while remaining inside K), which is

γ = minimum{−Ai.x̄r+bi+61Ai.y
: i such that Ai.y < 0}

and then the point obtained at the end of this descent step will be x̄r + γy if γ
is finite.
If γ =∞, the objective function z(x) is unbounded below in (1), and {x̄r +

λy : λ ≥ 0} is a feasible half-line along which z(x) diverges to −∞ on K.
Terminate the method if this occurs.

4 How To Implement the Algorithm to Solve (1)
With an Initial Point x0 ∈ K0?

In this section we discuss the work in a general iteration of the sphere method,
and how the various steps outlined in Sections 2, 3 are implemented in it for
solving the LP (1).
In describing the concept of the sphere method for solving the LP (1) in

Section 3, it was mentioned that the aim of the centering step when the objective
value is t, is to compute the ball center of K on the current objective plane
{x : cx = t}. This requires using line search steps each of which is profitable
(i.e., increases δ(x)) while keeping cx unchanged at t. But in practice, if the same
step that increases δ(x) can also decrease the value of cx, that is even better for
solving the LP (1). For this reason, in the implementation of the sphere method
discussed below, in the centering step we select line search directions which are
both profitable, and are also descent directions for cx if possible.
The first iteration begins with the given initial interior feasible solution x0.

We will now discuss the general iteration r+1 beginning with the initial interior
feasible solution xr.
In Sections 2.2.1, 2.2.2, we discussed two different strategies to compute the

ball center on the current objective plane {x : cx = cxr}. In the following Sec-
tions 4.1, 4.2, we discuss the implementation based on the strategies in Section
2.2.1, 2.2.2 respectively.

4.1 Implementation by Approximating the Ball Center on
Objective Plane Directly

Here we will use the approach of computing the approximate ball center on the
current objective plane directly based on the strategy discussed in Section 2.2.1.

Centering Step: First apply LSFN as discussed in Section 2.2.1, selecting
profitable directions for the line search from the set Γ2 (instead of Γ1) until the
improvement in the radius of the ball δ per step decreases below some selected
tolerance. At that time suppose the point in the sequence being generated is
xr,k

18

With xr,k, switch and initiate an LSCPD sequence of Section 2.1.2 with xr,k

as the initial point of the sequence. We will now follow a different procedure
than what is described in Section 2.2.1. Let xr,g denote a general point in the
sequence being generated in this sequence.
When xr,g is the current point, we look for a profitable direction to move at

xr,g which is a basic solution of the system

Ai.y = 1 for all i ∈ T (xr,g). (13)

Notice that the additional constraint “cy = 0” as discussed in Section
2.2.1 is not included in (13). Suppose we obtain a basic solution y0 for this
system, with respect to the basic vector yB0 and basis B0. There are two cases
to consider.

Case 1: If cy0 ≤ 0, then y0 is not only profitable at xr,g (i.e., δ(xr,g + αy0)
increases as α increases from 0), but it is also a descent direction for cx. So,
we carry out a line search step at xr,g in the direction y0 exactly as described
in Section 2.1.1 and continue. This moves increases δ(x) and also may decrease
cx.

Case 2: If cy0 > 0, there are two subcases to consider here. Let (B0
...D0) be

the partition of the coefficient matrix of (13) into basic, nonbasic parts with re-

spect to the basic vector yB0 for it. Let (cB0

...cD0) be the corresponding partition
of the row vector c.

Subcase 2.1: cD0 − cB0(B0)−1D0 = 0. In this subcase cy = a constant
= cy0 in every solution of (13). So, in this subcase using any solution of (13)
as the direction for the move helps increase δ(x), but also increases cx. So we
terminate the sequence at this stage, and take the current point xr,g as the
approximation to the ball center on the objective plane through xr,g, and go to
the descent step discussed next.

Subcase 2.2: There is a nonzero entry in cD0 − cB0(B0)−1D0, suppose
it occurs in the column of the nonbasic variable yj and that nonzero entry is
denoted by c̄j . Let the column vector of this nonbasic variable yj in D

0 be
denoted by (D0).j . Then the solution y

1 of (13) given by: all the variables
except yj in the nonbasic vector yD0 are = 0, and

yB0 = y0B0 − θ(B0)−1(D0).j

Nonbasic yj = θ.

where θ = (−1 − cy0)/c̄j , satisfies cy1 = −1. Now carry out a line search step
at the current point xr,g in the direction y1 exactly as in Section 2.1.1 and

19

continue. As under Case 1, this move not only increases δ(x) but also decreases
cx.

This seems to output a good approximation to the ball center on the current
objective plane through the final point obtained. With that go to the Descent
steps discussed next.

Descent Steps: Let x̄r denote the ball center obtained. We list the various
descent steps carried out in this iteration, as described in Section 3, giving each
a number for ease in referring to it. In each the step length is determined by a
minimum ratio computation as illustrated at the end of Section 3. After each
descent step, include the point obtained at the end of it, along with its objective
value, in a list.

D1, Descent Step 1: From the ball center x̄r take a descent step
in the direction d1 = −cT .
D2, Descent Step 2: From the ball center x̄r take a descent step
in the direction d2 = x̄r − x̄r−1.
D3, Descent Steps 3: From the ball center x̄r take descent steps
in the GPTC directions −ci for each i ∈ T (x̄r). Define the direction
d3 as in Section 3.

D4, Descent Step 4: From the ball center x̄r take a descent step
in the direction d4 defined in Section 3.

D5.1, Descent Steps 5.1: For each i ∈ T (x̄r), take a descent
step from the NTP x̂ir in the GPTC direction −ci. At the end let
x̃r1 denote the best point (i.e., the one corresponding to the least
objective value) among the |T (x̄r)| points obtained at the end of
these descent steps; and let d5 denote the direction used in the step
that yielded this point.

Find the best point in the List, let it be xr+1. With xr+1 as the initial
interior feasible solution, go to the next iteration.

4.2 Implementation Based on Approximating the Ball Cen-
ter on Current Objective Plane Using the Strategy
Discussed in Section 2.2.2

If the strategy discussed in Section 2.2.2 is to be used for centering, then find the
approximate ball center on the current objective plane as discussed in Section
2.2.2. First apply LSFN of Section 2.1.1 on the transformed problem until the
improvement in δ(x) per step decreases below some selected tolerance. At that
time switch to LSCPD until it terminates. With the final point obtained go to
the Descent step, which is the same as in Section 4.1, and continue.

20

Usually the objective coefficient vector c can be expected to be a dense vector
in practice. Remember that in the strategy for centering discussed in Section
2.2.2, the constraint “cx = t” is used to eliminate the variable xn from
consideration in this centering step. When c is a dense vector, the resulting
system (11) after this elimination step may get several dense rows making it
hard to deal with in this implementation. The strategy discussed in Section 4.1
avoids this difficulty, and hence may give better performance, but it is better to
compare the two strategies computationally to check out.

Termination Condition: Termination conditions used in other interior
point algorithm implementations can be used here also.

The case when K is unbounded: Suppose K, the set of feasible solutions
of (1), is an unbounded polyhedron. As discussed earlier, in this case the ball
center of K is not defined. But the sphere method can still be applied with
the approximate ball centers computed as in Sections 2, 4. As shown in [9] this
method will work even when K is unbounded. If cx is unbounded below on K,
it will terminate in some iteration with the step length in one of the descent
steps as ∞, this is the indication that cx is unbounded below on K.

5 Summary of Computational Results

In this section we present some computational results of implementing our
method. We use MATLAB 7.0 to implement the algorithm and test it on some
randomly generated problems. Our goal in this section is to computationally
test different strategies discussed in the paper for centering and descent steps.
At this point we are interested in the performance of the algorithm with each
one of these directions and choose the most efficient ones for future development
of a software.
While we believe that our algorithm has the potential to eventually outper-

form the current algorithms for linear programming, but the results presented
here are not intended to test this hypothesis. We use a preliminary code that
is written by the built-in MATLAB functions. For example in LSCPD, as the
algorithm moves from one step to the next, we do not use the updating for-
mulae given in Section 2.1.2 to update the inverse; instead in these preliminary
experiments, in each step we solve the system of equations (8) to be solved in
that step using the MATLAB linear equation solver from scratch. Therefore
the numerical results illustrated here are only preliminary.
To explore the full potential and practical power of the algorithm proposed in

this paper, and compare its convergence speed with that of simplex and IPMs,
a computer code in a low-level programming language should be developed
that uses the advanced techniques of numerical linear algebra, in particular
appropriate methods to update the inverse of a matrix as it grows gradually as
described in Section 2.1.2. We have not done that in these initial experiments.

21

From these preliminary experiments, we are able to get some measures of
efficiency of our technique, and compare its performance with the simplex al-
gorithm in terms of the average percent move toward the optimal solution per
iteration. Also we run our code on problems where m >> n, which includes
highly redundant problems and show that in terms of cpu time even our pre-
liminary code outperforms simplex method on these problems.

Problem Generation: To generate entries of the coefficient matrix, and
vector c, we utilize the MATLAB function “randn” that generates random
numbers from the Standard Normal distribution. To ensure feasibility of the
LP generated, we use the function “−rand” that generates random numbers
from the Uniform distribution in (−1, 0) for the RHS vector. Then, we include
box constraints l ≤ x ≤ u, where l and u are n-vectors with negative and
positive random entries respectively. Therefore the initial point, x0 = 0, is
strictly feasible for the system of constraints generated. The data is normalized
by dividing each nonzero row of A (and the corresponding RHS element of b) by
the norm of that row. The vector c also is normalized. We run our test problems
on a laptop computer with Intel(R) Pentium(R) M processor 2.00GHz and 2.00
GB of RAM.

Computational Issues: In the centering step, although a direction y that
satisfies Ai.y ≥ 0 for all i ∈ T (xr,k) is profitable at xr,k, the improvement
in δ using that direction might be very small if Ai.y is small. Therefore it is
necessary to use a tolerance for this condition and check Ai.y ≥ ε > 0. On
the other hand, this tolerance 6 should depend on the proximity of xr,k to the
optimal solution of the LP. That is as we get closer to the optimal solution of
the LP, the tolerance ε should be reduced. Therefore we start the algorithm
with a relatively large tolerance, say ε = 0.01 and at the end of each iteration
we update the tolerance by ε

r+1 .
Another issue with LSFN is that although it is less expensive than LSCPD,

we found that as the approximate center gets closer to the actual center, the
improvement in δ in it becomes only marginal even with the above correction
to the tolerance. Therefore we need another tolerance to stop LSFN when the
improvement in δ becomes small. Through some trial and error we found that
the reduction in tolerance should depend not only on iteration r but also on m
and n and at the same time it should not be too large. Thus in each iteration
if the improvement in δ in LSFN falls below ε

(r+1)
√
min(m,n)

, we stop LSFN and

start LSCPD.
Again in LSCPD, as the approximate center gets close to the true center the

step lengths α in steps of the sequence become marginal. Therefore we need
another strategy to terminate the sequence LSCPD as step lengths α in the
steps of the sequence become small. For this the reduction in tolerance should
be larger and faster. So, we start the procedure with ε = 0.0001 and update
it at each iteration by ε

(r+1)
√
max(m,n)

, and terminate LSCPD when the step

22

length α in a step falls below this tolerance. The resulting center from this step
is x̄r.
The descent steps start at x̄r resulting from LSCPD. We compute the four

sets of descent directions discussed in Sections 3, 4 and compare their perfor-
mance. We need another tolerance factor to determine how close to the bound-
ary to stop each descent step. For this we use the same tolerance as under
LSCPD. In summary, here is the computational version of the algorithm.

Computational Version of the Algorithm

Let x0 = 0 be the initial point, ε = 1.0×10−6, ε1 = 1.0×10−2, ε2 = 1.0×10−4
k1 =

0
min(m,n), k2 =

0
max(m,n), and r = 0.

Step 1. Let xr,0 = xr. Perform the centering step using LSFN described in
Section 8.1 to obtain xr,k for k = 1, 2, . . . , until no normal direction y in
Γ2 exists such that Ai.y ≥ ε1

r+1 , for all i ∈ T (xr,k), or the improvement in
δ falls below ε1

k1(r+1)
.

Step 2. Starting from the final xr,k obtained in Step 1, perform the centering
steps of LSCPD discussed in Section 4.2 to obtain direction y that satisfies
(14). Update xr,k+1 = xr,k + αy. Stop this step when α < ε1

k2(r+1)
.

Step 3. Compute directions in the four classes

• Class 1: d1 = −cT ,
• Class 2: d2 = x̄r − x̄r−1,
• Class 3: −ci defined in (13) for each i ∈ T (x̄r),
• Class 4: d4 = (�(−ci : for i ∈ T (x̄r))/|T (x̄r)|.

Carry out descent steps from x̄r in each direction in the four classes,
to within ε2

k2(r+1)
of the boundary of the feasible region. Let d3 be the

direction from Class 3, that gives the best result when the descent step is
taken from x̄r.

In the same way, for each i ∈ T (x̄r) compute the NTP x̂ir, and carry out
a descent step from it in the direction ci. Let d5 denote the direction in
Class 3 that gives the best result when the descent step is taken from its
corresponding NTP.

Let d be the direction corresponding to the best point, xr+1, (having the
largest reduction in objective value) in all these descent steps.

Step 4. If ,x
r+1−xr,
,xr+1, < ε, stop. Otherwise set r = r+1 and go back to Step 1.

Numerical Results: Let us first show the typical behavior of the algorithm
when implemented on a randomly generated problem with a moderate size of

23

Table 1: sphere radius and objective values before and after LSFN and LSCPD
for a random problem with m = 150 and n = 50

Itr. cxr−1 cfn tfn δfn cpd tpd δpd cxr

1 0 15 6 0.5737 34 22 2.0528 -3.3157
2 -12.5277 18 5 0.4685 36 30 2.0534 -14.7995
3 -21.5544 6 6 0.0786 43 50 1.4048 -22.8807
4 -27.4741 3 4 0.0291 44 50 0.5963 -28.0413
5 -29.9104 6 5 0.0562 41 49 0.2705 -30.1247
6 -30.9835 3 6 0.0293 34 47 0.1060 -31.0603
7 -31.3951 1 6 0.0040 30 46 0.0393 -31.4304
8 -31.6208 0 38 0.0000 8 49 0.0034 -31.6242
9 -31.6417 0 45 0.0000 2 48 0.0004 -31.6421
10 -31.6447 0 48 0.0000 0 48 0.0000 -31.6447

m = 150 and n = 50. Table 1 illustrates the performance of our two centering
steps. The first and second columns of this table show the iteration, and the
value of the objective function of the original LP in the beginning of the centering
step at that iteration, respectively. The column under cfn shows the number
of calls to LSFN to update the sphere radius, the column indicated by tfn
shows the number of touching constraints, and δfn is the radius of the sphere
at the end of LSFN. cpd, tpd and δpd have similar meanings for one sequence of
LSCPD. The last column shows the objective value of the original LP at the
end of the centering steps (not descent step). For example in the first iteration,
the objective value is initially zero, there are 15 calls to LSFN and the resulting
radius is 0.5737 where 6 constraints are touching. Then LSCPD sequence had 34
steps that increases the radius to 2.0528 with 22 touching constraints at which
point the objective value of the original LP is also improved to -3.3157.
As Table 1 shows, in earlier iterations LSFN is used to obtain an approximate

center, and LSCPD is utilized as a supplement to improve the sphere radius.
As we get closer to the optimal objective value, the use of LSFN is significantly
reduced but LSCPD is used instead to obtain the approximate center. This
table also shows that the sequence LSCPD not only improves δ but also reduces
the objective value of the original LP, because some directions y used in steps
of LSCPD satisfy cy < 0 as described in Section 4.1.
Table 2 illustrates the performance of the algorithm in descent steps. As

mentioned earlier we consider five classes of descent directions. To study these
directions from computational viewpoint for future references, we compare their
performances.
The first two columns of this table show the iteration and the objective value

at the current center. The next five columns of the table indicated by cxr+1di ,
for i = 1, . . . , 5, illustrate the value of the objective function after the descent
step along direction di, and the column under d shows the direction that gave
the best result in the problem.

24

Table 2: Descent steps based on directions d1, . . . , d5 on a random problem with
m = 150 and n = 50
Itr. cxr cxr+1d1 cxr+1d2 cxr+1d3 cxr+1d4 cxr+1d5 d
1 -3.3157 -10.3051 -3.3157 -11.9094 -10.5648 -12.5277 d5

2 -14.7995 -21.0559 -17.7847 -21.1657 -21.0721 -21.5544 d5

3 -22.8807 -27.1514 -24.6089 -27.2263 -27.1355 -27.4741 d5

4 -28.0413 -29.8521 -28.9576 -29.8712 -29.8445 -29.9104 d5

5 -30.1247 -30.9531 -30.2478 -30.9535 -30.9497 -30.9835 d5

6 -31.0603 -31.3802 -31.2448 -31.3804 -31.3788 -31.3951 d5

7 -31.4304 -31.5522 -31.6208 -31.5544 -31.5521 -31.5615 d2

8 -31.6242 -31.6346 -31.6288 -31.6406 -31.6346 -31.6417 d5

9 -31.6421 -31.6432 -31.6426 -31.6438 -31.6432 -31.6447 d5

10 -31.6447 -31.6447 -31.6447 -31.6447 -31.6447 -31.6461 d5

Table 2 gives two useful information items. First, in 9 out of 10 iterations
d5 has been selected as the best direction, i.e., Descent Step 5.1 gave the best
results among all the descent steps used. We had almost the same experience
with all of our test problems. So it seems that the direction d5 obtained in
Descent Step 5.1, is the direction to be selected in our descent step. Secondly,
it shows that our descent direction significantly reduces the objective value at
each iteration. In this example the average reduction in objective value has
been about 13.2% per iteration with the higher percentage in earlier iterations.

We now compare our algorithm with the Primal Simplex method on some
randomly generated problems of small to moderate size. Our measure is based
on the average percent move toward the optimality per iteration. That is at
each iteration, for both our algorithm and the Primal Simplex algorithm, we
measure

cxr − cxr+1
cxr − cx∗ ,

where x∗ is the true optimal solution of LP.
The reason that we use only small to moderate size problems is both because

our code is still under development and is not finalized yet, and also because the
simplex method takes a very long time to solve problems of large size. Moreover
this comparison between the average percent move toward the optimality can
be done with problems of any size.
Table 3, summarizes the results of the comparison between our algorithm

and the simplex method. We use the MATLAB function “linprog” when its
option “LargeScale” is turned off to use the simplex method. The first col-
umn of this table gives the problem size (m,n). The second column shows the
density of the coefficient matrix excluding the bound constraints on individual
variables. The density is determined when the random data is generated by the
MATLAB functions “sprandn” and “sprand”. “sprandn” and “sprand” gener-
ate random numbers from a standard normal and uniform distribution in (0, 1),

25

Table 3: Comparison of the average percent move toward the optimality per
iteration of the Sphere Method and the Simplex Method

(m,n) density k1 LSFN LSCPD e1 k2 e2
100 5 14 29 73.55 14 20.38

(30, 10) 50 4 4 24 68.64 15 23.01
10 3 1 1 99.82 4 58.15
100 9 25 86 46.27 69 7.93

(60,20) 50 9 31 80 57.43 72 6.88
10 6 2 54 27.97 28 12.93
100 15 35 200 30.33 158 4.35

(90, 30) 50 16 14 217 15.60 181 3.80
10 14 9 173 12.28 78 8.83
100 22 48 269 17.31 453 2.07

(150, 50) 50 19 25 302 8.02 535 1.64
10 17 17 123 4.70 488 1.27
100 19 58 644 19.36 2085 0.49

(300, 100) 50 16 42 572 15.02 2421 0.38
10 15 30 691 9.38 2598 0.22

respectively with a given density. For instance, an m×n matrix with density of
10% means that the number of nonzero entries of the matrix is approximately
0.10×m× n. We use problems with 10%, 50% and 100% densities to illustrate
our computational results on sparse and dense problems.
The third to sixth columns of the table represent results from the Sphere

method: its number of iterations, and the total calls to LSFN, LSCPD centering
procedures respectively, and e1 represents the average percent move toward
optimality per iteration. The last two columns of the table give the results from
the Simplex method: the number of iterations and the average percent move
toward the optimality per iteration.
Average cpu times per iteration are not given in Table 3 because for the

simplex method we used the finished MATLAB code “linprog”, whereas for the
sphere method we used various individual MATLAB functions for each step
separately.
The results illustrated in Table 3 for these randomly generated problems

show that our algorithm has clear advantage over the simplex method. Com-
paring these results for both methods shows that each iteration moves faster
toward the optimal solution which results in fewer iterations.

We now illustrate the performance of our algorithm on problems where
m >> n, and compare our cpu time with that of simplex method. We tested
our code with four random problems generated in three steps. At each step we
added additional redundant constraints. The results are presented in Table 4.
For these problems we limited the use of LSFN to take advantage of LSCPD

26

Table 4: Comparison of CPU time for highly redundant problems
n m LSFN LSCPD sphere method simplex

500 8 31 45 69
50 1000 11 30 42 132

1500 10 31 44 375
700 29 102 145 248

100 1200 34 126 180 584
1700 65 255 350 929
900 269 974 1356 1422

200 1200 157 498 702 3863
2000 230 688 1012 5100
900 344 1274 1748 4758

300 1800 206 733 1168 7488
3000 244 855 1264 9999

property that redundant constraints never enter into the touching constraints
set.
The columns of this table show the amount of time (in seconds) for the major

subroutines (LSFN and LSCPD), as well as the total time of our algorithm and
simplex method.
The results of Table 4 clearly shows the advantage of our algorithm when

applied to highly redundant problems. Even our preliminary code outperforms
simplex algorithm on these problems. The same advantage of the sphere method
over simplex method was observed when we generated problems with large num-
ber of constraints (not necessarily redundant), which further confirms our in-
tuition that dense problems with large number of constraints can be handled
efficiently with sphere method.
Table 4 also shows that a large proportion of the cpu time for sphere method

is taken by the centering procedures LSFN (20%) and LSCPD (70%). Since
these two subroutines contain many loops, the use of individual MATLAB func-
tions for each step separately slows the whole process. This confirms our earlier
statement that implementing the procedure described in Section 2.1.2. by a
low-level programming language would substantially improve the performance
of the algorithm.

6 Future Research Directions

We are investigating additional directions for line search to include in the the
procedures used for computing approximate ball centers, to accelerate their con-
vergence rate, and to improve the quality of the approximation to the optimum
centre. We are also investigating additional descent steps that may speed up
the method.

27

Also, we have so far been able to test the numerical performance of some al-
ternatives in the algorithm using a preliminary MATLAB code. More extensive
testing is needed to determine the best alternatives, and then prepare a good
code with these alternatives for tests using available large scale test problems.
The sphere method also opens up important new research topics in com-

putational linear algebra. To get the best results from an implementation of
the simplex method, reserachers developed efficient factorization techniques to
update the inverse of a matrix as one of its column vectors changes from one
step to the next. An important component of the sphere method is the LSCPD
sequence of steps in which a matrix grows by a row and a column from one step
to the next. To get the best results from the sphere method, we need to develop
appropriate techniques to update the inverse as the matrix grows in this way.

Acknowledgements: We thank Huang Chia-Hui, and Katta Sreerama-
murthy for the nice figures. Also, we are grateful to the referee for suggesting
the name ball center, and for making many suggestions to improve the paper.

28

7 References

[1] A. I. Ali, C. S. Lerme, and L. M. Seiford, “Components of Efficiency
Evaluation in Data Envelopment Analysis”, EJOR, 80(1995)462-473.

[2] C. Cartis and N.I.M. Gould, “Finding a Point in the Relastive Inte-
rior of a Polyhedron”, RAL Technical Report 2006-016, available from
Optimization Online, December 2006,

[3] W. W. Cooper, L. M. Seiford, and K. Tone; Data Envelopment Analysis:
A Comprehensive Text with Models, Applications, References and DEA-
Solver Software, 2nd Edition, Springer, NY, 2006.

[4] G. B. Dantzig and M. N. Thapa, Linear Programming, 1. Introduction,
2. Theory and Extensions. Springer-Verlag New York, 1997.

[5] M. Kojima, S. Mizuno, and A. Yoshise, “A primal-dual interior point
algorithm for linear programming”, Progress in Mathematical Program-
ming: Interior Point and Related Methods, N. Megiddo, ed., Springer-
Verlag, New York, ch. 2 (29-47) 1989.

[6] N. Megiddo, “Pathways to the optimal set in linear programming”,
Progress in Mathematical Programming: Interior Point and Related
Methods, N. Meggiddo, ed., Springer-Verlag, New York, ch. 8 (131-158)
1989.

[7] S. Mehrotra, “On the implementation of a primal-dual interior point
method”, SIAM Journal on Optimization, 2 (575-601) 1992.

[8] R. D. C. Monteiro and I. Adler, “Interior path-following primal-dual
algorithms, Part I: Linear programming”, Mathematical Programming
44 (27-41) 1989.

[9] K. G. Murty, “A new practically efficient interior point method for LP”,
Algorithmic Operations Research, 1 (3-19) 2006; paper can be seen at
the website: http://journals.hil.unb.ca/index.php/AOR/index.

[10] K. G. Murty, “Linear equations, Inequalities, Linear Programs (LP),
and a New Efficient Algorithm” Pages 1-36 in Tutorials in OR, IN-
FORMS, 2006.

[11] R. Saigal. Linear Programming A Modern Integrated Analysis. Kluwer
Academic Publishers, Boston, MA, 1995.

[12] G. Sonnevend, J. Stoer, and G. Zhao, “On the complexity of follow-
ing the central path of linear programming by linear extrapolation”,
Mathematics of Operations Research 62 (19-31) 1989.

[13] S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia,
PA, 1997.

[14] Y. Ye. Interior Point Algorithms, Theory and Analysis, Wiley-
Interscience, New York, 1997.

29

