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What is a network?

A network is a graph N = (V ,E), where V is the set of nodes
and E is the set of edges.
N may be directed or undirected, weighted or unweighted.



Network data

Network analysis has been a focus of attention in different
fields.

Social science: friendship networks, collaboration networks

Computer science: computer networks, internet

Biology: gene regulatory networks, protein-protein
networks



From a statistical point of view

A network is a n×n random matrix A = [Aij ]. One may put a
probability distribution P on A.

1 Test goodness of fit
2 Parameter estimation
3 Statistical inference

We only focus on undirected and unweighted networks: A is a
symmetric binary random matrix.



Community detection

Communities: Networks consist of communities, or
clusters, with many connections within communities but
few connections between communities.

Community detection problem: For an undirected network
N = (V ,E), the community detection problem is typically
formulated as finding a disjoint partition V = V1 ∪·· ·∪VK

with each Vk being a community.



Community detection methods

Algorithm-based: Hierarchical clustering, edge removal,
etc.

Criterion-based: Ratio cut (Wei & Cheng,1989),
normalized cut (Shi & Malik,2000), modularity
(Newman,2006), community extraction (Zhao et al.,2011),
etc.

Model-based: Block model (Bickel & Chen,2010),
degree-corrected block model (Karrer & Newman,2010),
etc.



Block models (Holland, 1983)

1 Each node is assigned with a community label ci , and the
labels ci are generated independently from Multinomial(π)
with π = (π1, . . . ,πK )T .

2 Given c, the edges Aij are independent Bernoulli random
variables with P(Aij = 1|c) = Pci cj , where P = [Pab] is a
K ×K symmetric matrix.

“Null model” (K = 1): Erdos-Renyi graph (all edges form
independently w.p. p).



Degree-corrected block models (Karrer & Newman,
2010)

1 Each node is assigned with a community label ci , and the
labels ci are generated independently from Multinomial(π)
with π = (π1, . . . ,πK )T .

2 In addition to community label ci , each node is associated
with a latent variable θi , which reflects degree variations,
where E[θi ] = 1.

3 Given c and θ , the edges Aij are independent Bernoulli
random variables with P(Aij = 1|c,θ) = θiθjPci cj , where
P = [Pab] is a K ×K symmetric matrix.

θi ≡ 1 gives the standard block model.
“Null model”: the expected degree random graph (all edges
form independently with P(Aij = 1) ∝ didj ).



Notation

For any community label assignments e = {e1, ...,en},
define O(e) = [Okl(e)], where

Okl = ∑
ij

Aij I{ei = k ,ej = l},

Ok = ∑
l

Okl ,

and Ok = ∑l Okl , L = ∑kl Okl , nk = ∑k I{ei = k}.

Note O(e) does not depend only on true labels c.



Likelihood-type criteria

Maximize likelihood of the block model (Bickel & Chen, 2010) :

max
e

QBL(e) = ∑
kl

Okl log
Okl

nknl

Maximize likelihood of the degree-corrected block model
(Karrer & Newman, 2010):

max
e

QDCBL(e) = ∑
kl

Okl log
Okl

OkOl



Modularity-type criteria

Maximize the difference between observed number of edges
within communities and expected number of edges under the
null model:

max
e

Q(e) = ∑
ij

[Aij −Pij ]I(ei = ej),

where Pij is the (estimated) probability of an edge falling
between i and j under the null model.



Modularity-type criteria

When the null model is ER graph, Pij = L/n2 and Q(e)
becomes

max
e

QERM(e) = ∑
k

(Okk −
n2

k

n2 L).

When the null model is the expected degree random
graph, Pij = kikj/L and Q(e) becomes

max
e

QNGM(e) = ∑
k

(Okk −
O2

k

L
).

This is the well-known Newman-Girvan Modularity.



Notation

A fundamental question: consistency – whether a
detection method can recover the true community labels.

For any estimator ĉ of c, we call ĉ is consistent if

P[ĉ = c] → 1.

For simplicity, assume θi in the degree-corrected block
model is discrete, P(ci = k ,θi = dm) = Πkm.

For any k , define π̃k = ∑m dmΠkm.

Define Q̃ = ∑kk ′ π̃k π̃ ′
kPkk ′ ,W̃kk ′ =

π̃k π̃ ′
k Pkk ′

Q̃
, and

Ẽ = W̃ − (W̃1)(W̃1)T .



Consistency of likelihood-type criteria

Theorem

NGM is consistent under the degree-corrected block model with
the parameter constraint Ẽkk > 0, Ẽkk ′ < 0 for all k 6= k ′,
When K = 2, the condition can be simplified as

P11P22 > P2
12.

Theorem

ERM is consistent under the block model with the parameter
constraint Pkk > Q,Pkk ′ < Q for all k 6= k ′, where
Q = ∑kk ′ πk πk ′Pkk ′ .



Consistency of likelihood-type criteria

Theorem

BL is consistent under the block model.

Theorem

DCBL is consistent under both the block model and the
degree-corrected block model.



Summary of community detection criteria

Without correction With correction

Modularity-type ∑k (Okk −
n2

k
n2 L) (ERM) ∑k (Okk −

O2
k

L ) (NGM)
Likelihood-type ∑kl Okl log Okl

nk nl
(BL) ∑kl Okl log Okl

Ok Ol
(DCBL)



A general theorem on consistency under
degree-corrected block models

Theorem

For any Q that can be written as

Q(e) = F
(

O
n2 ,

[n1

n
, ...,

nK

n

]T
)

,

under some regularity conditions and the following:

(*) F (G(R),∑lm R.lm) is uniquely maximized over
{R : R ≥ 0,∑k Rk .. = Π} by Rklm = Πlmδkl for any m, where
G ∈ RK×K ,R ∈ RK×K×M ,
G(R) = ∑ll ′mm′ θmθm′Pll ′RklmRk ′l ′m′ ,Rklm = 1

n ∑n
i=1 I(ei =

k ,ci = l ,θi = dm).

Q is consistent under degree-corrected block models.

(*) says that the “population” version of Q is maximized by the
correct assignment.



Simulation study

We consider networks with 1000 nodes and 2
communities, and the matrix P

P =

(

0.2 0.05
0.05 0.2

)

.

Adjusted Rand index: a measure of the similarity between
two community partitions with 1 being perfect match, and 0
begin the expected agreement between 2 random
partitions.



Degree-corrected block model

Fix π1 = 0.3,π2 = 0.7.

θ =

{

d1 w.p.1
2 ,

d2 w.p.1
2 .

The ratio d1/d2 changes from 1 to 10.
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Block model

Block model with π1 changing from 0.05 to 0.3
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A network of political blogs

Nodes: blogs on US politics (n = 1222). Edges: hyper-links
between blogs. (Adamic&Glance(2005))

BL, split of high-degree and low-degree nodes.

DCBL, is very close to the true split of liberal and
conservative blogs. ERM and NGM yield very similar
results to DCBL.



A network of political blogs

BL DCBL



Consistency results

NGM and DCBL are consistent under the block model with
or without degree-correction. But ERM and BL are only
consistent under the block model without
degree-correction.

ERM and NGM are consistent with some parameter
constraints. But BL and DCBL are consistent for all
parameter settings.



Finite sample performance

BL and DCBL work best where their model assumptions
are correct.

ERM is more robust than NGM under the block model with
unbalanced community sizes.

ERM is more robust than BL under the degree-corrected
block model.


