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Abstract

We show that the problem of finding a perfect matching satisfying a single

equality constraint with 0-1 coefficients in an n × n incomplete bipartite graph,

polynomially reduces to a special case of the same problem called the partitioned

case. Finding a solution matching for the partitioned case in the incomplete bipar-

tite graph, is equivalent to minimizing a partial sum of the variables over Qn,r1
n1,n2

=

the convex hull of incidence vectors of solution matchings for the partitioned case

in the complete bipartite graph. An important strategy to solve this minimization

problem is to develop a polyhedral characterization of Qn,r1
n1,n2

. Towards this effort,

we present two large classes of valid inequalities for Qn,r1
n1,n2

, which are proved to

be facet inducing using a facet lifting scheme.
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1 Introduction

The well-known assignment problem of order n deals with minimizing a linear objective

function involving n2 variables x = (xij : i, j = 1, . . . , n), usually written in the form

of a square matrix of order n, subject to constraints (1)-(4). Associating the variable

xij with the edge (i, j) in the complete bipartite graph Kn,n, G = (I, J, I × J), where

I = {1, . . . , n}, J = {1, . . . , n}, each assignment x̄ = (x̄ij), i.e., feasible solution of (1)-

(4), is associated with the perfect matching {(i, j) : x̄ij = 1} in G. We will also find it

convenient to associate the variable xij and edge (i, j) in G, with the (i, j)th cell in the

two dimensional array I×J . With the values of the variables entered in their associated

cells in the array, each assignment becomes a permutation matrix.

However, in many applications, we need to find an assignment which has a specified

value for a given objective function, rather than an assignment that minimizes it; i.e.,

we need to find a solution x = (xij) to the following system

n∑
j=1

xij = 1 for all i = 1, . . . , n (1)

n∑
i=1

xij = 1 for all j = 1, . . . , n − 1 (2)

xij ≥ 0 for all i, j = 1, . . . , n (3)

xij ∈ {0, 1} for all i, j = 1, . . . , n (4)
n∑

i=1

n∑
j=1

cijxij = r. (5)

An example of such an application arises in the core management of pressurized

water nuclear reactors [2, 4].

Solving (1)-(5) is NP-complete when ci,j are general integers [3]. The problem of

solving (1)-(5) when all ci,j are 0− 1 has been described in [7] as a mysterious problem.

In this special case necessary and sufficient conditions for the existence of a feasible

solution to (1)-(5) have been derived in [5, 6], and an O(n2.5) algorithm for either

finding a feasible solution to (1) -(5) or concluding that it is infeasible is also given in
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[6].

In the sequel we assume that all cij are 0 or 1, and 0 ≤ r ≤ n, r integer. In this

paper we investigate some polyhedral aspects of this special case.

System (1)-(5) is defined on the complete bipartite graph G, i.e., all the n2 variables

xij are allowed to assume values 0 or 1. This feature is used crucially in the algorithm

discussed in [6] for solving (1)-(5). However, in applications, the problem is usually

defined on an incomplete bipartite graph; i.e., we are given a subset of edges F called the

subset of forbidden edges, or missing edges of G and all the variables xij for (i, j) ∈ F

are deleted from system (1)-(5) and we need to solve the remaining system. This is

equivalent to imposing a new constraint

xij = 0 for all (i, j) ∈ F. (6)

Whether an efficient algorithm exists for the problem in an incomplete graph, i.e.,

for solving (1)-(6) remains an open question.

Whether it is on the complete graph (this corresponds to F = ∅) or incomplete

graph, our problem belongs to a special case called the partitioned case if there exist

partitions I = I1 ∪ I2, J = J1 ∪ J2 such that

cij =




1 for all (i, j) ∈ (I1 × J1) ∪ (I2 × J2)\F
0 for all (i, j) ∈ (I1 × J2) ∪ (I2 × J1)\F.

In this partitioned case, the cells in the two dimensional array I × J are partitioned

into 4 blocks: B1 = I1 × J1, B2 = I1 × J2, B3 = I2 × J2, and B4 = I2 × J1. Let

|I1| = n1, |J1| = n2. The following facts have been proved in [6, 8] for this partitioned

case, in the complete graph.

(i) In this case, for any t = 1 to 4, |Bt ∩ {(p, q) : xpq = 1}| is the same, say rt, for

all solutions x = (xpq) of (1) to (5), and if such a solution exists, then r1 =

(−n + r + n1 + n2)/2, r2 = (n − r + n1 − n2)/2, r3 = (n + r − n1 − n2)/2,

r4 = (n− r −n1 +n2)/2 since r2 = n1 − r1, r4 = n2 − r1, and r3 = n− r1 − r2 − r4.
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(ii) In this case, system (1) to (5) has a solution iff n + r + n1 + n2 is an even number,

and all the r1, r2, r3, r4 given in (i) are ≥ 0. Hence all the r for which system (1)

to (5) has a solution in this case have the same odd-even parity, and the set of all

such r form an arithmetic progression in which consecutive elements differ by 2.

Furthermore, in this partitioned case, the following 6 constraints:
∑

(i,j)∈Bt
xij =

rt, t = 1 to 4;
∑

(i,j)∈B1∪B3
xij = r;

∑
(i,j)∈B2∪B4

xij = n − r; are all equivalent to each

other in the sense that any one of them can replace (5) in system (1) to (5), leading to

an equivalent system. In particular, consider

∑
(i,j)∈B1

xij = r1. (7)

In this case, system (1) to (5); or the equivalent system (1) to (4) and (7), has a

solution iff r1 is a nonnegative integer and max{0, n1 + n2 − n} ≤ r1 ≤ min{n1, n2}.
Color the edge (i, j) in G ( and the cell (i, j) in the array I × J) red if cij = 1, blue

if cij = 0. Then any solution to (1)-(5) is the incidence vector of a perfect matching in

G with exactly r red edges. Such a perfect matching will be called a solution matching.

We will assume that there is at least edge of each color, as otherwise the problem of

finding a solution matching becomes the standard one of finding a perfect matching in

a bipartite graph which is efficiently solvable.

With this coloring, the complete graph G, or the incomplete graph H = (I, J, E =

(I×J)\F ) belongs to the partitioned case if there exists partitions I = I1∪I2, J = J1∪J2

such that

edge (i, j) is red iff (i, j) ∈ (I1 × J1) ∪ (I2 × J2)\F
edge (i, j) is blue iff (i, j) ∈ (I1 × J2) ∪ (I1 × J2)\F.

(8)

Consider the incomplete graph case as defined earlier. The following lemma gives

the necessary and sufficient conditions for the incomplete graph H to belong to the

partitioned case.

Lemma 1 Consider the incomplete colored bipartite graph H = (I, J, E) where E =

(I × J)\F . H belongs to the partitioned case iff there exists no cycle in H containing
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an odd number of red edges.

Proof. Since H is bipartite, if a cycle in H contains an odd number of red edges, it

must also contain an odd number of blue edges and vice versa. If partitions exist as

defined earlier, clearly there can be no cycle containing an odd number of red edges in

H .

Suppose there exist no cycle containing an odd number of red edges. Let HR =

(I, J, ER), HB = (I, J, EB) denote the subgraphs of H induced by the red and blue

edges respectively but each of them containing all the nodes. Under these assumptions

HR cannot be a connected graph, for suppose it is connected. Take any blue edge (i, j).

Since HR is connected, there exists a red simple path P say in HR from i to j. Then

P ∪ {(i, j)} is a simple cycle containing an odd number, 1, of blue edges, contradicting

our assumption. So HR must consist of two or more connected components, and no blue

edge connects two nodes in the same component.

Construct an auxiliary graph X = (N ,A) by the following rules:

1. Each node in N represents a connected component in HR.

2. Nodes p and q in N are joined by an edge (p, q) ∈ A iff there is at least one

blue edge in H connecting one of the nodes in connected component p of HR and

another node from connected component q of HR.

By the hypothesis, the graph X contains no odd cycles. Hence X is bipartite. Suppose

a bipartition for X is N1, N2. Now place node i ∈ I in I1 if the component of HR

containing node i is in N1, or in I2 if that component is in N2. Similarly place node

j ∈ J in J1 if the component of HR containing node j is in N1, or in J2 if that component

is in N2. Then the edges in H in blocks I1 × J1 and I2 × J2 can not be blue, since the

two nodes on any edge from these blocks come from the same connected component of

HR. On the other hand, the edges in H in blocks I1 × J2 and I2 × J1 can not be red,

since the two nodes on any edge from these blocks come from different components in

HR. Therefore, partitions I = I1 ∪ I2, J = J1 ∪J2 satisfy the conditions given in (8).
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We will show now that the problem of solving (1)-(5) on the incomplete bipartite

graph H can be solved in polynomial time iff there exists a polynomial time algorithm

for the same type of problem belonging to the partitioned case.

Theorem 1 The problem of solving (1)-(5) on the incomplete bipartite graph H poly-

nomially reduces to a problem of the same type belonging to the partitioned case

Proof. We consider two cases:

Case 1: Suppose that H has no cycles containing an odd number of red edges. In this

case by Lemma 1, our problem itself belongs to the partitioned case.

Case 2: H has at least one cycle containing an odd number of red edges. Let HR =

(I, J, ER), HB = (I, J, EB) denote the subgraphs of H induced by the red and

blue edges respectively. We will now enlarge H into a new bipartite graph H∗ by

adding 2|ER| new nodes and 2|ER| new edges by the following rule:

Replace each edge (i, j) ∈ ER by a path i, (i, uij), uij ,(uij, vij), vij, (vij , j), j; (see

Figure 1), where uij , vij are two new nodes corresponding to the original red edge

(i, j) in H . On this path color the new edges (i, uij) and (vij , j) red; and color the

new edge (uij, vij) blue. Clearly the new graph H∗ has n∗ = 2n+2|ER| nodes and

|EB| + 3|ER| = |E| + 2|ER| edges. Also notice that any cycle in H∗ that contains

a new node of the type uij say, must also include the nodes vij , i, j. Also each

cycle in the original graph H that contains a red edges and b blue edges becomes

a cycle containing 2a red edges and a + b blue edges. Hence all cycles in H∗ have

an even number of red edges so by Lemma 1 the colored graph H∗ belongs to the

partitioned case.

By replacing each red edge (i, j) in a perfect matching with r red edges in H by

the pair of edges (i, uij), (vij, j), it becomes a perfect matching with 2r red edges

in the new graph H∗. Also every perfect matching in H∗ that contains the red

edge (i, uij) must also contain the red edge (vij , j), as otherwise the node vij will

remain unmatched. Thus red edges in each perfect matching in H∗ occur in pairs,
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Path with new nodes uij, vij replacing the red

edge (i, j).

Figure 1: An edge, and the path that replaces it.

each pair belonging to a path of the form in Figure 1. Thus by replacing each pair

of red edges in a path of the form in Figure 1 by the edge on the left of Figure 1

in the original graph H , every perfect matching with 2r red edges becomes a

perfect matching in H with r red edges. Thus finding a perfect matching in H

containing r red edges is equivalent to finding a perfect matching in the new graph

H∗ containing 2r red edges, and this is a problem of the same type as the original

problem, but belonging to the partitioned case.

Because of Theorem 1, algorithmic studies of the problem of solving (1)-(6) can be

restricted to the partitioned case without any loss of generality. So in the sequel we

focus our attention on the partitioned case. Also, solving (1)-(6) is equivalent to the

optimization problem

min
∑

(i,j)∈F xij

subject to (1) − (5).
(9)

(9) is a 0-1 integer program defined on the complete graph G which we assume belongs

to the partitioned case. An important strategy for solving a 0-1 integer program is to

develop a polyhedral characterization of the convex hull of its set of feasible solutions, i.e.,

obtain a linear inequality representation for it. In this paper, we focus on a polyhedral

characterization for (1)-(5) in the partitioned case. We present two large classes of facet-
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inducing inequalities ( each containing an exponential number of inequalities) for this

problem [1]. However, these classes do not completely characterize the convex hull of

the set of feasible solutions of (1)-(5).

2 The Results

We consider the system (1) to (5) defined on the complete graph G belonging to the

partitioned case with partitions, I = I1 ∪ I2, J = J1 ∪ J2, blocks B1, B2, B3, B4, and

n1, n2, r1 to r4 as defined earlier.

When one of the sets among I1, I2 is ∅, and one of the sets among J1, J2 is ∅, all the

edges in G have only one color, and all extreme points of the set of feasible solutions of

(1), (2), (3), (5) satisfy (4) automatically. The same property holds when exactly one

of the 4 sets among I1, I2, J1, J2 is ∅, and the other three are nonempty. So, we assume

0 < n1 < n, 0 < n2 < n, and without loss of generality, we assume that the rows and

columns of the array are rearranged so that I1 = {1, 2, . . . , n1}, I2 = {n1 + 1, . . . , n},
J1 = {1, 2, . . . , n2}, J2 = {n2 + 1, . . . , n} (See Figure 2). Define

P n,r1
n1,n2

= Set of feasible solutions of (1), (2), (3), (7) [ or equiva-

lently (1), (2), (3), (5) ]

Qn,r1
n1,n2

= Integer hull of P n,r1
n1,n2

defined as conv({x : x ∈ P n,r1
n1,n2

and

x integer }) = convex hull of set of feasible solutions of

(1), (2), (4), (7).

It can be shown that P n,r1
n1,n2

6= ∅ iff max{0, n1 + n2 − n} ≤ r1 ≤ min{n1, n2}, which

we assume.

The polytope defined by (1),(2), and (3) is the well-known assignment , or Birkoff

polytope KA with integral extreme points. However, with the side constraint (7), P n,r1
n1,n2

may have fractional extreme points. For example, when n = 4, n1 = n2 = 2, r1 = 1,

x11 = x14 = x22 = x23 = x32 = x34 = x41 = x43 =
1

2
, xij = 0 otherwise
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is a fractional extreme point of P 4,1
2,2 . Hence, Qn,r1

n1,n2
may not be equal to P n,r1

n1,n2
.

In the sequel, an assignment x = (xij) of order n is represented as a permutation

(σ1, σ2, . . . , σs, . . . , σn) such that xsσs = 1 for s = 1, 2, . . . , n, xij = 0 otherwise. For

example, the diagonal assignment is represented by the permutation (1, 2, . . . , n).

2.1 Dimension and the Trivial Facets of Qn,r1
n1,n2

Here, we present one condition under which Qn,r1
n1,n2

coincides with P n,r1
n1,n2

. For the general

case when Qn,r1
n1,n2

6= P n,r1
n1,n2

, we establish that dim(Qn,r1
n1,n2

) = dim(P n,r1
n1,n2

) = n2 − 2n when

Qn,r1
n1,n2

6= ∅.

Lemma 2 Let KA be the assignment polytope, i.e., set of feasible solutions of (1), (2),

(3). If one or more of r1, r2, r3, r4 are 0, Qn,r1
n1,n2

= P n,r1
n1,n2

= a face of KA.

Proof. From Theorem 1 we know that in system (1), (2), (3), (5), the constraint (5)

can be replaced by

∑
(i,j)∈Bt

xij = rt. (10)

for any t = 1 to 4. Hence P n,r1
n1,n2

is the set of feasible solutions of (1), (2), (3), and (10).

But if rt = 0, under (3), constraint (10) is equivalent to

xij = 0 for each (i, j) ∈ Bt. (11)

Hence in this case P n,r1
n1,n2

is the set of feasible solutions of (1), (2), (3), (11), which

by definition is a face of KA, and hence all its extreme points are 0 − 1 vectors. Hence

Qn,r1
n1,n2

= P n,r1
n1,n2

= a face of KA in this case.

Theorem 2 Suppose that rt ≥ 1 for all t =1 to 4, and Qn,r1
n1,n2

6= ∅. Then Qn,r1
n1,n2

and

P n,r1
n1,n2

both have the same dimension n2 − 2n. Also, each non-negativity restriction in

(3) is a facet-inducing inequality for Qn,r1
n1,n2

.

8



Proof. Dim P n,r1
n1,n2

= n2 − 2n can be shown rather easily. Hence, dim Qn,r1
n1,n2

≤ n2 − 2n.

Now assume that dim Qn,r1
n1,n2

< n2 − 2n then there exists a hyperplane H = {x ∈ IRn2

:
∑n

i=1

∑n
j=1 αijxij = β} containing Qn,r1

n1,n2
, but not P n,r1

n1,n2
. i.e., H is not defined by a

linear combination of the equality constraints (1), (2), and (7). We will show that no

such hyperplane H can exist thus establishing that dim Qn,r1
n1,n2

= n2 − 2n.

Let Ax = b represent the system of equality constraints (1), (2), and (7). Then A is a

full row rank 2n× n2 matrix. Let x0 be a solution matching in Qn,r1
n1,n2

and A = (B , N)

be a partition of A into basic, nonbasic parts with B being a 2n × 2n basis for A,

corresponding to basic vector xB containing the basic variables

x1, n2+r2−1, x2, n2+r2−2, . . . , xn1+r4−1 ,1 , xn1+r4 ,n, xn1+r4+1, n−1, . . . , xn ,n2+r2

x1, n2+r2 , x2, n2+r2−1, . . . , xn1+r4 ,1 , xn1+r4+1 ,n, xn1+r4+2 ,n−1, . . . , xn ,n2+r2+1

with the basic variables in the top row having value 0 in x0 ( the cells marked with (◦)
in Figure 2), and those in the bottom row having value 1 in x0 ( the cells marked with

a (?) in Figure 2). Let xN denote the vector of nonbasic variables. From the results in

[6] we know that in the partitioned case under discussion here, the rows and columns of

the array can be rearranged so that the matched cells in any solution matching appear

along one of the diagonals like the one marked with (?)’s in Figure 2.

Let (αB αN) be the corresponding rearrangement of the row vector (αij). Hence

H = {x ∈ IRn2

: αBxB + αNxN = β}.

Let

Ĥ = {x ∈ IRn2

: α̂BxB + α̂NxN = β̂}

where

(α̂B, α̂N , β̂) = (αB, αN , β) − λT (B, N, b)

where λ ∈ IR2n will be chosen appropriately.
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Figure 2: The double lines indicate the row and column partitions, and the four blocks

B1, B2, B3, and B4 are shown. The 2n basic cells corresponding to basic vector xB are

marked with (◦) or (?).
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By construction Ĥ contains Qn,r1
n1,n2

. Now if we can show that α̂B = 0, α̂N = 0, and

β̂ = 0, for a proper choice of λ, it would follow that the equation defining H , is a linear

combination of the equality constraints (1), (2), and (7), thus arriving at a contradiction.

To establish this, let λT = αBB−1. Then α̂B = 0. Represented as a permutation of

(1,2, . . . ,n), x0 is

(n2 + r2, n2 + r2 − 1, n2 + r2 − 2 . . . , 1, n, n − 1, . . . , n2 + r2 + 1).

Then x0
N = 0. Since Qn,r1

n1,n2
lies in Ĥ , it follows that α̂Bx0

B + α̂Nx0
N = β̂. Since α̂B = 0

and x0
N = 0 it follows that β̂ = 0. Thus it remains to show that α̂N = 0. Towards this

effort, let x1 be the assignment

x1 = (n2 + r2 − 1, n2 + r2, n2 + r2 − 2 . . . , 1, n, n − 1, . . . , n2 + r2 + 1)

whose representation as a permutation is obtained by interchanging the first two elements

in the permutation corresponding to x0 ( when represented as permutation matrices, x1

is obtained by interchanging rows 1 and 2 in x0). By the hypothesis in the theorem

n1 = r1 + r2 ≥ 2, and hence the interchange does not alter the number of allocations

within each of the four blocks, i.e., x1 is also a solution matching, or x1 ∈ Qn,r1
n1,n2

. So
∑n

i=1

∑n
j=1 α̂ijx

1
ij = β̂ = 0, clearly this implies that the component α̂2,n2+r2 in α̂N is zero.

In the same way we can generate a sequence of solution matchings x2, x3, . . . , xk, . . . ,

xn2−2n ∈ Qn,r1
n1,n2

written as permutation matrices, where xk is derived from some xi ∈
{x0, x1, . . ., xk−1}, by interchanging either two rows ( both within I1 or both within I2)

or two columns ( both within J1 or both within J2), and for each k = 2 to n2−2n, using

the equation
∑n

i=1

∑n
j=1 α̂ijx

k
ij = 0 we are able to establish that one more component of

α̂N is zero. In the end we have α̂N = 0. This establishes that dim Qn,r1
n1,n2

= n2 − 2n.

Now select any variable xpq. From the above procedure it is clear that the dimension

of the set of all solution matchings in each of which xpq=0 has dimension n2 − 2n − 1.

This implies that the face F = {x ∈ Qn,r1
n1,n2

: xpq = 0} is a facet of Qn,r1
n1,n2

.
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2.2 Some Non Trivial Facets of Qn,r1
n1,n2

We assume that all of r1, r2, r3, and r4 ≥ 1. This automatically implies n ≥ 4.

Proposition 1 Let xĨ J̃ = (xij : i ∈ Ĩ , j ∈ J̃), where Ĩ, J̃ are arbitrary nonempty

subsets of I, J respectively, be the incidence matrix of a matching in Ĩ × J̃ . Let KR, KC

be subsets of Ĩ, J̃ respectively such that |KR| ≤ |J̃\KC | and |KC | ≤ |Ĩ\KR|. Then

∑
i∈KR j∈KC

xij +
∑

i∈KR j∈J̃\KC

xij +
∑

i∈Ĩ\KR j∈KC

xij ≤ |KR| + |KC |.

Equality holds for the matching x̄Ĩ J̃= (x̄ij : i ∈ Ĩ , j ∈ J̃) where

x̄ij =




1 for each i ∈ KR, for some j ∈ J̃\KC

1 for each j ∈ KC, for some i ∈ Ĩ\KR

0 otherwise.

Proof. This follows directly from the definition of a matching.

2.2.1 The First Class of Facets

Facet-inducing inequalities for Qn,r1
n1,n2

of the first class are characterized by a cell (p, q) ∈
I × J called the primary defining cell or just the defining cell, and a nonempty set of

row indices KR, and a nonempty set of column indices KC .

Look at the four blocks in our partition (Figure 2). Blocks B1, B2 lie in the same

rows of the array, so we say that each of them is the row adjacent block of the other.

Similarly, in blocks B3, B4, each is row adjacent block to the other. In the same way in

the pairs (B1, B4), (B2, B3), each is the column adjacent block of the other. We say that

two given blocks are adjacent if they are either row adjacent or column adjacent.

The defining cell (p, q) for the first class of facets can be any cell in the array. Suppose

it is contained in block Bt. Let It, Jt denote the set of row and column indices of Bt

respectively. Let Bu be the row adjacent block of Bt, and Bv the column adjacent block

of Bt. Let Bw be the remaining block which is not adjacent to Bt. Let Î denote the
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set of row indices of Bv, and Ĵ denote the set of column indices of Bu. (i.e., Î = I\It

and Ĵ = J\Jt) Then the defining subset of row indices KR must be a nonempty proper

subset of Î, and the defining subset of column indices KC must be a nonempty proper

subset of Ĵ , and together they have to satisfy |KR| + |KC | = 1 + rw.

Lemma 3 Let (p, q) be the defining cell and KR, KC be the defining sets of row and

column indices selected as discussed above. Then

xpq +
∑

j∈KC

xpj +
∑

i∈KR

xiq −
∑

i∈Î\KR , j∈Ĵ\KC

xij ≤ 1 (12)

is a valid inequality for Qn,r1
n1,n2

.

Proof. First we observe that in any assignment x = (xij : i ∈ I, j ∈ J)

xpq +
∑

j∈KC

xpj +
∑

i∈KR

xiq (13)

is equal to 0, 1, or 2. This is easy to see since each of these terms is either 0 or 1 and

since all of them can not be 1 at the same time.

For an assignment x ∈ Qn,r1
n1,n2

, if the expression in (13) is equal to either 0 or 1, our

lemma holds trivially. Therefore, assume that the expression in (13) is equal to 2 for an

assignment x ∈ Qn,r1
n1,n2

. This holds only when xpq = 0, and
∑

j∈KC
xpj =

∑
i∈KR

xiq = 1.

Suppose that xpj0 = xi0q = 1 where j0 ∈ KC and i0 ∈ KR. Thus

∑

j∈Ĵ

xi0j =
∑

i∈Î

xij0 = 0. (14)

Since x ∈ Qn,r1
n1,n2

we have
∑

(i,j)∈Bw
xij = rw, i.e.,

∑
i∈KR , j∈KC

xij +
∑

i∈KR , j∈Ĵ\KC

xij +
∑

i∈Î\KR , j∈KC

xij +
∑

i∈Î\KR , j∈Ĵ\KC

xij = rw.

Using Proposition 1 and (14) it follows that

∑
i∈KR , j∈KC

xij +
∑

i∈KR , j∈Ĵ\KC

xij +
∑

i∈Î\KR , j∈KC

xij ≤ |KR\{i0}| + |KC\{j0}| = rw − 1

13
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Figure 3: Pictorial representation of signs of nonzero coefficients in (12). The double

lines indicate the row and column partitions.

hence
∑

i∈Î\KR , j∈Ĵ\KC
xij ≥ 1 and hence (12) holds for x and the lemma follows.

As an example consider the case where n = 5, n1 = 2, n2 = 3 and r1 = 1. Hence

r2 = r3 = 1 and r4 = 2. Let the defining cell be (1,1), and the defining sets be KR = {3},
KC = {4}. The valid inequality (12) corresponding to these choices is

x11 + x14 + x31 − x45 − x55 ≤ 1

which is a valid inequality for Q5,1
2,3. Note that all the nonzero coefficients in (12) are +1

or −1.

It is helpful to have a pictorial representation of inequality (12). In Figure 3, we

show the array with the defining cell (p, q) and the defining subsets KR, KC , and the

cells in the array whose variables appear with a +1 coefficient (marked by + symbol),

and those with a −1 coefficient (marked by − symbol) in this inequality.
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Theorem 3 The valid inequality (12) in Lemma 3 is a facet-inducing inequality for

Qn,r1
n1,n2

.

The proof of Theorem 3 is given in Section 2.3.

Inequalities (12) define the first class of facet-inducing inequalities for Qn,r1
n1,n2

. For

defining these inequalities, the defining cell (p, q) can be selected as any cell in the array,

so there are n2 ways of choosing it. Once the defining cell (p, q) is selected, the number

of ways of selecting the defining subsets KR, KC is

rw∑
N=1




Î

N







Ĵ

rw + 1 − N




where N = |KR| and rw + 1 − N = |KC|, this number grows exponentially with |Î| ,|Ĵ |
and rw. Hence the total number of these first class of facet-inducing inequalities for

Qn,r1
n1,n2

grows exponentially with n1, n2, r1.

2.2.2 The Second Class of Facets

Facet-inducing inequalities in this class are characterized by two defining cells called the

primary and secondary defining cells, and by two defining subsets of row indices, and

two defining subsets of column indices.

The primary defining cell, (p, q) say, can be any cell in the array. Suppose it is

contained in block Bt. The second class of facet-inducing inequalities for Qn,r1
n1,n2

only

exist for the primary defining cell (p, q) ∈ Bt if the numbers ru, rv corresponding to

the row adjacent block Bu, the column adjacent block Bv of Bt, are both ≥ 2. If

this condition is satisfied, the secondary defining cell, (m, l) say, can be any cell in the

adjacent blocks Bu or Bv of Bt satisfying m 6= p, l 6= q.

Let Bw be the block not adjacent to Bt. If (m, l) ∈ Bu, the defining subsets of

column indices KC , K̃C , say, can be any nonempty proper subsets of the column indices

of the blocks Bu, Bt respectively satisfying the condition that l 6∈ KC , q 6∈ K̃C ; and the

defining subsets of row indices, KR, K̃R, say, can be any nonempty mutually disjoint
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proper subsets of the row indices of Bv which together satisfy |KC |+ |KR| = 1+ rw, and

|K̃C | + |K̃R| = rv.

If (m, l) ∈ Bv, the column adjacent block of Bt, the defining subsets of column

indices, KC , K̃C , can be any nonempty mutually disjoint proper subsets of the column

indices of Bu; and the defining subsets of row indices, KR, K̃R can be any nonempty

proper subsets of the row indices of Bv, Bt respectively satisfying the condition that

m 6∈ KR, p 6∈ K̃R; which together satisfy |KC | + |KR| = 1 + rw, and |K̃C| + |K̃R| = ru

(see Figure 4).

For this case where the secondary defining cell (m, l) ∈ Bv (see Figure 4) we have

the following lemma.

Lemma 4 Let the primary defining cell be (p, q) from block Bt, and suppose its row,

column adjacent blocks Bu, Bv satisfy ru ≥ 2. Let Î be the set of row indices of block Bv,

and Ĵ be the set of column indices of block Bu. Let It, Jt be the sets of row and column

indices of Bt. Let (m, l) ∈ Bv be the secondary defining cell, and let the defining subsets

of row and column indices KR, K̃R, KC, and K̃C be selected as discussed above. Let Bw

be the block not adjacent to Bt (i.e., Bw = Î × Ĵ). Then

xpq +
∑

j∈KC

xpj +
∑

i∈KR

xiq − ∑

i∈Î\(KR∪{m}) j∈Ĵ\KC

xij

− ∑

j∈Ĵ\(KC∪K̃C)

xmj − ∑

i∈It\(K̃R∪{p}) j∈Ĵ\(KC∪K̃C)

xij

− ∑

i∈I\(KR∪K̃R∪{p,m})
xil ≤ 1

(15)

is a valid inequality of Qn,r1
n1,n2

.

Proof. For any assignment x ∈ Qn,r1
n1,n2

the sum

xpq +
∑

j∈KC

xpj +
∑

i∈KR

xiq (16)

is equal to 0, 1, or 2. If the expression in (16) is equal to either 0 or 1 the lemma follows

trivially. Therefore, assume that the expression in (16) is equal to 2. This holds when
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xpj0 = 1 for some j0 ∈ KC and xi0q = 1 for some i0 ∈ KR. Then by Proposition 1 we

have

∑
i∈KR j∈KC

xij +
∑

i∈KR j∈Ĵ\KC

xij +
∑

i∈Î\KR j∈KC

xij ≤ |KR\{i0}| + |KC\{j0}|. (17)

Two cases will be considered

Case 1: xmj = 0 for all j ∈ K̃C . Then since
∑

(i,j)∈Bw
xij = rw and since |KR\{i0}| +

|KC\{j0}| = rw − 1 it follows that

∑

i∈Î\KR j∈Ĵ\KC

xij ≥ 1

and since
∑

j∈K̃C
xmj = 0 by assumption, it follows that

∑

i∈Î\(KR∪{m}) j∈Ĵ\KC

xij +
∑

j∈Ĵ\(KC∪K̃C)

xmj ≥ 1

and (15) holds for x.

Case 2: xmj1 = 1 for some j1 ∈ K̃C .

Then if (17) holds as a strict inequality, and by the same argument as in case 1, we

have
∑

i∈Î\(KR∪{m}) j∈Ĵ\KC
xij ≥ 1, and (15) holds for x. Therefore, assume that (17)

holds as an equality. By Proposition 1, this corresponds to the case where for each

i ∈ KR\{i0}, xij = 1 for some j ∈ Ĵ\KC; and for each j ∈ KC\{j0}, xij = 1 for some

i ∈ Î\(KR ∪ {m}). This implies that

xil = 0 for all i ∈ KR ∪ {m} (18)

∑
i∈It\{p} j∈KC

xij = 0. (19)

Now applying Proposition 1 to block Bu and using (19) we have

∑

i∈K̃R j∈K̃C

xij +
∑

i∈K̃R j∈Ĵ\K̃C

xij +
∑

i∈It\K̃R j∈K̃C

xij ≤ |K̃R| + |K̃C\{j1}| (20)

if (20) holds as a strict inequality and since
∑

(i,j)∈Bu
xij = ru and |K̃R| + |K̃C\{j1}| =

ru − 1 it follows that
∑

i∈It\(K̃R∪{p}) j∈Ĵ\(KC∪K̃C)

xml ≥ 1
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and (15) holds for x.

Therefore assume that (20) holds as an equality. This corresponds to the case where

for each i ∈ K̃R, xij = 1 for some j ∈ Ĵ\K̃C ∪ {j1}; and for each j ∈ K̃C ∪ {j1}, xij = 1

for some i ∈ It\(K̃R ∪{p}) which implies that xil = 0 for all i ∈ K̃R ∪{p}. Therefore, by

(18) and the fact that
∑

i∈I xil = 1 it follows that
∑

i∈I\(KR∪K̃R∪{p,m}) xil = 1 Thus, (15)

holds for x and the lemma follows.

A similar lemma for the case where the secondary defining cell (m, l) ∈ Bu is given

below.

Lemma 5 Let the primary defining cell be (p, q) from block Bt, and suppose its row,

column adjacent blocks Bu, Bv satisfy rv ≥ 2. Let Î be the set of row indices of block Bv,

and Ĵ be the set of column indices of block Bu. Let It, Jt be the sets of row and column

indices of Bt. Let (m, l) ∈ Bu be the secondary defining cell, and let the defining subsets

of row and column indices KR, K̃R, KC, and K̃C be selected as discussed above. Let Bw

be the block not adjacent to Bt (i.e., Bw = Î × Ĵ). Then

xpq +
∑

j∈KC

xpj +
∑

i∈KR

xiq − ∑

i∈Î\KR j∈Ĵ\(KC∪{l})
xij

− ∑

i∈Î\(KR∪K̃R)

xil − ∑

i∈Î\(K̃R∪KR) j∈Jt\(K̃C)∪{q})
xij

− ∑

j∈J\(KC∪K̃C∪{q,l})
xmj ≤ 1

(21)

is a valid inequality of Qn,r1
n1,n2

.

The proof of Lemma 5 is similar to that of Lemma 4.

As an example consider the case where n = 8, n1 = 4, n2 = 4, and r1 = r2 = r3 =

r4 = 2. Then, selecting (p, q) = (1, 1) ∈ B1, (m, l) = (5, 2) ∈ B4, KR = {6}, KC = {6, 7},
K̃R = {2}, K̃C = {5} satisfying all the conditions for selection mentioned above, leads

to the valid inequality for Q8,2
4,4.

x11 + x16 + x17 + x61 − x32 − x38 − x42 − x48
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Figure 4: Pictorial representation of signs of nonzero coefficients in (15).

−x58 − x72 − x75 − x78 − x82 − x85 − x88 ≤ 1.

In Figure 4, we give a pictorial representation of inequality (15). It shows the array

with the defining cells (p, q) ∈ Bt, (m, l) ∈ Bv and the defining subsets KR, KC , K̃R, K̃C

and the cells in the array whose variables appear with a +1 coefficient (marked by +

symbol), and those with a −1 coefficient ( marked by − symbol) in the inequality.

Theorem 4 The valid inequalities (15 ) or (21) defined in Lemmas 4,5 are facet-

inducing inequalities for Qn,r1
n1,n2

provided that both ru, rv ≥ 2.

Theorem 4 will be proved in section 2.3. Notice that in Lemma 4 we only require ru ≥ 2

for (15) to be a valid inequality for Qn,r1
n1,n2

. Correspondingly in Lemma 5 we only require

rv ≥ 2 for (21) to be a valid inequality for Qn,r1
n1,n2

. But Theorem 4 establishes that these

are facet-inducing when both ru, rv ≥ 2.

Unfortunately, these two nontrivial classes of facets do not provide a complete de-

scription of the polytope Qn,r1
n1,n2

as demonstrated by the following fractional point x̂ =
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(x̂ij) defined by

x̂11 = x̂15 = x̂24 = x̂27 = x̂35 = x̂38 = x̂43 = x̂44 = x̂56 = x̂57 =

x̂62 = x̂66 = x̂73 = x̂78 = x̂81 = x̂82 =
1

2
, x̂ij = 0, otherwise.

It can be verified that x̂ is an extreme point of the polytope P 8,1
2,4 and that it satisfies all

first class facet-inducing inequalities for Q8,1
2,4. Since both r1 and r2 are < 2 (in fact equal

to 1) for Q8,1
2,4, we do not have a pair of nonadjacent blocks both of whose r-numbers are

≥ 2. Hence the second class of inequalities of the form (15), (21) are not facet-inducing

for this problem.

2.3 A Facet Lifting Procedure

In this section, a lifting procedure for facets of Qn,r1
n1,n2

is presented. Given a facet F

of Qn,r1
n1,n2

, we show how to lift F into a facet F ∗ of Qn+1,r1
n1,n2

, Qn+1,r1
n1+1,n2

, Qn+1,r1+1
n1+1,n2+1, and

Qn+1,r1
n1,n2+1. This procedure is used to prove Theorems 3 and 4 using mathematical induc-

tion. All symbols with a star (*) refer to assignments of order n + 1. For any matrix A,

we denote its ith row vector by Ai., and its jth column vector by A.j .

Lemma 6 Let
∑n

i=1

∑n
j=1 aijxij ≤ a0 be a non trivial facet-inducing inequality for Qn,r1

n1,n2

and let A∗ = (a∗
ij) be the (n + 1) × (n + 1) matrix derived from A = (aij) such that

A∗ =




A A.j0

Ai0. 0


 (22)

for any i0 ∈ {n1 + 1, . . . , n} and any j0 ∈ {n2 + 1, . . . , n} satisfying ai0j0 = 0. Then
∑n+1

i=1

∑n+1
j=1a∗

ijx
∗
ij ≤ a0 is a facet-inducing inequality for Qn+1,r1

n1,n2
provided that it is a valid

inequality for it.

Proof. Let F = {x ∈ Qn,r1
n1,n2

:
∑n

i=1

∑n
j=1 aijxij = a0} and F ∗ = {x∗ ∈ Qn+1,r1

n1,n2
:

∑n+1
i=1

∑n+1
j=1 a∗

ijx
∗
ij = a0}. Then there exist n2 − 2n affinely independent assignments

x1, x2, . . . , xn2−2n in F , and for every (i, j) ∈ {1, . . . , n}×{1, . . . , n} there exists at least
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one xk ∈ {x1, x2, . . . , xn2−2n} such that xk
ij = 1. The last assertion follows since otherwise

if xk
rs = 0 for all xk ∈ {x1, x2, . . . , xn2−2n} then F would be contained in the intersection of

two facetal hyperplanes xrs = 0 and
∑n

i=1

∑n
j=1 aijxij = a0 contradicting the assumption

that F is a facet of Qn,r1
n1,n2

. Let {xi1 , xi2 , . . . , xin} ⊂ {x1, x2, . . . , xn2−2n} be such that

xi1
1j0 = xi2

2j0 = · · · = xin
nj0 = 1. Likewise, let {xj1 , xj2, . . . , xjn} ⊂ {x1, x2, . . . , xn2−2n} be

such that xj1
i01 = xj2

i02 = · · · = xjn
i0n = 1.

Let x∗k, for k = 1, 2, . . . , n2 − 2n, be the assignments of order n + 1 defined as

x∗k
n+1,n+1 = 1, x∗k

ij = xk
ij for i, j = 1, 2, . . . , n then x∗1, x∗2, . . . , x∗n2−2n belong to F ∗

since by construction a∗
n+1,n+1 = 0. Let x∗i1 , x∗i2 , . . . , x∗in be the assignments of or-

der n + 1 derived from xi1 , xi2 , . . . , xin by switching columns j0 and n + 1 and by set-

ting x∗k
n+1,j0

= 1 for all k = i1, i2, . . . , in. Then x∗i1 , x∗i2 , . . . , x∗in belong to F ∗ since

A∗
.n+1 = A∗

.j0
. Likewise, let x∗j1 , x∗j2, . . . , x∗jn be the assignments of order n + 1 derived

from xj1 , xj2 , . . . , xjn by switching rows i0 and n + 1 and by setting x∗k
i0,n+1 = 1 for all

k = j1, j2, . . . , jn. Then x∗j1 , x∗j2 , . . . , x∗jn belong to F ∗ since A∗
n+1. = A∗

i0.. Then, by

construction, x∗1, x∗2, . . . , x∗n2−2n, x∗i1 , x∗i2 , . . . , x∗in , x∗j1 , x∗j2, . . . , x∗jn\{x∗jj0} is a set

of affinely independent assignments. Thus dim F ∗ = n2 − 2 = (n + 1)2 − 2(n + 1)− 1.

Using a similar argument as in Lemma 6, it can be shown that if
∑n

i=1

∑n
j=1 aijxij ≤ a0

is a facet-inducing inequality for Qn,r1
n1,n2

then

n∑
i=0

n+1∑
j=1

b∗ijx
∗
ij ≤ a0 ,

n∑
i=0

n∑
j=0

c∗ijx
∗
ij ≤ a0 ,

n+1∑
i=1

n∑
j=0

d∗
ijx

∗
ij ≤ a0

are facet-inducing inequalities for Qn+1,r1
n1+1,n2

, Qn+1,r1+1
n1+1,n2+1 , and Qn+1,r1

n1,n2+1 respectively pro-

vided that they are valid inequalities. B∗ = (b∗ij), C∗ = (c∗ij), and D∗ = (d∗
ij) are defined

by

B∗ =




Ak0. 0

A A.j0


 , C∗ =




0 Ak0.

A.m0 A


 , D∗ =




A.m0 A

0 Ai0.




for any k0 ∈ {1, . . . , n1}, any j0 ∈ {n2 + 1, . . . , n}, any m0 ∈ {1, . . . , n2}, and any

i0 ∈ {n1 + 1, . . . , n} satisfying ak0j0 = 0, ak0m0 = 0, and ai0m0 = 0.
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Proof of theorem 3 . For ease of notation, and without loss of generality assume

that the defining cell (p, q) belongs to Block B1. Thus, Î = I2 = {n1 + 1, n1 + 2, . . . , n}
and Ĵ = J2 = {n2 + 1, n2 + 2, . . . , n} and rw = r3. The proof is by induction on n, the

order of the assignment.

For n = 4, n1 = n2 = 2 and r1 = 1. Let (p, q) = (1, 1) and KR = KC = {3}. Then

x11 + x13 + x31 − x44 ≤ 1 (23)

is a facet-defining inequality of Q4,1
2,2 since it is a valid inequality of Q4,1

2,2 by Lemma 3

and since the following 8 feasible assignments, represented as permutations, are affinely

independent and satisfy (23) as an equality. Recall that dim Q4,1
2,2 = 8.

x1 = (1, 3, 4, 2) x2 = (1, 4, 3, 2) x3 = (1, 4, 2, 3)

x4 = (2, 4, 1, 3) x5 = (3, 1, 4, 2) x6 = (3, 2, 4, 1)

x7 = (3, 2, 1, 4) x8 = (4, 2, 1, 3).

Now assume n ≥ 4 and that the assertion is true for assignments of order n, using the

lifting procedure in Lemma 6, we will show that it is true for assignments of order n+1.

Let
∑n

i=1

∑n
j=1 aijxij ≤ 1 be a facet-inducing inequality of form (12), shown in Fig-

ure 3, for the problem of order n (i.e., for Qn,r1
n1,n2

); and let (p, q) be its defining cell, KR

(KC) be its defining subset of row( column) indices. We will refer to this valid inequality

as VI(n).

Consider the problem of order (n + 1) and its corresponding array I∗ × J∗. Then

I∗ × J∗ is obtained from I × J , I = J = {1, 2, . . . , n} by the addition of one new row

and one new column. The new row can be added either at the top or at the bottom of

the n × n array, and the new column can be added either to the left or to the right of

the n × n array, leading to four separate cases:

Case 1: The added row and the added column are n + 1 and n + 1. This corresponds

to the polytope Qn+1,r1
n1,n2

where r∗3 = r3 + 1. ( Recall that symbols with (∗) refer to

the problem of order n + 1). Then VI(n) can be lifted in two ways:
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1. Select i0 to be any row ∈ KR and j0 to be any column ∈ J2\KC. Note that

for this selection ai0j0 = 0. Hence,
∑n+1

i=1

∑n+1
j=l a∗

ijx
∗
ij ≤ 1, where A∗ = (a∗

ij)

as defined in (22), is a valid inequality of Qn+1,r1
n1,n2

since it is of the form (12),

with defining cell (p, q), K∗
R = KR ∪{n +1}, and K∗

C = KC ; and by Lemma 6

it is facet-inducing.

2. Select j0 to be any column ∈ KC and i0 to be any row ∈ I2\KR. Using the

same argument as in 1, it follows that the valid inequality for Qn+1,r1
n1,n2

with

defining cell (p, q), and K∗
C = KC∪{n+1} and K∗

R = KR is also facet-inducing.

Case 2: The added row and the added column are 0 and n + 1 respectively. This

corresponds to the polytope Qn+1,r1
n1+1,n2

where r∗2 = r2+1. Select j0 to be any column

∈ J2\KC and i0 to be any row ∈ ({1, 2, . . . , n1}\{p}). Notice that for this selection

A∗
i0. is a row of all 0’s. Using the same argument as in case 1, it follows that the

valid inequality for Qn+1,r1
n1+1,n2

with defining cell (p, q) and K∗
C = KC , K∗

R = KR is

facet-inducing.

Case 3: The added row and the added column are 0 and 0 respectively. This corre-

sponds to the polytope Qn+1,r1+1
n1+1,n2+1 where r∗1 = r1 + 1. Select j0 to be any column

∈ {1, 2, . . . , n2}\{q} and and i0 to be any row ∈ ({1, 2, . . . , n1}\{p}). For this

selection A∗
i0. = A∗

.j0
= 0. Using the same argument as in case 1, it follows that the

valid inequality for Qn+1,r1
n1+1,n2+1 with defining cell (p, q) and K∗

C = KC , K∗
R = KR is

facet-inducing.

Case 4: The added row and the added column are n + 1 and 0 respectively. This

corresponds to the polytope Qn+1,r1
n1,n2+1 where r∗4 = r4 + 1. Select i0 to be any row

∈ I2\KR and j0 to be any column ∈ ({1, 2, . . . , n2}\{q}). Using the same argument

as in case 1, it follows that the valid inequality for Qn+1,r1
n1,n2+1 with defining cell (p, q)

and K∗
C = KC , K∗

R = KR is facet-inducing.

Now assume n ≥ 4, we will show that every valid inequality of the form (12) for

the problem of order n + 1 can be established as being facet-inducing by lifting some
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facet-inducing inequality of the form (12) for the problem of order n. Since n + 1 ≥ 5,

for the problem of order n + 1 at least one of the r∗t ’s ≥ 2 for t=1 to 4.

Assume that r∗3 ≥ 2 and consider the valid inequality of form (12) for the problem

of order n + 1 with defining cell (p, q) and defining subsets K∗
R and K∗

C . We will refer to

this inequality by VI(n + 1). Then |K∗
C | + |K∗

R| ≥ 3. Thus either |K∗
C | or |K∗

R| must be

≥ 2.

1. If |K∗
R| ≥ 2. Let i0 be any row ∈ K∗

R and j0 be any column ∈ J∗
2\K∗

C and consider

the problem P(n) of order n associated with array (I∗\{i0}) × (J∗\{j0}). Then

the inequality obtained from VI(n+1) by deleting i0 from K∗
R is of form (12) with

defining cell (p, q), KR = K∗
R\{i0}, and KC = K∗

C ; and hence it is a facet-inducing

inequality for problem P(n). Furthermore, VI(n + 1) can be established as facet-

inducing for the problem of order n + 1 by lifting this inequality as in Case 1

above.

2. If |K∗
C | ≥ 2. Let j0 be any column ∈ K∗

C and i0 be any row ∈ I∗
2\K∗

R. Then

the inequality of form (12) with defining cell (p, q) and KC = K∗
C\{j0}, and KR

= K∗
R is a facet-inducing inequality for problem P(n), and we can establish that

VI(n + 1) is facet-inducing for the problem of order n + 1 by lifting this inequality

as in Case 1 above.

Similarly, if r∗2 ≥ 2 let i0 be any row ∈ (I∗
1\{p}), and let j0 be any column ∈ J∗

2\K∗
C .

If r∗1 ≥ 2 let i0 be any row ∈ (I∗
1\{p}), and let j0 be any column ∈ (J∗

1\{q}). If r∗4 ≥ 2 let

i0 be any row ∈ (I∗
2\K∗

R) and let j0 be any column ∈ (J∗
1\{q}). Then in all these cases,

it is easy to show that the inequality with defining cell (p, q) and KC = K∗
C , and KR =

K∗
R is of form (12) and hence it is a facet-inducing inequality for the problem of order n

associated with the array (I∗\{i0}) × (J∗\{j0}) and that VI(n + 1) can be established

to be facet inducing for the problem of order n + 1 by lifting this inequality as in Cases

2,3, and 4 respectively.
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Proof of Theorem 4. We assume that the secondary defining cell (m, l) ∈ Bv. A proof

similar to the following applies when (m, l) ∈ Bu. Also we use induction on n, the order

of the assignment. For n = 6, n1 = n2 = 3 and r1 = 1. Let (p, q) = (1, 1), (m, l) = (4, 2),

KC = {5}, K̃C = {4}, KR = {5}, and K̃R = {2}. Then

x11 + x15 + x51 − x32 − x36 − x46 − x62 − x64 − x66 ≤ 1 (24)

is a facet-defining inequality of Q6,1
3,3 since it is a valid inequality of Q6,1

3,3 by Lemma 3

and since the following 24 feasible assignments, represented as permutations, are affinely

independent and satisfy (24) as an equality. Recall that dim Q6,1
3,3 =24.

x1 = (1, 4, 5, 2, 6, 3) x2 = (1, 5, 4, 2, 6, 3) x3 = (1, 6, 4, 5, 2, 3)

x4 = (1, 6, 4, 2, 5, 3) x5 = (1, 6, 4, 2, 3, 5) x6 = (1, 6, 4, 3, 2, 5)

x7 = (1, 6, 5, 4, 2, 3) x8 = (1, 6, 5, 2, 4, 3) x9 = (2, 6, 4, 5, 1, 3)

x10 = (3, 6, 4, 2, 1, 5) x11 = (5, 1, 4, 2, 6, 3) x12 = (5, 2, 4, 6, 1, 3)

x13 = (5, 2, 4, 1, 6, 3) x14 = (5, 2, 4, 3, 6, 1) x15 = (5, 2, 4, 3, 1, 6)

x16 = (5, 2, 6, 4, 1, 3) x17 = (6, 2, 4, 5, 1, 3) x18 = (5, 3, 4, 2, 6, 1)

x19 = (5, 4, 1, 2, 6, 3) x20 = (5, 6, 2, 4, 1, 3) x21 = (4, 6, 3, 2, 1, 5)

x22 = (5, 4, 3, 2, 6, 1) x23 = (5, 6, 3, 4, 1, 2) x24 = (5, 6, 3, 2, 1, 4).

Now assume n ≥ 6 and that the assertion is true for assignments of order n. Using the

lifting procedure in Lemma 6, we will show that it is true for assignments of order n+1.

Without loss of generality, we assume that the primary defining cell (p, q) ∈ B1.

Thus Î = I2 = {n1 + 1, . . . , n}, Ĵ = J2 = {n2 + 1, . . . , n}, and rw = r3.

Let
∑n

i=1

∑n
j=1 aijxij ≤ 1 be a facet-inducing inequality of form (15), shown in Fig-

ure 4, for the problem of order n (i.e., for Qn,r1
n1,n2

); and let (p, q), (m, l) be respectively

its primary and secondary defining cells, KR, K̃R, KC , and K̃C be its defining subset of

row and column indices. We will refer to this valid inequality as VII(n).

Consider the problem of order (n + 1) and its corresponding array I∗ × J∗. Then

I∗ × J∗ is obtained from I × J , I = J = {1, 2, . . . , n} by the addition of one new row
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and one new column. As in the proof of Theorem 3, the new row can be added either

at the top or at the bottom of the n×n array, and the new column can be added either

to the left or to the right of the n × n array, leading to four separate cases:

Case 1: The added row and and the added column are n+1 and n+1. This corresponds

to the polytope is Qn+1,r1
n1,n2

where r∗3 = r3 + 1. Then VII(n) can be lifted in two

ways.

1. Select i0 to be any row ∈ KR and j0 to be any column ∈ J2\(KC∪ K̃C).

Note that for such selection ai0j0 = 0. Hence,
∑n+1

i=1

∑n+1
j=l a∗

ijx
∗
ij ≤ 1, where

A∗ = (a∗
ij) as defined in (22), is a valid inequality of Qn+1,r1

n1,n2
since it is of

the form (15) with defining cells (p, q) and (m, l), and defining subsets K∗
R =

KR ∪ {n + 1} , K∗
C = KC , K̃∗

C = K̃C , and K̃∗
R = K̃R; and by Lemma 6 it is

facet-inducing.

2. Select j0 to be any column ∈ KC and i0 to be any row ∈ I2\(KR∪{m}). Using

The same argument as in 1, it follows that the valid inequality for Qn+1,r1
n1,n2

with defining cells (p, q) and (m, l) and defining subsets K∗
C = KC ∪ {n + 1}

and K∗
R = KR , K̃∗

C = K̃C , and K̃∗
R = K̃R is also facet-inducing.

Case 2: The added row and the added column are 0 and n + 1 respectively. This

corresponds to the polytope Qn+1,r1
n1+1,n2

where r∗2 = r2 + 1. Then VII(n) can also be

lifted in two ways.

1. Select j0 to be any column ∈ K̃C and i0 to be any i ∈ {1, 2, . . . , n1}\({p}∪
K̃R). Using the same argument as in Case 1, it follows that the valid inequality

for Qn+1,r1
n1+1,n2

with defining (p, q) and (m, l) and defining subsets K∗
R = KR,

K∗
C = KC , K̃∗

C = K̃C ∪ {n + 1}, and K̃∗
R = K̃R is facet-inducing.

2. Select i0 to be any row ∈ K̃R and j0 to be any column ∈ J2\(K̃C∪ KC).

Using the same argument as in Case 1, it follows that the valid inequality

for Qn+1,r1
n1+1,n2

with defining (p, q) and (m, l) and defining subsets K∗
R = KR,

K∗
C = KC , K̃∗

C = K̃C , and K̃∗
R = K̃R ∪ {n + 1} is facet-inducing.
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Case 3: The added row and the added column are 0 and 0 respectively. This corre-

sponds to the polytope Qn+1,r1+1
n1+1,n2+1 where r∗1 = r1 + 1. Select j0 to be any column

∈ {1, 2, . . . , n2}\ ({q}∪{l}) and and i0 to be any row ∈ {1, 2, . . . , n1}\({p}∪ K̃R).

For this selection, A∗
.j0

= 0. Using the same argument as in Case 1, it follows

that the valid inequality for Qn+1,r1
n1+1,n2+1 with defining (p, q) and (m, l) and defining

subsets K∗
R = KR, K∗

C = KC , K̃∗
C = K̃C , and K̃∗

R = K̃R, is facet-inducing.

Case 4: The added row and the added column are n + 1 and 0 respectively. This

corresponds to the polytope Qn+1,r1
n1,n2+1 where r∗4 = r4 + 1. Select i0 to be any row

∈ I2\(KR ∪ {m}) and j0 to be any column ∈ {1, 2, . . . , n2}\({q} ∪ {l}). Using the

same argument as in Case 1, it follows that the valid inequality for Qn+1,r1
n1,n2+1 with

defining (p, q) and (m, l) and defining subsets K∗
R = KR, K∗

C = KC , K̃∗
C = K̃C , and

K̃∗
R = K̃R is facet-inducing.

We will now show that every valid inequality of form (15) for the problem of order

n + 1 can be obtained by lifting some valid inequality of form (15) for the problem of

order n.

Consider the valid inequality of form (15) for the problem of order n+1 with primary

and secondary defining cells (p, q), (m, l), and defining subsets K∗
R, K̃∗

R, K∗
C , and K̃∗

C .

Refer to this inequality as VII(n + 1). Since n + 1 ≥ 7, for the problem of order n + 1,

one of the following must hold. r∗3 ≥ 2, r∗2 ≥ 3, r∗4 ≥ 3, or r∗1 ≥ 2.

If r∗3 ≥ 2. In this case |K∗
R| + |K∗

C | ≥ 3 which implies that either |K∗
R| ≥ 2 or |K∗

C | ≥ 2.

1. if |K∗
R| ≥ 2. Let i0 be any row ∈ K∗

R and j0 be any column ∈ J∗
2\(K∗

C ∪ K̃∗
C) and

consider the problem P2(n) of order n associated with array I∗\{i0} × J∗\{jo}.
Then the inequality obtained from VII(n + 1) by deleting i0 from K∗

R is of form

(15) with defining cells (p, q), (m, l), and defining subsets KR = K∗
R\{i0}, KC =

K∗
C , K̃R = K̃∗

R, K̃C = K̃∗
C ; and hence it is a valid inequality for problem P2(n).

Furthermore, VII(n + 1) can be lifted from this valid inequality as in Case 1.

2. if |K∗
C| ≥ 2. Let j0 be any column ∈ K∗

C and i0 be any row ∈ I∗
2\(K∗

R ∪ {m}).
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Then the inequality obtained from VII(n + 1) by deleting j0 from K∗
C is of form

(15) with defining cells (p, q), (m, l), and defining subsets KC = K∗
C\{j0}, KR =

K∗
R, K̃R = K̃∗

R, K̃C = K̃∗
C ; and hence it is a valid inequality for problem P2(n),

and VII(n + 1) can be lifted from it.

If r∗2 ≥ 3. In this case |K̃∗
R| + |K̃∗

C | ≥ 3 which implies that either |K̃∗
R| ≥ 2 or |K̃∗

C | ≥ 2.

1. if |K̃∗
R| ≥ 2. Let i0 be any row ∈ K̃∗

R and j0 be any column ∈ J∗
2\(K̃∗

C ∪K∗
C). Then

the inequality obtained from VII(n+1) by deleting i0 from K̃∗
R is of form (15) with

defining cells (p, q), (m, l), and defining subsets K̃R = K̃∗
R\{i0}, KC = K∗

C , KR =

K∗
R, K̃C = K̃∗

C ; and hence it is a valid inequality for problem P2(n), and VII(n+1)

can be lifted from it.

2. if |K̃∗
C | ≥ 2. Let j0 be any column ∈ K̃∗

C and i0 be any row ∈ I∗
1\(K̃∗

R ∪{p}). Then

the inequality obtained from VII(n + 1) by deleting j0 from K̃∗
C is of form (15)

with defining cells (p, q), (m, l), and defining subsets K̃C = K̃∗
C\{j0}, KC = K∗

C ,

KR = K∗
R, K̃R = K̃∗

R; and hence it is a valid inequality for problem P2(n), and

VII(n + 1) can be lifted from it.

If r∗4 ≥ 3, let i0 be any row ∈ I∗
2\(K∗

R ∪ {m}) and j0 be any column ∈ I∗
1\({q} ∪ {l}).

If r∗1 ≥ 2, let i0 be any row ∈ I∗
1\(K̃∗

R ∪ {p}) and j0 be any column ∈ I∗
1\({q} ∪ {l}).

Then in both these cases the inequality with defining cells (p, q), (m, l), and defining

subsets K̃C = K̃∗
C , KC = K∗

C , KR = K∗
R, K̃R = K̃∗

R is of form (15); and hence it is a valid

inequality for problem P2(n), and VII(n + 1) can be lifted from it.

Since Qn,r1
n1,n2

in Rn2
space of (xij : i, j = 1 to n) is not a full dimensional polytope

(because of equality constraints (1), (2), (5) in the system of constraints defining it) it

is possible that a pair of inequalities among (3), (12), (15), (21) may actually represent

the same facet of Qn,r1
n1,n2

. As an example, let n = 5, n1 = n2 = 2, r1 = 1. Then

the following two inequalities of the first class with their defining cells in blocks B1, B3

respectively; can be verified to represent the same facet using the equations
∑5

j=1 x1j = 1

and
∑5

i=1 xi5 = 1.
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Ineq1: x11 + x13 + x14 + x31 − x45 − x55 ≤ 1

Ineq2: x35 + x25 + x31 − x12 ≤ 1.

However, we have the following proposition.

Proposition 2 Let Ineq :
∑n

i=1

∑n
j=1 aijxij ≤ 1 and Ineq2 :

∑n
i=1

∑n
j=1 a2

ijxij ≤ 1 be two

distinct facet-inducing inequalities of the first class whose defining cells lie in the same

block. Then, Ineq and Ineq2 represent distinct facets.

Proof. Without any loss of generality and for ease of presentation we assume the

following:

1. The defining cells (p, q) of Ineq, and (p2, q2) of Ineq2 lie in Bock 1. In particular,

let p = 1 and q = n2 − r1 + 1.

2. Let KR and KC , respectively the defining subset of row and column indices of Ineq

be as follows:

KR = {n1 + 1, n1 + 2, . . . , n − 1 + |KR|},
KC = {n − |KC | + 1, n − |KC | + 2, . . . , n}.

Let x0 be the assignment

x0 = { n2 − r1 + 1, n2 − r1 + 2, . . . , n, 1, 2, . . . , r4}, (25)

represented in Figure 5 by cells marked with stars. Then clearly x0 is a feasible assign-

ment which satisfies Ineq as an equality (since a1,n2−r1+1 = 1). Now we consider 3 cases

depending on the location of (p2, q2), the defining cell of Ineq2. Let K2
R and K2

C denote

respectively the defining subset of row and column indices of Ineq2.

Case 1: p2 = p and q2 = q, i.e., both Ineq and Ineq2 have the same defining

cell. Let j0 ∈ KC\K2
C (such j0 exists since if |KC | = |K2

C|, then KC 6= K2
C since Ineq
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Figure 5: Pictorial representation of the facet-inducing inequality Ineq and the assign-

ment x0.

and Ineq2 are distinct; and if |KC | 6= |K2
C|, then without loss of generality we assume

that |KC | > |K2
C|). Let i0 ∈ I2\K2

R; and let x1 be the assignment obtained from x0

by switching columns j0 and n and rows n1 + r3 and i0. Then clearly x1 is a feasible

assignment that satisfies Ineq as an equality ( since ai0,j0 = 0) and Ineq2 as a strict

inequality (since a2
i0,j0

= −1).

Case 2: (p2, q2) ∈ {(2, n2 − r1 + 2), (3, n2 − r1 + 3), . . . , (r1, n2)}. Let x2 be the

assignment obtained from x0 by switching columns q2 and 1. Then clearly x2 is a

feasible assignment that satisfies Ineq as an equality and Ineq2 as a strict inequality.

Case 3: Otherwise, i.e., (p2, q2) ∈ B1 and q2 − p2 6= n2 − r1. Then clearly x0 is a

feasible assignment that satisfies Ineq as an equality and Ineq2 as a strict inequality.
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Figure 6: Pictorial representation of a facet-inducing inequality of form (15), and an

assignment x1 to be used in the proof.

Using the assignment x1 in Figure 6 (cells with “1” entry marked with a star) in

place of x0, and arguments parallel to those in the above proposition, we can prove that

two distinct facet-inducing inequalities of the second class whose primary defining cells

lie in the same block represent distinct facets of Qn,r1
n1,n2

.

3 Summary and Concluding Remarks

We have shown that the general 0-1 problem (9) polynomially reduces to the very special

partitioned case. We have derived two large classes of facet inducing inequalities for

the 0-1 integer program (9) in the partitioned case, the number in each class grows

exponentially with the order of the problem. Whereas the first class of facet-inducing

inequalities comes into play for n ≥ 4, the second class plays a role only for n ≥ 6.

We are studying the separation problems for these classes with the aim of using these
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facet-inducing inequalities in a branch and cut scheme for solving (9).

These classes together with the non-negativity constraints on the variables do not

completely characterize the convex hull of integer feasible solutions of the problem. Cur-

rently we are also investigating other facet-inducing inequalities for the problem that may

lead to a complete characterization of its integer hull. We are also investigating whether

all the facet-inducing inequalities for this problem can be shown to have coefficients 0,

+1, or −1 only.
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