
Recognizing Textual Entailment

2

Chapter 1

Recognizing Textual Entailment

1.1 Introduction

Since 2005, researchers have worked on a broad task called Recognizing Textual
Entailment (RTE), which is designed to focus efforts on general textual inference
capabilities, but without constraining participants to use a specific representation
or reasoning approach. There have been promising developments in this sub-field
of Natural Language Processing (NLP), with systems showing steady improve-
ment, and investigations of a range of approaches to the problem. A number of
researchers appear to have converged on some defining characteristics of the prob-
lem, and on characteristics of practical approaches to solving it. RTE solutions
have been shown to be of practical use in other NLP applications, and other grand
Natural Language Understanding (NLU) challenges, such as Learning by Read-
ing [25] and Machine Reading [41] have emerged that will require similar problems
to be solved. It is an exciting time to be working in this area.

Textual Inference is a key capability for improving performance in a wide range
of NLP tasks, particularly those which can benefit from integrating background
knowledge. Performance of Question-Answering systems, which can be thought
of as potentially the next generation of search engines, is limited, especially out-
side the class of factoid questions; and the task of extracting facts of interest (such
as “People who have worked for Company X”) from a collection of plain text doc-
uments (such as newspaper articles) may require significant abstraction, synthesis,
and application of world knowledge on the part of a human reader – and therefore
of software required to perform the same task.

In this chapter, we specify a framework within which you can design and build
an RTE system. First, we define the problem of Recognizing Textual Entailment
and outline its applications to other tasks in Natural Language Processing. We then

3

4 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

define a framework for an RTE system, and show how it accommodates techniques
used by successful RTE systems, describing key research in the RTE field (with a
focus on system development), and showing how each system relates to the frame-
work we have defined. We finish by addressing the pressing challenges in RTE
research, and point the reader to useful resources.

We assume that readers are already familiar with the fundamental ideas of Ma-
chine Learning (ML), and its methodology of training/development/testing; our
focus is on the practical difficulties of developing an application for RTE.

We have provided simple algorithms for all the key steps of the RTE frame-
work. While they are deliberately simplified, and as a result not particularly effi-
cient, these are sufficient to allow you to build a basic RTE system that is designed
to allow expansion along multiple dimensions. In section 1.4, where we discuss
key research investigating different approaches to RTE, we map each line of re-
search to our framework at a high level (for full implementation details, the reader
is referred to the original work, as these are beyond the scope of this chapter). This
mapping will allow you to develop the relevant aspects of the system to pursue
those approaches that interest you most.

1.2 The Recognizing Textual Entailment Task

In this section, we define the task of Recognizing Textual Entailment, explain the
pros and cons of this formulation, and show why the problem is non-trivial. We
show how RTE can be applied to a range of NLP tasks, and present some concrete
examples of such applications.

1.2.1 Problem Definition

The task of Recognizing Textual Entailment (RTE) in the form we address in this
chapter is defined by Dagan, et al. [13] thus:

Definition 1. Textual entailment is defined as a directional relationship between
pairs of text expressions, denoted by T - the entailing “Text”, and H - the entailed
“Hypothesis”. We say that T entails H if the meaning of H can be inferred from
the meaning of T, as would typically be interpreted by people.

As noted in Dagan, et al. [13], this somewhat informal definition is based
on (and assumes) common human understanding of language as well as common
background knowledge.

An entailment pair is composed of a Text T and a Hypothesis H; usually, H
is a short statement, and T is a longer span of text. Figure 1.1 shows a sample

1.2. THE RECOGNIZING TEXTUAL ENTAILMENT TASK 5

Text: The purchase of Houston-based LexCorp by BMI for $2Bn
prompted widespread sell-offs by traders as they sought to minimize ex-
posure. LexCorp had been an employee-owned concern since 2008.

Hyp 1: BMI acquired an American company.
Hyp 2: BMI bought employee-owned LexCorp for $3.4Bn.
Hyp 3: BMI is an employee-owned concern.

Figure 1.1. Some representative RTE examples.

Text and three Hypotheses. The label of each Entailment pair is determined by
multiple human annotators; the background knowledge required is not specified,
and remains a latent factor in the labeling process. Often, when such knowledge is
required, it is “static” – such as cause-effect relations, or locations of well known
cities or landmarks (which do not change over time) – rather than facts like the
name of the current president of the United States (which changes over time).

The specification of the RTE task also requires that the Text be an inherent part
of the reasoning for inferring the truth of the Hypothesis: while background knowl-
edge may augment that represented by the Text, it may not replace it. If, for exam-
ple, an RTE system uses facts extracted from Wikipedia, it might have a statement
that ascertains the nationality of a popular film star, which could be equivalent to a
Hypothesis statement. However, if evidence for this fact is not present in the Text,
the entailment label is “Not Entailed”, even though the Hypothesis alone states a
“true” fact.

The two-way RTE task requires that systems label each entailment pair as ei-
ther Entailed or Not Entailed – i.e. either T entails H, or T does not entail H. In
figure 1.1, the Text entails Hyp 1, but not Hyp 2, or Hyp 3.

The three-way RTE task introduces the concept of contradiction. We define
contradiction in entailment based on de Marneffe, et al. [16]:

Definition 2. The Hypothesis H of an entailment pair contradicts the Text T if a
human reader would say that the relations/events described by H are highly un-
likely to be true given the relations/events described by T .

The three-way RTE task requires that systems label each entailment pair as
either Entailed, Contradicted, or Unknown – i.e. either T entails H , or H contra-
dicts T , or it is unknown whetherH is true given T . In figure 1.1, the text T entails
Hyp 1; Hyp 2 contradicts T ; and the truth value of Hyp 3 is unknown given the
information in T .

6 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

The difficulty of the task depends on the entailment pairs selected, and de-
signing a suitable corpus is non-trivial. The corpora produced by PASCAL 1 and
NIST 2 are challenging. All corpora except RTE 4 have separate development and
test components, each having between 600 and 800 entailment pairs; RTE 4 has
a single component of 1000 pairs. All these corpora are balanced, with approxi-
mately 50% having Entailed and 50% Not Entailed labels. In RTE 4 and RTE 5,
the Not Entailed examples were further divided into two categories: Unknown and
Contradicted (35% and 15% of total examples respectively).

Each corpus defines a set of 3 to 7 “tasks” that further divide the data; each task
corresponds to the domain from which its examples were drawn (examples: “QA”
for Question Answering, “IE” for Information Extraction; see the publications de-
scribing each challenge for more detail, e.g. Bentivogli, et al. [2]). Performance of
systems varies across tasks, indicating significant qualitative differences between
the examples in each; but since the task label is not available to deployed RTE
applications, we will not take it into consideration here. (If task information is
present, it is trivial to extend the implementation of the framework described here
to take advantage of it, either by introducing a feature representing the task, or by
using separately tuned/trained inference components for each task.)

In addition, some pilot tasks were introduced in RTE 3 (explanation, contradic-
tion) and RTE 5 (search). The contradiction task was made part of the main task
for RTE 4 and RTE 5. RTE 5 also introduced a Search pilot task, which we will not
pursue further here; the interested reader is referred to the relevant publication [2].

A system that performs well on these corpora could be said to have achieved
a good “understanding” of natural language text 3. State-of-the-art systems had
accuracies of ∼ 74% on the two-way task (Entailed vs. Not Entailed) and ∼ 68%
on the three-way task on the two most recent challenges (RTE 4 and RTE 5).

In the rest of this chapter, we identify the challenges involved in the RTE task,
define a general framework to tackle it, and describe relevant research in RTE,
showing how it fits into this framework.

1.2.2 The Challenge of RTE

It is informative to consider the different steps a human reader must go through to
determine the entailment labels of the entailment pairs shown in figure 1.1.

To recognize that Hypothesis 1 is entailed by the text, a human reader must
recognize that 1) “company” in the Hypothesis can match “LexCorp” and that

1http://pascallin.ecs.soton.ac.uk/Challenges/RTE3/
2http://www.nist.gov/tac/2010/RTE/index.html
3This assumption is based on the standard Machine Learning practice of evaluating the perfor-

mance of a system on held-out data that was not used in training or development.

1.2. THE RECOGNIZING TEXTUAL ENTAILMENT TASK 7

2) “based in Houston” implies “American”. She must 3) also identify the nomi-
nalized relation “purchase”, and 4) determine that “A purchased by B” implies “B
acquires A”.

To recognize that Hypothesis 2 contradicts the Text, similar steps are required,
with the difference that the reader must integrate the information that LexCorp
is employee-owned, and must then infer that because the stated purchase price is
different in the Text and Hypothesis, but with high probability refers to the same
transaction, Hypothesis 2 contradicts the Text.

Hypothesis 3 consists entirely of words from the text, but asserts a relation that
cannot be discerned from the available evidence, and so its label is “Unknown”: it
is possible that BMI is employee-owned, but it may not be.

Some of these steps we identify above relate to other tasks defined by the
NLP/Computational Linguistics community, such as Named Entity recognition
(recognizing that LexCorp and BMI are companies), Co-reference (different men-
tions of LexCorp refer to the same underlying entity), and Semantic Role Labeling
(BMI did the buying, not LexCorp). Others may not; the relevant tasks have not
yet been well-developed in isolation, though they may related to recognized prob-
lem definitions. Perhaps hardest of all are textual inference steps that require us to
apply our understanding of the world to identify cause-effect relations, entailment
relations, and abstraction over multiple statements to a general principle.

While it is not required that a computerized solution to the RTE challenge
follow such steps or emulate such capabilities, the limited success of approaches
not informed by the human process has encouraged researchers to try a divide-
and-conquer approach motivated by intuitions of the human process. Researchers
have had some success isolating specific capabilities such as normalizing numer-
ical quantities (dates, rates, proportions, counts), and have leveraged solutions to
linguistically motivated problems like syntactic parsers, and shallow semantic an-
alytical tools like Named Entity recognizers.

It could be argued that the examples in figure 1.1 might be resolved by simple
lexical matching; but it should be evident that the Text can be made lexically very
dissimilar to Hypothesis 1 while maintaining the Entailment relation, and that con-
versely, the lexical overlap between the Text and Hypothesis 2 can be made very
high, while maintaining the Contradiction relation. This intuition is borne out by
the results of the RTE challenges, which show that lexical similarity-based systems
are outperformed by systems that use other, more structured analysis, as shown in
section 1.2.3.

8 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

1.2.3 Evaluating Textual Entailment System Performance

Definition 1 has been used as the basis of six research challenges by PASCAL [13]
and then NIST [2]; these corpora are available to the public (the first three without
restrictions, the second three subject to a user agreement; see the websites noted
earlier). Definition 2 motivated a pilot study in the third challenge, RTE 3; the
corpora for the main task in both RTE 4 and RTE 5 incorporated contradiction, and
so were labeled for both the two-way and three-way prediction tasks. 4

These research challenges have generated a lot of interest, and significant progress
on the RTE problem. We describe some informative examples in section 1.4; for
now, we present a general sense of the performance of state-of-the-art systems.

Figure 1.2 graphs the results of the two-way entailment task for all five RTE
challenges through 2009 (shown as lines) and includes the performance of a lexical
baseline (due to Mehdad and Magnini [35]) on each data set, represented as large
dots, one on each challenge’s line. The results for each challenge are sorted from
weakest to strongest, and the horizontal length of each graph indicates the relative
number of participants (so, RTE 4 had the most participants so far).

It is difficult to compare results from different years, as each year’s corpus is
different (drawn from different domains, and/or according to different guidelines).
RTE 4 and RTE 5 saw a significant increase in the average length of Text, to ∼ 40
and ∼ 100 words respectively, and are considered more challenging than entail-
ment pairs with shorter texts. The lexical baseline, which uses a threshold based
on the overlap between Hypothesis and Text words, indicates a fairly consistent
baseline difficulty level, of between 55% and 58% for four of the five challenges
so far. The result for RTE 3 (2007) is markedly higher, and all system entries ap-
pear correspondingly higher than in other years, suggesting an “easier” entailment
corpus. In all cases, the baseline score is at or below the median score for each
challenge.

The upper range of system performance has also been fairly consistent. The
longer texts in RTE 4 and RTE 5 increase the difficulty of the task by introduc-
ing more irrelevant signals (additional words, phrases, and sentences that are often
irrelevant to the entailment decision), increasing the processing burden on RTE
systems, and broadening the scope for entailment examples that require the inte-
gration of information from multiple sentences.

Due to the non-comparability of the RTE data sets, it is hard to draw strong
conclusions from the numbers themselves, other than to gauge the difficulty of
the task based on the relatively strong performance of the lexical baseline, and to
observe that some systems are significantly outperforming this baseline.

4At the time of writing, RTE 6 was underway.

1.2. THE RECOGNIZING TEXTUAL ENTAILMENT TASK 9

Figure 1.2. Results in Recognizing Textual Entailment Challenges 2-way task 2005-2009.
The trace for each challenge sorts system results from lowest to highest accuracy; a longer
trace indicates more participants. Red dots indicate performance of a lexical baseline sys-
tem.

1.2.4 Applications of Textual Entailment Solutions

Many NLP problems can be formulated in terms of Recognizing Textual Entail-
ment.

RTE clearly has relevance to Summarization [14], in which systems are re-
quired to generate human-readable summaries of one or more documents. The
sub-task of identifying whether a new sentence contains information already ex-
pressed by a summary-in-progress (redundancy detection) can be thought of as an
entailment pair with the present summary as the Text and the new sentence as Hy-
pothesis. If T does not entail H, the sentence contains new information, and should
be integrated with the summary.

Information Extraction is the task of recognizing instances of a fixed set of
relations such as “works for” and “born in” in a set of natural language text docu-
ments. If we express the relations as short sentences, like “A person works for an
organization”, and “A person was born in a location”, text spans from the source
documents become the Texts of entailment pairs with the reformulated relations
as Hypotheses, and an RTE system can be directly applied. Similarly, Question
Answering, which requires automated systems to find candidate answers (sections
of documents from a fixed document collection) to a set of questions, can be refor-
mulated in much the same way: a question like “What is the largest city in South
America?” can be reformulated as a short statement, “The largest city in South
America is a city.” This statement becomes a Hypothesis, and sections of the doc-

10 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

ument set – typically, paragraphs – become the Texts of a set of entailment pairs
with this Hypothesis. An RTE system can be directly applied to identify actual
answers.

Of course, these naı̈ve reformulations of the IE and QA tasks are not in them-
selves sufficient, as RTE solutions are generally resource-intensive. However, the
intuition is practical, as research that applies RTE to other Natural Language Pro-
cessing tasks shows.

1.2.4.1 Question Answering

Harabagiu and Hickl [20] directly apply an RTE solution to re-rank candidate an-
swers in a Question Answering system. The underlying idea is simple: a pre-
existing Question Answering system returns the best candidate answers. While the
top candidate may not be the correct answer, in many cases the correct answer is
in the set of returned candidates.

Harabagiu and Hickl use an RTE system to assess each candidate answer. Their
system first applies a rule-based implementation to transform the input question
into a short statement, as illustrated above. A set of entailment pairs is created by
combining each candidate answer in the set returned by the system as a Text, with
the transformed question as the Hypothesis. The RTE system is then applied to
each pair in turn: those candidates that entail the transformed question are moved
to the top of the list, and those that did not are moved to the bottom. The study
shows that including the Textual Entailment component improves system accuracy
from 30.6% to 42.7%.

Celikyilmaz, et al. [5] use an entailment-like component to extract a feature-
based representation of candidate question-answer pairs, after transforming the
query in a similar way to Harabagiu and Hickl. They use the real-valued fea-
ture vectors derived from the entailment comparison to compute similarity values
between members of a large set of question-answer pairs. These values are used as
edge weights linking nodes representing individual QA pairs in a graph. A (small)
subset of the QA pairs have gold-standard labels; the labels of the remaining nodes
are then inferred using a semi-supervised learning method.

1.2.4.2 Exhaustive Search for Relations

In many information foraging tasks, such as patent search, accident report mining,
and detecting confidential information in documents that must be shared with part-
ners lacking appropriate clearance, there is a need to find all text snippets relevant
to a given concept. This involves finding all passages that talk about the concept

1.2. THE RECOGNIZING TEXTUAL ENTAILMENT TASK 11

Figure 1.3. SERR framework [48]

directly or indirectly, while screening out passages that are superficially similar but
have a different meaning.

This information need maps directly to recognizing entailed passages from
large text corpora. However, this requires scaling up textual entailment systems to
move from pairwise text-hypothesis decision to a search-based entailment frame-
work. Since most successful RTE systems apply a lot of NLP resources and com-
putationally expensive inference algorithms, a naı̈ve approach (for every paragraph
of each document, test whether it entails any one of a set of statements representing
the target information) is impractical.

Roth, et al. [48] define a focused textual entailment approach, SERR (Scalable
Entailment Relation Recognition), that consists of two stages: semantic retrieval
and entailment recognition. Figure 1.3 shows the schematic diagram of the ap-
proach. The algorithm is outlined in figure 1.4. In this approach, the text corpus
is first preprocessed to find semantic components such as named entities (people,
location, organizations, numeric quantities, etc.). These are indexed as semantic
units to facilitate quick retrieval. The user expresses the information need as a
relation query, which is enriched with synonyms, alternate names, and other se-
mantically similar keywords. This query is then used to retrieve text passages from
the corpus. The results are processed by the textual entailment module to decide
if the text entails the given query, and the entailed text snippets are then output as
the results. The semantic retrieval helps improve the recall of entailing passages,
while the RTE module filters the results to improve the overall precision.

The experimental evaluation was conducted using a corpus derived by taking
all the Hypotheses from the IR and IE subtasks of RTE 1-3 as defining the infor-

12 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

SERR Algorithm
SETUP:

Input: Text set D
Output: Indices {I} over D
for each text d ∈ D

Annotate d with local semantic content
Build Search Indices {I} over D

APPLICATION:
Input: Information need S

EXPANDED LEXICAL RETRIEVAL (ELR)(s):
R← ∅
Expand s with semantically similar words
Build search query qs from s
R← k top-ranked texts for qs using indexes {I}
return R

SERR:
Answer set A← ∅
for each query s ∈ S

R← ELR(s)
Answer set As ← ∅
for each result r ∈ R

Annotate s, r with NLP resources
if r entails s

As ← As ∪ r
A← A ∪ {As}

return A

Figure 1.4. SERR algorithm, as described in [48].

1.2. THE RECOGNIZING TEXTUAL ENTAILMENT TASK 13

mation needs, with all texts from the same entailment pairs forming a “document”
set. The retrieval component found the most relevant documents (Texts) for each
Hypothesis, and the RTE module labeled this returned set as “Entailed” or “Not
Entailed” to identify the relevant documents.

When evaluated on the overall classification performance for the Hypothe-
sis/Text pairs corresponding to actual examples from the RTE challenges, the sys-
tem achieved performance in the top 3 ranks of published results for each chal-
lenge. The architecture also reduced the number of computationally intensive com-
parisons from ∼ 3, 800, 000 for a naı̈ve approach (compare all Hypotheses to all
Texts using the RTE module) to only ∼ 40, 000 for the SERR system.

1.2.4.3 Machine Translation

Techniques developed by RTE researchers have also been applied to the task of
evaluation in Machine Translation (MT). Padó, et al. [43] use insights from Textual
Entailment to propose a new automated measure of candidate translation quality.
MT evaluation uses statistical measures to evaluate the similarity of translations
proposed by MT systems to reference translations produced by human annotators,
as human evaluation of a large number of MT outputs is too resource-intensive
to allow rapid evaluation of systems on large corpora. The dominant similarity
metric is n-gram-based; while this measure has reasonable correlation with human
judgments, it is far from perfect, not least because it takes no account of non-local
structure in the translations to be compared.

Padó, et al. [43] propose a new metric that also accounts for structural charac-
teristics, based on features similar to those used in the textual entailment system
developed by Chambers, et al. [6]. Their intuition is that the candidate translation
should be a paraphrase of the reference translation, and therefore the two transla-
tions should entail each other. Missing information in the candidate means it does
not entail the reference, and additional information in the candidate means the ref-
erence does not entail the candidate. Bad translations will cause entailment to fail
in both directions.

They use features based on the alignment score; modality, polarity, and tense
mismatches; semantic relations; entity and date compatibility; and others. To eval-
uate their new metric, they use data from Machine Translation workshops. Their
comparison shows a significant improvement in Spearman’s correlation coefficient
with human judgments over the standard metric.

Mirkin, et al. [40] use entailment to translate unknown terms. When a term
is relatively rare, or when translating from a language with scarce linguistic re-
sources, that term may not appear in the phrase tables used by MT systems. Mirkin,
et al. tackle this problem by transforming the source translation into a more gen-

14 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

eral form by applying lexical entailment rules. They demonstrate the feasibility of
this approach using a MT model trained on a parallel French/English corpus. They
then apply this model to sentences from news articles in English, which have many
unknown terms, being drawn from a different domain than that used to train the
model.

Using English as the source language allows them to use WordNet [19], a large
English language ontology relating words via synonymy, hypernymy, and many
other lexical relations. They use synonymy to generate paraphrases for unknown
words, and hypernymy to generate entailed (more general) texts from the English
sentences. They then compare the quality of the French translations of these differ-
ent versions of sentences with unknown words, to French translations using only
the more standard paraphrase resources.

Their results show that the coverage of unknown terms over the paraphrase-
based approach is improved by as much as 50% by the TE-based approach; trans-
lation quality is also much higher than when unknown words are omitted, with an
additional 15.6% of translations produced by the system being judged “acceptable”
by human judges, with only a 2.7% drop in the number of correct translations.

1.2.5 RTE in Other Languages

As yet, there are few entailment corpora in languages other than English. The two
known sources of non-English RTE data are EVALITA 5 and the Cross-Language
Evaluation Forum (CLEF) 6. EVALITA, an Italian NLP evaluation program run
by FBK-Irst of Trento, Italy, assesses NLP technologies for the Italian language
on a range of problems that includes Recognizing Textual Entailment. CLEF’s
Answer Validation Exercise uses the RTE formalism to push Question Answering
technology. CLEF develops corpora that pair candidate answers with questions
reformulated as statements, with the idea that an RTE system can detect valid
answers by determining whether each candidate answer entails the reformulated
question; they have corpora for German, English, Spanish, French, Italian, Dutch,
and Portuguese.

The NLP community has made steady progress in developing NLP resources
comparable to those available for English in other languages: some good sources
of information are the European Language Resources Association 7 and the Asian
Federation of Natural Language Processing 8. However, there are languages for

5http://evalita.fbk.eu/te.html
6http://nlp.uned.es/clef-qa/ave/
7http://www.elra.info/
8http://www.afnlp.org/

1.3. A FRAMEWORK FOR RECOGNIZING TEXTUAL ENTAILMENT 15

which resources such as Named Entity taggers and syntactic parsers have not yet
been developed, requiring developers to use shallower cues for entailment.

One specific assumption we make in the framework we propose is that when
a language has multiple resources, they are consistent in their determination of
word boundaries. In reality, even English resources may be inconsistent in their
tokenization of raw input text. Morphologically rich languages like Arabic may
result in resources that segment individual words differently, by separating affixes
and/or clitics. Languages like German that combine words to form unsegmented
compounds also pose challenges to recognizing word boundaries. Chinese charac-
ters are not white space separated, and are grouped into word equivalents by NLP
applications such as machine translators.

There is no one-size-fits-all solution; in the proposed framework, developers
must determine the tokenization scheme that best suits their needs, and ensure that
their different levels of representation respect the chosen tokenization; if different
resources use conflicting tokenization schemes, it is the developer’s task to satisfac-
torily resolve them. However, provided this requirement is satisfied, the framework
we describe allows developers to implement a solution appropriate to the resources
available to them.

1.3 A Framework for Recognizing Textual Entailment

In this section, we define a flexible framework as the basis of an RTE application;
we draw on insights from Roth et al. [47]. To extensively define a single imple-
mentation of any real RTE system would easily fill a chapter by itself; instead,
we describe a system, giving sample algorithms where appropriate. In the Case
Studies (section 1.4) we describe some relevant research publications that provide
details of specific implementations, and show how they fit into our framework.

The framework we specify here is designed to incorporate existing (and new)
NLP resources in a uniform way, and to allow systematic development of both
straightforward and complex RTE systems. It is also intended to directly support
implementation of a wide range of approaches to RTE that have been described by
researchers, such as those in section 1.4.

At the end of the chapter, we provide an incomplete list of resources that are
available for download (most of which have a license for non-commercial use).
However, here we avoid committing to any specific implementation; we focus on
applications that perform well-established tasks, and therefore expect these ap-
plications to produce consistent output, so you should be able to use the specific
applications that you feel suit your needs the best.

16 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

1.3.1 Requirements

Before designing a framework for a RTE system, it is instructive to consider the
pre-existing NLP components that could be useful for determining entailment. We
focus on applications that correspond to well-known NLP tasks that have a broadly-
agreed output format, and which can clearly contribute to good performance on the
RTE task, or which intuitively may form the basis of useful RTE functionality.

There are two main kinds of resource of immediate interest: resources that
enrich raw text with semantic information, like Named Entity taggers and syntactic
parsers; and resources that compare spans of text (such as individual words, or
names, or phrases) and indicate some measure of similarity. We will refer to the
former as Annotators (or, equivalently, Analytics), and the latter as Comparators
or Metrics (see section 1.3.3.2).

Consider again the illustrative example in figure 1.1, and the steps a human
reasoner must follow, as a guide to the capabilities our system must support.

In step 1, it is necessary to identify the entities BMI and LexCorp, and more-
over, to recognize that they are Companies. This information, or something like it,
can be provided by a Named Entity Recognizer. Step 2 involves mapping “based in
Houston” to “American”. One possible route to attain this connection is to infer “in
America” from “in Houston”. This requires a factoid knowledge base that operates
at least at the lexical level. To recognize the nominalized relation “purchase” in
step 3 first requires that this word be identified as a noun (provided by a Part-Of-
Speech tagger). To map arbitrary nominalized verbs to their regular forms requires
a lexicon; one possibility is the popular lexical ontology WordNet [38] (using the
relation “derivationally related form” to identify the verb “purchase”). To make
the next step requires interpretation of the syntactic structure to identify the sub-
ject, object, and direct object (the arguments of the nominalized verb), in order to
allow comparison with the structure “BMI acquired an American Company”. This
structure could be obtained using a Syntactic or Dependency Parser; alternatively,
these steps might be resolved by a shallow semantic parser (or “Semantic Role La-
beler”). Finally, in step 4, the two syntactic (or shallow semantic) structures must
be compared in order to recognize that the Text entails the Hypothesis.

There are other resources that could be useful; successful RTE systems also
use resources that:

• identify and normalize numeric quantities

• identify different ways of expressing a given named entity (for example,
“International Business Machines” might be referred to as “IBM”, but not
“BMI”)

• determine which entities in a span of text refer to the same underlying entity

1.3. A FRAMEWORK FOR RECOGNIZING TEXTUAL ENTAILMENT 17

(aka. co-reference resolution)

Individual implementations generally use a mixture of off-the-shelf applications
and custom-built modules, but attack the same set of underlying problems.

The implications for a general-purpose RTE framework are that it must sup-
port a range of annotations of the text of the entailment pair at multiple granulari-
ties (from words to phrases to verb-argument structures); and that it must support
comparison of these annotations using specialized resources.

1.3.2 Analysis

The range of NLP resources described above presuppose that natural language
understanding is (largely) compositional: we can isolate individual phenomena,
and solve the task of recognizing each phenomenon. We see a similar intuition
at work in the way human annotators describe solving entailment problems, as in
section 1.2.2. Experience in a range of other fields of Computer Science give tes-
timony to the power of the divide-and-conquer approach. We therefore seek a way
to apply this strategy to the RTE problem.

1.3.3 Useful Components

We define here some components that are broadly useful in our generic RTE frame-
work.

1.3.3.1 A Multi-view Representation for NLP Analysis

We consider the output of all analytics to define constituents over the underlying
text, which may optionally be linked by relations. We refer to any pattern over
constituents and/or relations as a structure. Each constituent is trivially a structure.

We consider each analytic resource to define its own view of the underlying
text, with the most fundamental view being the Word view. We require that the
Word view represent tokens, rather than the raw text, and that all other views be
normalized with respect to this view – that is, the word tokens used to generate
every view must be the same as those in the word view. As a consequence of this
constraint, every constituent must correspond precisely to a set of word indexes.
This is convenient when detecting correspondences across different views (for ex-
ample, recognizing that an SRL argument is also a Named Entity).

Figure 1.5 illustrates the data structure generated from input of a system that
combines Named Entities (NE), Numerical Quantities (NUM), and Semantic Role
Label analysis (SRL), in addition to the words and their indexes. Each constituent

18 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

corresponds to words in the original text, and contains the list of indexes to which
it corresponds.

In general, constituents specify: a type (used to select from available similarity
metrics); one or more attribute-value pairs (specifying information of interest –
such as Part-of-Speech and lemma for words – and which may be used by the
relevant similarity metrics); and the set of indexes of words in the original text to
which the constituent corresponds.

In the example shown, the Named Entity constituents have a type and a value,
derived from the output of a Named Entity Recognizer. The Numerical Quantity
constituents have a normalized representation of the number and its unit, together
with the indexes of the corresponding tokens in the original text. The Semantic
Role Labeling view contains predicate (P) and argument (A) constituents; these are
joined by relations representing the roles of the arguments related to the predicate
(A0 is “agent”, or semantic subject; A1 is “patient”, or semantic object). These
roles are distinct from syntactic subject and object roles, as they are not affected
by e.g. passive constructions (for a full explanation of Semantic Role Labeling, see
Palmer, et al. [44]). Note that nesting is allowed in our representation – a predicate
may take another predicate as its argument (in this case, say has the predicate buy
as its semantic object). The argument constituents themselves are not assigned
roles because they may be part of more than one predicate-argument structure, and
could have different roles in each.

The Multi-View representation has several key advantages over simpler, unified
representations. Each resource is handled independently of the others, and can be
added incrementally. The representation is also very flexible: if you want to use
different information sources for different purposes – as in the case of filtering (see
section 1.3.7) – it is straightforward. It is also possible to write generic algorithms
for processing multiple views without knowing what views will be present. Finally,
the Multi-View representation defers Canonization: combining the different views
into a single data structure may require resolving disagreements in boundaries and
relation structure, and it may be desirable to make these decisions at a later stage
– for example, during the inference step, when there may be additional evidence
to support one decision over another. If desired, the many views can be collapsed
into a single graph structure as the final step of the preprocessing stage.

1.3.3.2 Comparing Annotation Constituents

A crucial step in RTE is that of comparing the Hypothesis with the Text. Given
our integration of many different information sources, we will need specialized
resources to compare some types of constituents. We will simplify our implemen-
tation if we treat these resources in a uniform way, so we use the Metric abstraction:

1.3. A FRAMEWORK FOR RECOGNIZING TEXTUAL ENTAILMENT 19

Figure 1.5. Example of a Multi-View representation of a Textual Entailment pair.

Definition 3. A Metric compares two constituents and returns a real number in the
interval [-1, 1], with the value 1 indicating identity, −1 indicating opposition, and
0 indicating irrelevance.

The Metric is a specialization of the concept of Comparator. A Compara-
tor compares two structures and returns arbitrary information; a Metric compares
two constituents and returns only a score. Comparators tend to be more special-
ized, being designed to work with specific structures (such as Predicate-Argument
structures derived from Semantic Role Label annotation).

Note that this definition of metric limits consideration of the context, except for
the knowledge of the type of constituents being compared, and whatever informa-
tion is encoded by the analytical resource that generates the input used to create the
constituents, and by the algorithm that parses that input into the constituents. We
think of metrics as fairly simple, focused resources, and chose the Metric abstrac-
tion to allow us to specify a simple interface and thereby simplify graph generation
code.

One reason for this design choice becomes clear when you consider what hap-
pens when you add a new information source to an existing, possibly complex, RTE
system: ideally, you want to avoid rewriting your graph generation and alignment
algorithms. If the new comparators you write to handle the new annotation follow

20 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

the same specification as the others you have already written, you should not have
to change these algorithms. Another reason for this localization is to promote the
encapsulation of domain-specific knowledge in a convenient form.

To give a concrete example of a metric, we will describe the behavior of a word
metric (the algorithm is given in figure 1.6).

Given the pair of word constituents with the lemmas “rise” and “increase”, our
word metric should return a high positive score such as 0.8, as these words are
synonymous in some contexts. Given “paper” and “exterminate”, it should return
a value near 0 as these two words are generally unrelated. If called with “rise” and
“fall”, it should return a negative value close to −0.7, as these are antonymous.
(We use a smaller magnitude negative score so that our alignment step will prefer
positive matches over negative ones, but this decision is based on our intuition of
desired behavior rather than empirical knowledge.)

The determination of scores is presently more of an art than a science; we leave
them as real values to retain flexibility in inference. We have found, for example,
that the lexical baseline we use in our experiments performs better when using
an admittedly imperfect real-valued word similarity score, compared to the case
where the word similarity metric is thresholded to assign either 1.0 or 0.0.

In the general case, some metric scores may need to be adjusted. For example,
some Named Entity similarity metrics use variations on string edit distance; these
tend to return moderate positive scores for very dissimilar names. A word similar-
ity metric based on WordNet, however, might return a relatively low positive score
for two words related by several steps of hypernymy; yet this would certainly be
more likely to coincide with a case where an entailment relationship holds between
the two words, than the two entities with a similar score via a string edit distance.

Note that generally, metrics are NOT symmetric, because the entailment rela-
tion is not symmetric. Consider the case of a metric that compares noun phrases
being applied in the entailment example in figure 1.1. One of the phrase pairs
that must be compared comprises “a company” from the Text, and “an American
company” from the Hypothesis: in this case, the Text does not contain sufficient
information, and so the noun phrase metric should return a score of zero. How-
ever, if “an American company” were from the Text, and “a company” from the
Hypothesis, the metric should return a score close to 1.0, as the first entails the sec-
ond.9 A Named Entity metric should recognize that “John Q. Smith” entails “John
Smith” and “Mr. J. Smith” with high likelihood, but not “Ms. J. Smith”; again, this
relationship is not always symmetric, as “John Smith” does not necessarily entail
“John Q. Smith”.

9 The effect of additional modifiers (in this case, “American”) on entailment is called monotonic-
ity; for a discussion of entailment and monotonicity, see MacCartney and Manning [31].

1.3. A FRAMEWORK FOR RECOGNIZING TEXTUAL ENTAILMENT 21

// Assume: words both set to lowercase

compare(firstWordC, secondWordC)
score← 0
firstWord← getAttribute(firstWordC, WORD)
secondWord← getAttribute(secondWordC, WORD)

if (firstWord == secondWord)
score← 1.0

else
levDistance← levenshteinDistance(firstWord, secondWord)
numChars← max(firstWord.length, secondWord.length)

if ((numChars− levDistance) / numChars > 0.9)
score← 0.8

else if (isSynonym(firstWord, secondWord))
score← 0.9

else if (isAntonym(firstWord, secondWord))
score← −0.7

else
numHypernymLinks← isHypernym(firstWord, secondWord))

if (numHypernymLinks < 4)
score← (0.9/numHypernymLinks)

return score

Figure 1.6. Algorithm for a word metric. The function “levenshteinDistance()” computes
the edit distance between two strings. The function “isSynonym()” consults WordNet and
returns “true” if the two words are synonyms, “false” otherwise. “isHypernym()” consults
WordNet and returns the number of Hypernym links separating the two words (infinity if
there is no link).

22 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

1.3.4 A General Model

A block diagram of a typical RTE system is presented in Figure 1.7. Entailment
pairs are processed either one at a time or as a batch; for simplicity, we will describe
the process per pair except in specific contexts that require a batch-processing
mode. We will describe the system in terms of its evaluation (which corresponds
to the behavior of a deployed RTE system); we will handle the process of training
machine-learning components separately, though this process usually uses many of
the same steps.

Figure 1.7. Block Diagram for Generic RTE Framework

1.3.4.1 Preprocessing

We assume that as the first step in the RTE process, our system must apply a suite
of off-the-shelf 10 annotators to the text of the entailment pair. While the list of
resources is open-ended, typical resources include: sentence and word segmenta-
tion (identify sentence boundaries, word and punctuation tokens); Part-of-Speech
tagging; dependency parsing or syntactic parsing; Named Entity recognition; Co-
reference resolution; Semantic Role Labeling. These different resources are used
to enrich the text 11.

10We use the term “off-the-shelf” to describe packages or components that are readily available
from one or more open-source/academic sources.

11The terminology of RTE is overloaded. We use text [span] to describe generic sentences, para-
graphs, or portions of same, and Text to refer to the larger component of an entailment pair.

1.3. A FRAMEWORK FOR RECOGNIZING TEXTUAL ENTAILMENT 23

We describe a data structure suited to integrating such diverse annotations in
section 1.3.3.1, and where appropriate, show how this can be mapped to the types
of representations used in some specific RTE systems.

Depending on the off-the-shelf components used, you may also need to clean
up the input prior to applying these resources, but we know of no pre-packaged
solutions. Some older packages may not handle multi-byte characters, for example:
these must be replaced or omitted. A clean-up step could also normalize spelling,
which may have a significant impact on e.g. syntactic parsers and POS taggers.

1.3.4.2 Enrichment

We use the term enrichment, as distinct from preprocessing, to refer to resources
that operate on (combinations of) pre-existing views to either augment existing
views, or to generate new views – in contrast to analytical resources, that process
text and generate an annotated form that is directly parsed into constituents, re-
lations and views. Enrichment resources serve one of two functions: to abstract
over some text/annotation patterns by mapping them to a closed set of structures;
or to augment the existing annotation by recognizing implicit content in the input
text/annotation and making it explicit as new structure.

An example of abstraction would be to represent modifiers of verbs such as
“failed to” in the sentence “Attackers failed to enter the building”, or “said that” in
the example shown in figure 1.5, by using an attribute in the verb or relation node in
the corresponding predicate-argument structure. In the latter case, we could write
code to identify such structures and mark embedded predicates like “buy” with an
attribute indicating uncertainty.

An example of augmentation is that of rule application (see section 1.4.3), to
make implicit content of the underlying text more explicit or to generate explicit
paraphrases of the text. The RTE system may use them to generate additional
syntactic parse trees representing paraphrases of the underlying text, or predicate-
argument structures like those encoding Semantic Role Labeling information.

1.3.4.3 Graph Generation

After identifying various syntactic and semantic structures in the Text and Hypoth-
esis, it is necessary to compare those in the Hypothesis with those in the Text. In
the simplest systems, only words are compared. In more successful systems, a
range of annotation types are compared. Typically, the Text and Hypothesis are
represented as graphs whose nodes correspond to annotation units (such as words,
Named Entities, parse sub-trees, SRL verb arguments), and whose edges corre-
spond to connections within an annotation type (e.g. connecting different mentions

24 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

of a single entity via co-reference edges, or linking words in a dependency tree
with typed dependency edges). Then, the constituents in the Hypothesis are linked
to those in the Text based on some measure of similarity (possibly simple equality),
to form a bipartite graph distinct from the Text and Hypothesis structures.

We assume that each type of constituent that must be compared in the graph
generation step has an associated comparator (or metric, as defined in section 1.3.3.2).
More than one type of constituent may use the same comparator, and comparators
for complex constituents (those with structure, such as Numerical Quantities or
Predicate Argument structures) may themselves call other, more basic compara-
tors.

1.3.4.4 Alignment

The intuition behind the alignment stage, made explicit by de Marneffe, et al. [16],
is that only a relatively small portion of the Text is relevant to the Hypothesis.
The goal of alignment is to identify that relevant portion and thereby simplify the
inference step.

Many RTE systems have an explicit alignment step; others have an integrated
alignment/inference process. In general, alignments map each constituent in the
Hypothesis to a single constituent in the Text. This is a heuristic based on the
observation that the hypothesis tends to be much shorter than the text, and that
in positive entailment examples, a human reader can often generate a “piecewise”
explanation of the hypothesis using portions of the text.

Most RTE systems first integrate all constituents into a single graph structure –
a single view in our terminology – and align each constituent in this representation.
Others perform an alignment using only words, and in the inference step analyze
the structure in other views that corresponds to the aligned words. In our own
work [50] (described in section 1.4.6), our system performs multiple alignments
for different groups of views, and the inference step compares them to discern cues
for entailment/non-entailment.

1.3.4.5 Inference

All RTE systems must use a decision component to label each entailment pair. This
may be a relatively simple measure of overlap plus a threshold, or it may be signif-
icantly more complex – for example, extracting features from the alignment graph
and applying a machine-learned classifier to determine the final label. Some use
theorem-provers over a logical representation induced from the entailment pair and
the analysis from the preprocessing step. We discuss some different approaches in
section 1.4.

1.3. A FRAMEWORK FOR RECOGNIZING TEXTUAL ENTAILMENT 25

Text: John said Joan Smith bought three apples for five dollars.

Hyp: Joan Smith forked out $5 for three apples.

Figure 1.8. A Textual Entailment pair for implementation examples.

1.3.5 Implementation

In this section, we fill out the explanation of the different parts of the RTE system
sketched above, with a focus on functionalities common to a range of successful
RTE systems. The case studies we consider in section 1.4 – drawn from recent RTE
challenges – will be mapped onto these descriptions. For this general framework,
we will use as our running example a simple Lexical Entailment Algorithm (LEA)
that uses a WordNet-based similarity measure for Word constituents, and a simple
Named-Entity-based filtering rule.

We will use as our sample input the (slightly contrived) entailment pair shown
in figure 1.8. This example will allow us to illustrate each step of the RTE frame-
work in the context of the LEA system.

1.3.5.1 Preprocessing

You will need to write the modules to control the flow of data through the various
analytical resources, and to translate from the output of each resource to the con-
stituent/relation/view data structures. Word-level annotation like Part-of-Speech
and Lemmas can be integrated into Word constituents. Shallow annotation like
Named Entities are straightforward to parse into constituents in their own view;
structured annotation like Co-reference, and Semantic Role predicates and argu-
ments, require some decisions about representation – for example, whether to have
separate views for predicates and arguments, or whether to create additional con-
stituents that each correspond to a complete SRL structure.

A typical order for preprocessing is: 1. Split into Sentences; 2. Split into
words; 3. Part-Of-Speech (POS) tagging; 4. Dependency or syntactic parsing; 5.
Named Entity Recognition; 6. Co-reference resolution (identify referents of pro-
nouns and possibly other entity mentions); 7. Semantic Role Labeling (verbs and
nominalized verbs). This ordering reflects some typical dependencies – for exam-
ple, many NLP applications require POS tags as an information source, and most
SRL systems require syntactic or dependency parse information. Some tools may
allow or even expect the user to provide these inputs, while others handle every-
thing internally. Providing such inputs yourself can improve efficiency by avoid-
ing repeated application of tools with comparable functionality. For convenience,

26 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

word-level annotations like POS and Lemma can be added to Word constituents.

Note that if you use resources from different sources, they may have differ-
ent expectations about input. For example, many applications take unsegmented
text as input, and segment the text internally. The problem here is that there is no
clear set of guidelines for “correct” segmentation, and so the output from differ-
ent sources may disagree about some word and sentence boundaries. For example,
should hyphenated words be separated (e.g. “American-led” vs. “American - led”)?
Should symbols representing currency remain with the corresponding number, or
not (e.g. “$12M” vs. “$ 12 M” or “$ 12M”)? In such cases you will need to resolve
the differences yourself. Of course, you could use an integrated tool set that pro-
vides all the different kinds of annotation you need, or restrict yourself to tools that
accept pre-segmented input. However, it is seldom the case that the tools with the
highest performance in each task all come from the same source; and if a specific
tool has been developed using a specific segmentation scheme, it may not perform
as well when it is given input that uses a different segmentation scheme.

Running Example – Lexical Entailment Algorithm (LEA):

For our LEA RTE system, we will need two views: a Word view and a Named
Entity view. The Word view will contain a Word constituent for each token in
the corresponding entailment pair member (i.e., either the Text or the Hypothesis),
which will include the original word and its lemma (if it has one). The Named
Entity view will contain one constituent for each Named Entity in the correspond-
ing entailment pair member, containing the entity’s original representation (the
sequence of tokens from the original text) and its type. We won’t initially use all
this information, but it will enable us to suggest possible extensions to the original
algorithm. The resulting multi-view data structure is the same as that in figure 1.5,
without the SRL and NUM views.

While some NLP applications provide a programmatic interface, many do not;
however, almost all generate marked-up text output. For those unfamiliar with the
task of parsing NLP tool outputs, we’ve outlined an algorithm to parse the NER
output in figure 1.9, which also shows a sample NER output. We assume that
either the NER segments the input text in the same way as that used to induce the
Word view, or that the NER takes tokenized text as input. We also assume that
there is no overlap of Named Entities in the NER output, an assumption that holds
for the NER taggers we have used, though it is not hard to extend the algorithm to
handle outputs of tools allowing tagged entities to overlap.

1.3. A FRAMEWORK FOR RECOGNIZING TEXTUAL ENTAILMENT 27

// sample nerOutput: “[PER Jane Smith] bought apples .”

// ASSUME: no overlapping entities, and that square brackets
// in input have been replaced.

CreateViewFromNerOutput(String nerOutput)

neV iew ← ∅
neType← null
neV alue← null
indexSet← ∅
isInNe← false

while (nextWord← getNextWord(nerOutput))

firstChar ← peekNextChar(nextWord)
if (firstChar == ‘[’)

isInNe← true
getFirstChar(nextWord)
neType← nextWord

else if (firstChar == ‘]’)
neConstituent← { neType, neV alue, indexSet}
neV iew ← neV iew ∪ neConstituent
indexSet← ∅
neType← null
neV alue← null
isInNe← false

else if (isInNe)
wordIndex← wordIndex+ 1
indexSet← indexSet ∪ index
neV alue← concatenate(neV alue, nextWord)

else
continue

return neV iew

Figure 1.9. Algorithm to parse NER-style annotations. The function “getNextWord(nerOut-
put)” splits the first word from “nerOutput” at the first non-initial whitespace character and
returns it; “peekNextChar(aWord)” returns the first character of “aWord”; and “concate-
nate(startString, nextWord)” appends “nextWord” to “startString” separated by a single
whitespace character.

28 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

1.3.5.2 Enrichment

To extend our LEA system, we will enrich our underlying text by adding sim-
pler expressions equivalent to idiomatic usage. This simplistic resource will use
a hand-generated mapping from simple idiomatic phrases to simpler equivalent
expressions, e.g. “kick the bucket” to “die”. Provided we consider only those ex-
pressions that can be mapped to the same number or fewer of replacement words,
we can simply add alternative word constituents that correspond to the same in-
dexes as the original idiomatic expression (a single replacement word constituent
may cover more than one of the original sentence indexes). A naı̈ve algorithm for
the IdiomMapper is shown in figure 1.10.

The enriched Multi-View data structure is presented in figure 1.13. The original
Hypothesis text is “Mr. Smith forked out $5 for three oranges.”, and the multi-view
representation has a word constituent for each token, including the period. The
IdiomMapper has added the new word constituent “pay”. Note that this constituent
covers both of the indexes that the original idiom “forked out” covered. This is
important when determining optimal alignments (see section 1.3.6).

1.3.5.3 Graph Generation

In the graph generation step, the comparison resources (metrics) are applied to
the relevant constituent pairs drawn from the Text and Hypothesis. This can be
implemented in a straightforward way – iterate over views in the Hypothesis and
Text, iterate over the constituents in each, and apply the appropriate metrics. The
metric code may itself be complicated, however, for highly structured constituents
like dependency parse (sub-)trees.

We provide a simple graph generation algorithm in figure 1.11.

Running Example:

In our example, we have the Named Entities “John” and “Joan Smith” in the
Text and “Joan” in the Hypothesis. “John” and “Joan” have a very low edit distance
(of 1), but a human reader knows that unless there is a typographical error, these
two names refer to different people. We will assume that our Named Entity metric
is smart enough to know this too, and that it will return a similarity score of −0.7.

The two strings “Joan Smith” and “Joan”, our other Text-Hypothesis Named
Entity pair, should return a high score, even though their edit distance (of 6) is
relatively high. We assume our NER metric returns a score of 0.9, since the strings
are not identical, but are highly likely to refer to the same individual.

We will assume that our Word similarity metric uses WordNet, and applies the

1.3. A FRAMEWORK FOR RECOGNIZING TEXTUAL ENTAILMENT 29

// ASSUME: annotationGraph already has word view;
// idiomList is a map from idiom strings to single words
// such as “forked out→ buy”

AddIdiomView(annotationGraph)
maxWordsInIdiom← 3
indexes← getOrderedWordIndexes(annotationGraph)

foreach index (indexes)
indexSet← ∅
offset← 0
sequence← “”
replacement← null

do
offsetIndex← index+ offset
word← findWordWithIndex(annotationGraph, offsetIndex)
sequence← concatenate(sequence, word)
replacement← findIdiomMatch(sequence)
indexSet← indexSet ∪ offsetIndex
offset← offset+ 1

while ((replacement != null) AND (offset < maxWordsInIdiom));

if (replacement != null)
idiomConstituent←generateIdiomConstituent(replacement, indexSet)
idiomV iew ← idiomV iew ∪ idiomConstituent

if (idiomV iew != ∅)
addView(annotationGraph, idiomV iew)

return

Figure 1.10. Simple algorithm for generating Idiom view.

30 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

following heuristic: if words are linked by synonymy or one level of hypernymy,
the score is 0.9. If they are linked by two levels of hypernymy, the score is 0.6.
If they are linked by three levels of hypernymy, the score is 0.3. If the words are
linked by antonymy, the score is −0.5. This behavior is specified in the algorithm
shown in figure 1.6.

1.3.6 Alignment

The fundamental idea behind most alignment algorithms is the notion that some
alignments are better than others, and that simply picking the most similar Text
constituent for each Hypothesis constituent is too simplistic, as it does not account
for sentence structure.

Given our formulation of comparators (metrics) and the method for generating
the entailment graph, we can frame the task of finding an optimal alignment as an
optimization problem. We will align groups of views together – for example, we
could combine Named Entity and Numerical Quantity views in a single alignment.
We may align all views together, simultaneously; or we may align each separately,
depending on the type of inference we want to perform.

We constrain the alignment to allow each index in the hypothesis to be mapped
to at most one target in the text, so constituents covering more than one token may
not overlap. The goal is to identify parts of the Text that explain the tokens of the
Hypothesis, and to simplify the inference problem.

In general, our intuition is that some views should compete: when there are
several alternative representations of the same token(s) – such as substitutions for
idioms – we may wish these to be considered as mutually exclusive choices, in
which case these views should be grouped before alignment; we wish other views
to be handled separately, because they may give us useful information that would
be lost if they were grouped. For example: suppose a Named Entity metric returns
only scores in the range [0, 1], and no entity constituents match. If we combine
the NE view with the Word view, we may get spurious matches of parts of entities
that share a title, or a surname, or that have a regular noun as either a forename
or surname that happens to appear in the other entailment pair member. A similar
problem arises when we combine views using metrics that do not have compatible
output (i.e., their scores cannot be interpreted in the same way). Again, combin-
ing Named Entities and Words may result in problems because the Word similarity
metric consistently returns lower scores for positive matches. Constituents at dif-
ferent granularities may both have alignment edges in an optimal solution, provided
they do not overlap.

Since metrics may return negative scores, the objective function must account
for these. Negative scores indicate contradiction: in the absence of a better positive

1.3. A FRAMEWORK FOR RECOGNIZING TEXTUAL ENTAILMENT 31

CompareHypothesisToText(hypGraph, textGraph)
edgeList← ∅
foreach view hypV in hypGraph

viewEdgeList← ∅
foreach view textV in textGraph

if (isCompatible(hypV , textV))
viewPairEdgeList← CompareViews(hypV , textV)
viewEdgeList← viewEdgeList ∪ viewPairEdgeList

edgeList← edgeList ∪ viewEdgeList
return edgeList

CompareViews(hypV iew, textV iew)
edgeList← ∅
foreach constituent hypC in hypV iew

hypEdgeList← ∅
hypId← getIdentifier(hypC)
foreach constituent textC in textV iew

textId← getIdentifier(textC)
score← CompareConstituents(hypC, textC)
matchEdge← { V iewType, hypId, textId, score }
hypEdgelist← hypEdgeList ∪matchEdge

edgeList← edgeList ∪ hypEdgeList
return edgeList

CompareConstituents(hypC, textC)
hypType← getType(hypC)
textType← getType(textC)
comparatorSet← getCompatibleComparator(hypType, textType)
matchScore← 0
foreach (comparator ∈ comparatorSet)

score← comparator → compare(hypC, textC)
if (score > matchScore)

matchScore← score
return matchScore

Figure 1.11. Algorithm for the Graph Generation step (comparing entailment pair member
graphs). It is assumed that the system stores a mapping from paired constituent types to
compatible Comparators, and that Comparators behave like Metrics in returning a score.

32 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

match, this information may be highly relevant to the subsequent entailment deci-
sion. In the objective function, therefore, the magnitude of the edge weight is used.
The edge retains a label indicating its negativity, which is used in the inference
stage.

For alignments over shallow constituents, we must guess at the deep structure;
we therefore include locality in the objective function by penalizing alignments
where neighboring constituents in the hypothesis are paired with widely separated
constituents in the text. We ignore crossing edges, as we do not believe these are
reliably informative of entailment.

The objective function is then:∑
i e(Hi, Tj) + α.

∑
i ∆(e(Hi, Tj), e(Hi+1, Tk))

m
(1.1)

and the constraint: ∑
j

I[e(Hi, Tj)] ≤ 1 (1.2)

where m is the number of tokens in the hypothesis; e(Hi, Tj) is the magnitude
of the score of a metric comparing hypothesis token i and text token j; and α is
a parameter weighting the distance penalty. ∆(e(Hi, Tj), e(Hi+1, Tk)) measures
the distance between the text constituent aligned to hypothesis token i and the text
constituent aligned to hypothesis token i + 1. For constituents covering multiple
tokens, this value is the minimum distance between any token covered by the con-
stituent covering Tj and any token covered by Tk. This distance function could
be measured in a variety of ways: for example, in tokens, or by edges in a path
through a dependency parse tree. I[e(Hi, Tj)] is an indicator function indicating
that token i in the hypothesis is mapped to token j in the text.

For alignments that combine constituents of different granularities, the formu-
lation above uses as token-level edge-weights the magnitude of the edge score for
the mapped constituents covering the pair of tokens in question. For example, an
edge between two Named Entities with a score of 1.0 would count as 1.0 for each
token covered by the Named Entity in the Hypothesis – a Named Entity cover-
ing two indexes would therefore generate an edge with the value 2.0. This avoids
penalizing matches of constituents larger than a single token.

In our own RTE system [50], we did not have alignment training data, so we
selected the alignment parameter α by hand (a positive value close to zero, suffi-
cient to break ties), and used brute force search to find the optimal alignment. The
search time has an upper limit, after which a greedy left-to-right alignment is used
in place of the optimal solution. We used the number of tokens as the distance
measure ∆.

1.3. A FRAMEWORK FOR RECOGNIZING TEXTUAL ENTAILMENT 33

The search algorithm we used is shown in figure 1.12. EdgeSetList is popu-
lated as follows: for each index in the text span of the Hypothesis, all edges from
constituents starting at that index are collected in a set, which added to the Edge-
SetList. All possible alignments are considered and scored, and the highest scoring
alignment returned.

The function getNextAlignment is used to iterate over all possible sets of edges
that respect the “one edge per Hypothesis token” constraint. To do this, it uses a
CounterSet: this is an object that stores the total number of edges from constituents
covering each index of the hypothesis, and an index indicating which edge in the
EdgeSetList for the corresponding index was used in the previous alignment. To
generate the next alignment, it increments the first EdgeSet index not already at
the last edge in the set of edges for the corresponding Hypothesis index. If an
individual counter is at the maximum index, it is reset to the first index, and the
next counter is processed. If all counters are at the maximum index, all alignments
have been considered.

To generate the alignment corresponding to the current CounterSet values, the
EdgeSetList is traversed. Starting from the set of edges from constituents starting at
the lowest index, the edge corresponding to the index in the corresponding counter
is selected. The last index of that edge’s Hypothesis constituent is found, and
intermediate indexes are skipped. The next index not covered by the Hypothesis
constituent is then processed, and so on until the Hypothesis indexes have been
traversed.

(As written, the algorithm may generate duplicate alignments when the Coun-
terSet is incremented, but the incremented counter is in the interval covered by a
constituent corresponding to an edge selected by a counter for a lower Hypothesis
index. In the interests of clarity and space, the duplicate detection has been omitted.
The algorithm presented is nonetheless correct – just not as efficient as it could be.)

Running Example:

In the alignment step of our LEA system, we combine the Word and Idiom
views, and align the Named Entity view separately. The rationale is that we can
use the same word metric for the Idiom constituent as for the Word constituents,
and we believe that the idiom replacement effectively generates a new sentence,
where the replacement term competes with the original idiomatic term – it doesn’t
make sense to partially match the idiom.

The alignment generated by the LEA system is shown in figure 1.13. LEA’s
implementation of the distance function shown in equation 1.1, for simplicity, al-
ways returns 0, though it is possible to specify a penalty for distance that will tend
to group edges when the Text is very long, and there are multiple matching words

34 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

findBestAlignment(edgeSet, hypGraph, textGraph)
bestScore← 0.0
edgeSetList← ∅
foreach index (getIndexes(hypGraph))

currentEdgeSet← findEdgesWithStartIndex(hypGraph, index)
edgeSetList← edgeSetList ∪ currentEdgeSet

counterSet← getCounterSet(edgeSetList)
bestAlignment← ∅
do

currentAlignment← getNextAlignment(edgeSetList, hypGraph, textGraph, counterSet)
score← scoreAlignment(currentAlignment)
if (score > bestScore)

bestAlignment← currentAlignment
bestScore← score

while (currentAlignment != ∅);
return bestAlignment

getNextAlignment(edgeSetList, hypGraph, textGraph, edgeSetCounters)
currentAlignment← ∅
if (incrementCounters(edgeSetCounters))

position← 0
maxPosition← sizeOf(edgeSetCounters)
nextUncoveredIndex← 0
while (position < maxPosition)

position← position+ 1
if (nextUncoveredIndex <= position)

currentEdgeSet← edgeSetList[position]
currentPositionCounter ← edgeSetCounters[position]
currentEdge← currentEdgeSet[currentPositionCounter]
currentAlignment← currentAligment ∪ currentEdge
hypConstituentId← getHypConstituentId(currentEdge)
hypConstituent← findConstituent(hypGraph, hypConstituentId)
lastIndex← getLastIndex(hypConstituent)
nextUncoveredIndex← lastIndex+ 1

return currentAlignment

incrementCounters(edgeSetCounters, edgeSetList)
index← 0
while (index < sizeOf(edgeSetList))

counter ← edgeSetCounters[index]
edgeSet← edgeSetList[index]
maxCount← sizeOf(edgeSet)
if (counter < maxCount)

counter ← counter + 1
return true

counter ← 0
index← index+ 1

return false

Figure 1.12. Algorithm for finding the best alignment for a set of views. The function
“getIndexes()” returns a sorted list of word indexes for a graph.

1.3. A FRAMEWORK FOR RECOGNIZING TEXTUAL ENTAILMENT 35

in the Text for certain words in the Hypothesis.

Figure 1.13. Best alignment by LEA for sample entailment pair; aligned components are
connected by green arrows.

The simple LEA uses a greedy alignment approach, taking the maximum value
match for each individual Hypothesis word. In the Idiom and Word view align-
ment, the idiom replacement counts twice, as it covers two word indexes. Function
words like articles (“a”, “the”, etc.) and prepositions (“on”, “of”, etc.) generally
carry much less semantic content than nouns, verbs and adjectives; LEA therefore
uses a list of stopwords containing such terms and ignores their edge scores. The
total alignment score for the best alignment (shown in the figure) is 0.43.

The Named Entity view is also aligned. There is only one Named Entity con-
stituent in the hypothesis view, and it is aligned using its highest-scoring edge.

1.3.7 Inference

The Inference component of RTE systems makes the final decision about the label
(and score) assigned to each entailment pair. While we present it as distinct from
the Alignment step, there are approaches in which the two are closely coupled.

In some systems, inference is a very simple comparison of the alignment score
to a threshold. In the two-way RTE task, if the score is higher than the threshold,
the entailment pair is labeled “Entailed”; otherwise, it is labeled “Not Entailed”.
In the three way task, some systems perform two sequential classifications: one to
distinguish between “Unknown” examples and the rest, and a second classification

36 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

step to split the rest into “Entailed” and “Contradicted” (see Wang, et al. [52]). Oth-
ers apply two thresholds to the single alignment score: the second, lower threshold
distinguishes between “Unknown” and “Contradicted” (see Iftene and Moruz [26]).

Other systems apply a feature extraction step after the alignment step (such as
Chambers, et al. [6]). For example, these features could characterize the corre-
spondence between dependency parse connections linking each pair of hypothesis
words with the corresponding connections for the aligned text words. These fea-
tures would then be used as input to a machine-learned classifier that would use
them to predict the label of the entailment pair.

Some systems may alter the alignment score based on global features. Such
features might be filter rules – for example, if there is a Named Entity in the hy-
pothesis and no match is found in the text, it is very likely that the example is
“Not Entailed”. Other examples are negation features: usually, negations or other
terms/structures affecting polarity, such as “failed to”, are identified in the prepro-
cessing or enrichment steps and encoded in the graph structure. They may then be
used to affect the final decision – perhaps by switching “Entailment” to “Contra-
diction” if there is a negation in the Text, and none in the Hypothesis, or vice versa,
when other factors indicate the Text entails the Hypothesis. In allowing metrics to
return negative scores, and tracking this via edge labels, but using the magnitude of
the edge score for determining alignments, such a feature is already accommodated
in the proposed framework: it is possible to do the abstraction in the enrichment
step, account for the enriched representation in the relevant similarity metric (by
allowing it to return a negative score), then determine if negative edges are present
in the final alignment.

Running Example:

The Named Entity alignment is used as a filter: if there is any Named Entity in
the Hypothesis that does not match anything in the Text, LEA automatically says
no. We can achieve this by thresholding the individual edge scores, and setting
the predicted label to “Not Entailed” if all edges for any single Hypothesis Named
Entity constituent have scores lower than the threshold. If the Hypothesis Named
Entities are all matched, it consults the Word and Idiom alignment.

Since the Hypothesis contains a single Named Entity and it is aligned with a
positive score to an entity in the Text, LEA does not set the label to “No Entail-
ment”, and consults the Word and Idiom alignment.

For the Word and Idiom alignment, the LEA system applies a simple threshold,
as it is applied only to the two-label task. Let us assume the Word threshold is 0.67;
LEA therefore predicts the label “Not Entailed” for this example based on the Word
and Idiom alignment.

1.3. A FRAMEWORK FOR RECOGNIZING TEXTUAL ENTAILMENT 37

Note that LEA got this example wrong; to do better, it would need to be able to
identify that “$5” and “five bucks” are equivalent – functionality provided by Nu-
merical Quantity analysis and the corresponding similarity metric. Such a resource
might also identify a mapping between “some fruit” and “four apples”, especially
if it makes use of the word similarity metric.

If there had been antonymous terms in the text and hypothesis, such as “love”
and “hate”, our word metric would have returned a negative score. Had there been
no better (non-antonymous) match for “hate” in the text, the aligner would select
the antonymous match edge because it ignores the sign of the edge value. In the
inference step, the negative value would remain, and would automatically penal-
ize the score. We could enhance the inference algorithm by changing the scoring
function to use rules (such as, “if two aligned verbs from the text and hypothesis
are antonymous, predict ‘Contradicted”’) or by making the alignment score aggre-
gation multiplicative (a single negative edge will result in a negative overall score).
Such heuristics are sometimes effective, but generally introduce new sources of
error; nevertheless, such effects are taken into account and used by successful RTE
systems to improve performance.

1.3.8 Training

In most successful systems, the alignment and/or inference components must be
tuned to the entailment corpus using the development data set. In systems using
machine learning components, this process is called training: the machine learning
algorithm processes the entailment examples in the development corpus, computes
relevant statistics, and generates a model of the problem based on characteristics
of the inputs it receives, usually expressed as features – expressions or functions
that take a specific part of the input and compute a value for each example.

In non-machine-learning-based components, there may be a process of tuning
similarity functions using the development corpus, possibly by trial and error, or
by brute force search over a parameter space.

We discuss the training procedures for some of the systems presented in the
Case Studies (section 1.4).

Running Example:

For the LEA system, we need to compute the threshold used by the inference
step to determine the entailment label. We do this by computing the best alignment
for each example in the development corpus, sorting the examples by alignment
score, and then testing each score as a possible threshold. We pick the threshold
that correctly classifies the most examples.

38 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

You may have observed that in equation 1.1, we normalize the sum of the
alignment edge scores by the number of tokens in the hypothesis. We do this so that
in the inference step (and training), the decision is not biased by the length of the
hypothesis. (Consider, for example, two different examples, one with a hypothesis
of length 4, and another of length 12. If there are four similar components for each
example, we intuitively desire different entailment labels, as it is more likely the
first should be labeled “Entailed” than the second.)

1.4 Case Studies

In this section we present a summary of a number of state-of-the-art systems as case
studies. For each case, we define the key characteristics of the approach, the pre-
processing modules used, and the method used to predict the entailment decision
(where relevant). A number of open-source resources are used by multiple systems;
rather than give multiple, repeated citations for each such resource, we simply
name them here, and collect all this information at the end of the chapter (see
section 1.6). Our goal here is to describe interesting research in RTE, and to relate
the different approaches to our framework. For specific details of implementation,
we refer readers to the original publications.

Note that where possible, we have included here systems that were evaluated
on the RTE 5 dataset. However, some interesting systems were only evaluated on
earlier RTE data sets, so their accuracy results are not directly comparable.

1.4.1 Extracting Discourse Commitments

Hickl et al. [24] propose a framework for recognizing textual entailment based on
extraction of implicit beliefs or discourse commitments. The assumption is that
the text consists of many simpler constructs that are true even if the particular text-
hypothesis pair does not entail. Fig. 1.14 shows a sample entailment pair with all
discourse commitments; the block diagram of the system is shown in Fig. 1.15.

The preprocessing step includes syntactic parsing and semantic-dependency
parsing, named entity recognition, coreference resolution, and numeric quantity
recognition. The outputs of these systems are unified in a single graph representa-
tion.

In the enrichment step, the Text and Hypothesis sentences are decomposed
into sets of simpler sentences that are themselves true, irrespective of the truth
value of the pair. A relation extractor is used to recognize known relations, such as
owner-of, location-near, employee-of, etc.; and supplemental expressions, such as
parenthesis, as-clauses, and appositives.

1.4. CASE STUDIES 39

Fi
gu

re
1.

14
.E

xa
m

pl
e

of
di

sc
ou

rs
e

co
m

m
itm

en
ts

fro
m

te
xt

.[
24

]

Fi
gu

re
1.

15
.T

ex
tu

al
en

ta
ilm

en
tf

ra
m

ew
or

k,
as

de
sc

rib
ed

in
[2

1]

40 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

In the alignment step, a token-based aligner is applied that uses multiple sim-
ilarity metrics such as WordNet-based word similarity, Levenstein string-edit dis-
tance, and named entity similarity (equality) metrics. These metrics are used to
align words from hypothesis commitments to text commitments.

In the inference step, the system extracts features based on entity and argument
matches, and a decision-tree classifier is used to decide if a commitment pair rep-
resents a valid entailment instance. The classifier is trained in the standard way,
using features extracted for each example in the development corpus.

The system achieves an accuracy of 80.4% on the RTE 3 Test set, and a mod-
ified version of the system scored 74.6% on the RTE 4 data set (see Hickl [23]).
While the performance of this system is very strong, it depends on a large corpus
of proprietary supplemental training data, and the preprocessing tools it uses are
also mostly proprietary. However, the underlying concept is similar to numerous
other approaches, breaking the surface text down into simpler units and matching
these, rather than the original words and sentences.

1.4.2 Edit Distance Based RTE

To the best of our knowledge, Tree Edit Distance (typically based on dependency
parse structure) was first used for textual inference by Punyakanok et al. [46] to
select answers in the task of Question Answering. Several teams later applied
Tree Edit Distance to the task of Recognizing Texutal Entailment (for example,
Kouylekov and Magnini [27] in RTE 1).

Mehdad et al. [36] proposes an open-source framework for textual entailment
called the Edit Distance Textual Entailment Suite (EDITS) [37], which provides
a basic, customizable framework for systematic development and evaluation of
edit distance-based approaches to RTE. The framework allows the computation of
edit distance to transform the text into the hypothesis using edit operations at the
string-, token-, and tree-level. In addition, it allows specification of entailment
and contradiction rules that associates a score with the transformation rule of an
element from the text to an element from the hypothesis.

The EDITS framework also defines a common text-annotation format to repre-
sent the input text-hypothesis pair and the entailment and contradiction rules. The
training data is used to learn a distance model. The EDITS workflow is shown in
Fig. 1.16.

In the system submitted to TAC RTE 5, the preprocessing step used dependency
parsing, part-of-speech tagging, lemmatization, and morphological analysis.

The graph generation and alignment steps are integrated. The lowest cost edit
distance is determined using a set of operations (insertion, deletion, and substitu-
tion), each of which has an associated cost. These costs are learned using an op-

1.4. CASE STUDIES 41

Figure 1.16. EDITS workflow, as described in [37]

timization algorithm, together with a threshold score that maximizes performance
on the development set. Word-level substitution resources were derived from Ver-
bOcean [9], WordNet [19], and Latent Semantic Analysis of Wikipedia.

The inference step compares the computed edit distance with the learned thresh-
old score: if the pair’s edit distance is greater than the threshold, the system assigns
the label “Not Entailed”; otherwise, it assigns the label “Entailed”.

The EDITS-based RTE system achieved a score of 60.2% in RTE 5, but could
probably be improved by investigating new substitution resources, and possibly by
enriching the input structures with e.g. Named Entity information (and using a
specialized similarity measure in the inference step).

1.4.3 Transformation-based Approaches

Braz et al. [?] describe an RTE system based around the augmentation of a graph-
based representation of the entailment pair’s Text and Hypothesis using hand-
coded rules designed to capture alternative expressions of information at the lex-
ical, phrasal, syntactic, and predicate-argument levels. They provide a model-
theoretic justification of their approach: when a rule is applied to the entailment

42 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

Figure
1.17.

E
xam

ple
ofan

application
ofinference

rules,as
given

in
B

ar-H
aim

,etal.[1]

1.4. CASE STUDIES 43

pair Text, the augmented representation makes explicit one possible (valid) inter-
pretation of that Text (ideally, in a way that makes the Text more closely resemble
the Hypothesis, when the Text entails the Hypothesis). If any such representation
of the Text subsumes the Hypothesis, the Text entails the Hypothesis.

The subsumption is formulated as an Integer Linear Programming problem,
which is used to find a minimum-cost subsumption of the Hypothesis by the Text.
Rules have associated costs, and these costs are further weighted depending on the
level of the representation at which the rule is expressed (the intuition being that it
is more important to match relations – and therefore verbs – than individual terms
like determiners).

The preprocessing step of this system annotates the entailment pair with shal-
low parse, syntactic parse, Named Entity, and Semantic Role Labels. The enrich-
ment step attempts to match the left hand side of each rule to the Text graph; if
the rule matches, the right hand side of the rule is used to augment the Text graph.
Several iterations are run, allowing limited chaining of rule applications.

There is no explicit alignment step; the inference step formulates the ILP prob-
lem and determines the minimum cost of subsumption of the Hypothesis by the
Text. If the cost is too high, the entailment pair is labeled “Not Entailed”; other-
wise, it is labeled “Entailed”. This system was shown to outperform a smart lexical
baseline on a subset of the RTE 1 development set, and achieved an accuracy of
56.1% on the RTE 1 test set (the two best systems both achieved accuracies of
58.6%.)

Bar-Haim et al. [1] describe a framework for transforming a syntactic-parse-
based representation of the entailment pair Text, using rules expressed as fragments
of syntactic parse trees. Hand-coded rules are used to abstract over a range of
syntactic alternations. The rules pair two syntax tree fragments with placeholders
representing subtrees that remain unchanged in the transformation. An example is
given in Fig. 1.17.

In the enrichment step of their RTE process, the rules’ heads are compared to
the structure of the Text. If they match, a new syntactic parse tree is generated
with the rule body; the subtrees in the original Text structure identified by the rule
placeholders are copied to the corresponding positions in the new parse tree.

The inference step extracts features from the most closely matching pair of
Text-Hypothesis representations (as defined by a distance metric), and these are
used by a classifier to predict the entailment label. To train the classifier, the same
steps are run, the features extracted, and the feature representation of each entail-
ment pair together with the pair’s label are used in the standard supervised Machine
Learning paradigm. A version of this system achieved an accuracy of 60.5% on
RTE 4 (Bar-Haim et al. [?]).

The disadvantage of these approaches is the need for many rules to capture

44 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

Figure 1.18. BLUE system architecture [10]

a large range of possible syntactic alternations; the high cost of producing such
rules by hand makes such an effort problematic. However, the straightforward
mechanism for incorporating world knowledge is appealing, as the problem of in-
corporating background knowledge must be overcome to make significant progress
in RTE.

1.4.4 Logical Representation and Inference

The Boeing Language Understanding Engine (BLUE) system by Clark and Harri-
son [11] is based on a formal logical approach to RTE. It transforms the text into
a logic-based representation and then tries to infer the hypothesis using a theorem-
prover over this representation.

The BLUE system consists of a two-stage pipeline, as shown in Fig. 1.18.
Initially, the text and hypothesis are parsed into a logical representation, using a
bottom-up chart parser [22]. The logical form is a simplified tree structure with
logic-type elements. It incorporates some pre-processing steps such as dependency
parsing, POS tagging, and pronoun and reference resolution. Modality attributes,
such as plurality, tense, negation, etc. are represented by special predicates in
the logical form. This logical representation is used to infer entailment, based on
subsumption and equivalence using WordNet and DIRT Inference rules. If the
logical inference step fails to decide entailment or contradiction, a bag-of-words
alignment model is used (in conjunction with WordNet and DIRT inference rules)
as a back-off inference module.

BLUE tries to find an explanation for the entailment decision using the logical

1.4. CASE STUDIES 45

theorem-prover to search for a chain of reasoning from text to hypothesis. It is,
however, limited by errors in the knowledge sources and the pre-processing stages
such as parsing and semantic analysis. Further, according to the analysis presented
in Clark and Harrison [11], the presence of some implicit knowledge in text, com-
bined with lack of knowledge to bridge the semantic gap between the text and
hypothesis, presently limits the performance of the system (61.5% on RTE 5.)

One strong positive characteristic of this system is that it produces an explana-
tion of its label, which allows the user to identify sources of errors, and to assess
the reliability of the system: if the explanation is plausible for a given set of entail-
ment examples, we may be more confident that this system will perform well on
unseen examples from a similar domain.

1.4.5 Learning Alignment Independently of Entailment

De Marneffe et al. [15] investigate alignment independently of Recognizing Tex-
tual Entailment, proposing that alignment be thought of as identifying relevant
portions of the Text, with the idea that this is simpler than determining which por-
tions of the text entail portions of the hypothesis. They formalize alignment as an
optimization problem that accounts for alignments of individual tokens in the hy-
pothesis and of pairs of hypothesis tokens connected by a dependency edge. They
use human-annotated alignment data to train their aligner, which they evaluate in
its own right. This is the basis of the alignment step in the entailment system de-
scribed in MacCartney et al. [29], where it is used as a source of features for a
global classifier. They present a useful formulation of alignment in terms of an
objective function. One drawback of their approach is that they require annotated
alignment data to train their system, which is time- and resource-intensive to pro-
duce.

MacCartney et al. [30] generalize the alignment problem to the phrase level
(where phrase simply means contiguous text span), and formalize the alignment
score in terms of equality, substitution, insertion, and deletion of phrases in the
Text with respect to the Hypothesis. They train this model using lexical alignment
labelings generated by Brockett [4]. While they report an improvement over two
lexical-level alignment baselines, they did not observe significant differences in
performance between the phrase-level system and a token-level alignment by the
same system (i.e., where the phrase size is fixed at one token). One limitation of
this approach is that it appears to disregard known constituent boundaries and does
not seem to offer a clean mechanism for applying specialized similarity resources
in ways other than uniformly across all contiguous text spans. Moreover, it requires
labeled alignment data, of which only a limited amount is available, and that too
only at the token level. However, their solutions to the problem of training an

46 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

aligner and of exploring the possible space of alignments at run-time are elegant
and clearly described.

1.4.6 Leveraging Multiple Alignments for RTE

Two difficulties faced by RTE system developers who wish to use deeper NLP ana-
lytics are the integration of NLP analyses operating at different granularities (word,
phrase, syntax, and predicate-argument levels), and the application of similarity
metrics or other knowledge resources (such as rules) in a consistent way across
these different layers of representation. In both alignment- and global similarity-
based approaches to RTE, problems arise when trying to incorporate multiple knowl-
edge resources, as resources developed for different tasks may have incompatible
outputs even when they all return real-valued scores. For example, a Named Entity
metric may return a score of 0.6 that indicates relatively low similarity, while a
WordNet-based metric may return the same value to indicate relatively high sim-
ilarity: their scores are not compatible, because the same returned score does not
have an equivalent meaning.

Sammons et al. [50] attempt to address both these problems, describing a multi-
view approach in which different sources of NLP analysis are represented in sep-
arate views of the data, though comparable levels of representation may be com-
bined in the same view. Specialized knowledge resources are encoded as metrics
operating on these individual views. Their system uses multiple alignments of the
Text and Hypothesis in each entailment pair, separating views with incompatible
metrics into separate alignments.

Features are defined over individual alignments and also between alignments,
based on the observation that (for example) if lexical-level alignments or Semantic
Role-based predicate-argument structure alignments indicate entailment, but align-
ments using Numerical Quantity metrics do not, this is a good indication that the
Text does not entail the Hypothesis. These features are used to train a classifier.

The multi-view, multi-alignment model allows a modular approach to inte-
grating new NLP analytics and knowledge resources, and the machine-learning
based inference component allows the system to determine the reliability of cues
from different sources of analysis. The system performs competitively with other
alignment-based systems, scoring 66.6% on the RTE 5 two-way task.

1.4.7 Natural Logic

MacCartney and Manning [31] propose a framework based on a natural logic-based
representation and inference process to address the textual entailment challenge.
In this approach, valid inference patterns are characterized in terms of syntactic

1.4. CASE STUDIES 47

forms that are close to the original surface form, without involving the full semantic
interpretation.

The underlying idea is to break down the entailment process into a sequence
of smaller entailment decisions, whereby portions of the Text are compared to por-
tions of the Hypothesis and related by one of a closed set of operations that indicate
the semantic relationship between the two. For example, semantic containment
identifies when one concept generalizes another, while semantic exclusion indi-
cates when one concept, if true, precludes the other being true.

They also classify context structures that affect the validity of a given relation-
ship in admitting entailment of the Hypothesis by the Text. This is expressed in
terms of polarity and monotonicity. Polarity must be compatible to permit entail-
ment, and accounts for negation and modal modifiers of predicates expressed in
the entailment pair. Monotonicity specifies whether a Text concept must be more
general or more specific than its counterpart in the Hypothesis, and typically arises
in specific types of construction such as universally quantified statements.

To determine entailment, the text is first represented as basic semantic rela-
tions (premises), and then a sequence of edit operations is applied to transform the
premise to the hypothesis. For each edit operation, a lexical entailment relation is
predicted using a statistical classifier, and these relations are propagated upward
through a syntax tree, according to semantic properties of intermediate nodes. The
final step composes the resulting entailment relations across the edit sequence.

This approach works well on simple sentences, such as those in the FraCaS
corpus (Cooper et al., [12]), but it becomes much harder to reliably extract the basic
premises from the Texts in entailment pairs, as world knowledge is often required
to infer relations more closely reflecting the structure of those in the Hypothesis.
To apply the Natural Logic inference to the RTE task, Padó et al. [42] combine
the alignment system described above with a simple NatLog edit distance via a
straightforward linear function, and achieve a score of 62.7% on RTE 4.

1.4.8 Syntactic Tree Kernels

The SemKer system, proposed by Zanzotto, et al. [34], uses syntactic tree kernels
to define similarity between pairs of text trees and pairs of hypothesis trees drawn
from each pair of entailment examples, and extends the model with a similarity
measure based on Wikipedia. The system uses a dependency tree based represen-
tation, with abstraction of nodes via lexical/semantic match. SemKer computes the
similarity between terms using the Syntactic Semantic Tree Kernel (SSTK) [3],
which encodes lexical similarity in the fragment (subtree) matching.

The system has a preliminary lexical alignment stage, which establishes po-
tential subtree matching locations, called “anchors”. These focus the application

48 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

of the subtree matching component, which determines the final alignment between
text and hypothesis for each entailment pair.

To train the inference model, these anchors are then abstracted into generic
placeholders, and a second tree-kernel-based similarity function is applied to com-
pare patterns of alignments between entailment pairs. The goal is to learn more
general structural correspondences that apply over multiple entailment pairs. A
Support Vector Model is trained using this inter-pair distance metric and the en-
tailment example labels; this model is applied at the inference step of their RTE
system.

The system performed well on RTE 5, with 66.2% accuracy on the two way
labeling task (one of the top-5 scores). To capture the large variety of syntactic
variations permitted in natural language text, and thereby improve its performance
and capacity to generalize, this approach appears to need a lot more training data. It
would be interesting to see how it performed if it were trained using the proprietary
corpus described by Hickl [23].

1.4.9 Global Similarity using Limited Dependency Context

Iftene and Moruz [26] developed the system that performed best in both the two-
and three-way entailment task in RTE 5. The structure of their system, like that
of many other successful systems, closely matches the one we have described in
section 1.3.

In the preprocessing step, the text of the entailment pair is first normalized to
expand contractions (e.g., “is not” instead of “isn’t”) and replace some punctuation
characters. This improves the performance of the off-the-shelf packages they use.
The induced representation of the entailment pair is based on a dependency parse
tree, enriched with Named Entity information. The preprocessing step also ap-
plies some custom resources that annotate specific relations (such as “work-for”),
numerical quantities, and languages.

The alignment step comprises local and global scoring functions. First, each
hypothesis constituent is mapped to the best candidate text constituent. This pro-
cess includes the application of rules derived from WordNet, Wikipedia, VerbO-
cean, and other custom resources to identify possible mappings between dissimilar
text/hypothesis term pairs; these mappings have associated scores. These local fit-
ness scores also account for the parents of the nodes being compared, and the types
of dependency edges connecting them.

These local alignment scores are then integrated, and some adjustments are
made based on global characteristics of the alignment, such as whether the Named
Entities in the Hypothesis are matched by Entities in the Text, and whether an
aligned predicate is negated in one of the Text and Hypothesis but not the other.

1.4. CASE STUDIES 49

The inference step applies two thresholds to the resulting score: a higher thresh-
old that distinguishes between “Entailed” and “Not Entailed”, and a lower thresh-
old that distinguishes between “Unknown” and “Contradicted”. These thresholds
are tuned to maximize performance on the three-way task for the Development
set; the two-way labeling score is derived directly from the three-way labeling by
combining the “Unknown” and “Contradicted” labels to generate “Not Entailed”
labels.

This system achieved accuracies of 68.5% on the RTE 5 three-way task and
73.5% on the RTE 5 two-way task.

1.4.10 Latent Alignment Inference for RTE

Chang, et al. [8] develop a joint learning approach that learns to make entailment
decisions along with learning an intermediate representation that aligns Texts and
Hypotheses. No supervision is assumed at the intermediate alignment level. They
propose a general learning framework for RTE and other problems that require
learning over intermediate representations.

The framework uses the declarative Integer Linear Programming (ILP) infer-
ence formulation (see Chang et al. [7]), where the intermediate representation can
be easily defined in terms of binary variables and knowledge can be injected as
constraints in the model. The model assumes that all positive examples have at
least one good intermediate representation (alignment), while negative examples
have no good intermediate representation. During training, if the model gener-
ates a “good” (valid) alignment – in the sense that the resulting entailment decision
based on the features activated by this alignment is correct – the learning stage uses
this as a positive example for the entailment classifier and also to provide feedback
to the alignment model.

The text and hypothesis are represented as graphs, where the words and phrases
are nodes and dependency relations between words form the edges. In addition, di-
rected edges link verbs to the head words of their semantic-role-labeled arguments.
The mappings between the nodes and edges in the text graph and the hypothesis
graph define the alignment. These alignment variables are constrained using rela-
tions between word mappings and edge mappings: for instance, an edge mapping
is active only if the corresponding word mappings are active.

One key aspect of this approach is that the alignment step is not specified as a
separate, stand-alone task; rather, a space of alignment structures is defined, and
the gold standard training labels of the target application are used together with
an optmization approach to determine the optimal intermediate representation for
the target task, i.e. the representation that maximizes performance on the target
task. This obviates the need for expensive annotation efforts on the intermediate

50 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

structure.
Chang, et al. [8] apply their framework to transliteration discovery, paraphrase

identification, and recognizing textual entailment. For the RTE task, the prepro-
cessing step uses Named Entity, dependency parse, Semantic Role Labeling, and
Coreference analysis and collapses them into a single, canonical graph structure.
The graph generation step uses similarity metrics for words and Named Entities
(see Do et al. [18]) but also computes alignment edges between edges in the Text
and the Hypothesis, where the edges’ sources and sinks are also aligned.

The alignment and inference step are integrated, with the optimal alignment
and optimal entailment decisions based on the feature weights learned in the train-
ing process. Chang et al.’s system achieved an accuracy of 66.8% in the 2-way task
for the RTE 5 corpus.

1.5 Taking RTE Further

The results in figure 1.2 show that there is still a long way to go before RTE can be
considered a solved problem.

From the various examples given throughout this chapter, it should be evident
that reliably recognizing textual entailment requires many smaller entailment phe-
nomena to be handled – such as identifying when two strings refer to the same
underlying entity, or applying background knowledge to infer something not ex-
plicitly stated in the text. In this section, we present some particularly important
capabilities that are not yet (sufficiently) developed, to provide a possible focus for
ongoing research.

1.5.1 Improve Analytics

All successful RTE approaches depend on input from other NLP tools. The more
complex the annotation, the poorer the performance of the corresponding tool tends
to be. Improving the performance of resources such as Named Entity Recognizers
and Syntactic Parsers will tend to improve the performance of RTE components
that depend on them. This is particularly true of RTE systems like that of Bar-
Haim, et al. [1] that enrich the input using rules based on parse structure.

One functionality commonly identified as crucial to textual inference is Co-
reference Resolution. While co-reference systems achieve reasonable performance
on purpose-built corpora, they (like other NLP applications) tend to perform signif-
icantly less well on raw text from other domains. This is partly due to over-fitting
to the evaluation domain, and partly due to assumptions made in the evaluations
themselves. In particular, systems perform badly linking co-reference of phrasal

1.5. TAKING RTE FURTHER 51

(i.e., non-pronominal) mentions to the correct entity.

1.5.2 Invent/Tackle New Problems

There are many linguistic phenomena that seem relevant to RTE but have no exist-
ing NLP resource; they may not even be widely recognized as necessary tasks by
the NLP community. Such problems may lack relevant corpora, even if they are
recognized as potentially useful.

One example that seems particularly relevant is trace recovery: identifying
places in sentences where the writer implicitly refers to something, relying on the
reader to fill in a gap based on the context: for example, in the sentence “John sold
apples, Jane oranges.”, a human reader infers that the “sold” relation holds between
“Jane” and “oranges”. Attempts at training syntactic parsers to recover traces, such
as Dienes and Dubey [17], have had only limited success, in part because syntactic
parsers are not error free, and in part because the original annotation (see Marcus,
et al. [32]) is not consistent.

A related problem is Zero Anaphora resolution. For example, in the sentence
“One rainy day is bad enough, but three in a row are intolerable”, a human reader
recognizes the “three” as referring to “three rainy days”. There are publications
addressing this problem, but so far, no application has been made available that has
been widely used by the community.

NLP tools typically tag only explicit content, and significant additional pro-
cessing is required to solve the problems described above. If these problems were
solved – for example, by identifying the places where content is missing, or bet-
ter yet by adding the missing content – some NLP analytics would generate more
useful output, from the perspective of RTE and also of other NLP tasks.

Another topic deserving long-term attention is discourse structure. The harder
RTE examples require synthesis of information spread across multiple sentences;
in the search task piloted in RTE5, Mirkin, et al. [39] observed that in some news
articles, information from the headline is needed throughout the article to fully
understand sentences. Certain relations between events, such as causality and tim-
ing, may be expressed by structures that are not restricted to single sentences – the
boundary of many NLP tools. These very long-distance dependencies are signified
by discourse structure, which is very much an open topic in NLP research. With
the publication of the Penn Discourse Treebank [45], there is a resource suited to
developing analysis of some classes of long-range dependencies.

52 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

Text: Local health department officials were quoted as saying that the
bridge over the Santa Barbara river, in southern Peru’s Ayacucho province,
“broke in two” as students and teachers from four rural schools were cross-
ing it while going home. . . Local police said the 120-meter bridge, made of
wooden boards and slats held together by steel cables, collapsed because
too many people were on it.

Hyp: The Peruvian bridge in Ayachuco province broke because of the
weight on it.

Figure 1.19. RTE5 example (development set, id 34, text truncated) requiring understand-
ing of causal relations.

1.5.3 Develop Knowledge Resources

There are many recognized entailment phenomena that are not strongly represented
in the RTE corpora, but which are clearly needed for systems to achieve Natural
Language Understanding. In particular, there are certain types of reasoning that hu-
man readers do without conscious effort, but which are extremely challenging for
an automated system. Some examples are causal and spatial reasoning (examples
from the RTE5 corpus are presented in figures 1.19 and 1.20.

Causal reasoning relates to world knowledge a human can bring to bear that
expresses domain-specific cause-and-effect relationships: for example, that bombs
can explode, and that explosions can cause injury and/or death to people.

In the entailment pair in figure 1.19, a reader must infer that because people
exert force (weight) on structures they stand on, and that too much weight on a
bridge implies too many people; it is therefore valid to conclude that the cause of
the bridge collapse can be expressed in the Hypothesis as a result of “too much
weight” instead of “too many people”.

In the entailment pair in figure 1.20, the text states that political leaders in
Baghdad and Washington are concerned about bombings, and then gives details
of three bombings. The reader must infer that “south of Baghdad” implies “in the
Baghdad area”, and that Abu Gharib, if only by virtue of being located in Iraq
(which itself might be known via background geographical knowledge), can also
be considered to be “in the Baghdad area”, at least in the given context.

Other types of reasoning are less generic, but seem well represented in NLP
tasks; for example, recognizing various kinship relations in order to identify strong
connections in entailment pairs like that in figure 1.21. Here, the challenge is to
specify the necessary knowledge in a consistent, sufficiently unambiguous way,
that is also accessible to RTE systems. The CYC database [33] is a vast repos-

1.5. TAKING RTE FURTHER 53

Text: Three major bombings in less than a week will be causing some
anxiety among political leaders in Baghdad and Washington. Last Thurs-
day 10 people were killed by a car bomb at a crowded cattle market in
Babel province, south of Baghdad. On Sunday more than 30 died when a
suicide bomber riding a motorbike blew himself up at a police academy in
the capital. Tuesday’s bombing in Abu Ghraib also killed and wounded a
large number of people - including journalists and local officials.

Hyp: Some journalists and local officials were killed in one of the three
bombings in the Baghdad area.

Figure 1.20. RTE5 example (development set, id 224, text truncated) requiring understand-
ing of spatial relations.

Text: British newsreader Natasha Kaplinsky gave birth to a baby boy ear-
lier this morning at around 08:30 BST. She had been on maternity leave
since August 21. Kaplinsky had only been working with Five News just
over a month when she announced she was pregnant. Her husband of
three years, investment banker Justin Bower announced “We’re absolutely
thrilled.”

Hyp: Natasha Kaplinsky and Justin Bower got married three years ago.

Figure 1.21. RTE5 example (development set, id 224, text truncated) requiring understand-
ing of kinship relations.

itory of knowledge, painstakingly encoded in a consistent logical form; but it is
not widely used precisely because its representation constrains its use. Lin and
Pantel’s DIRT rules [28], however, are widely considered to be in a usable form
(dependency tree paths with slots for entities), but to be too noisy to be of practical
use (see Clark and Harrison [11], and the ablation study in Bentivogli, et al. [2]
for some examples). The kinds of “facts” identified by OpenIE approaches like
TextRunner [53] are also noisy, and have yet to be proven useful in RTE.

Noise-free sets of rules for common domains, in an appropriate representation,
would be a valuable asset; Szpektor, et al. [51] propose a promising representation.

1.5.4 Better RTE Evaluation

The current evaluation of RTE focuses mainly on absolute performance, reporting
the accuracy of a given system in predicting one of two labels (“Entailed” and “Not

54 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

Entailed”) for the two-way task, or one of three labels (“Entailed”, “Contradicted”,
and “Unknown”) for the three-way task. The problem for RTE researchers is that
from the human reasoning perspective, predicting this label requires many other
entailment decisions to be made, and that the single final label does not tell us any-
thing about the way the system handles those smaller decisions. In the example
in figure 1.20, a human reader must reason that there are three bombing events
reported in the Text, that the phrase “including journalists and local officials” rep-
resents entities specified by “a large number of people”, and that the three separate
locations mentioned in the Text are all in the Baghdad area. Without knowing what
the system actually did to handle each of these problems, we cannot reliably pre-
dict how the approach used by the system will handle new entailment problems
requiring similar kinds of inference: a system might incorrectly predict the entail-
ment label, but might be reliably resolving inferences requiring spatial reasoning,
for example. If reliable solutions for entailment sub-problems are developed, it is
in the interest of the RTE community to recognize this and reuse the solution, to
avoid duplication of effort and focus attention on other needed capabilities.

There are two obvious solutions to this problem: require systems to generate
explanations of their answers, and/or annotate RTE examples with more informa-
tion than the present binary or ternary label.

At least one RTE system (Clark and Harrison [11]) already generates explana-
tions that are useful in identifying flaws in its knowledge resources, though it is
strongly dependent on its formal logical inference process, which is brittle in the
face of noisy inputs. But even with this, the steps in the explanation are not always
clear, and it is not self-evident that the kinds of steps made by a human reasoner
can all be accommodated in a transparent way in this formalism.

A standard format for explanation – and a corresponding annotation of en-
tailment examples – would be a step forward to making it possible for RTE system
builders to work on explanation generation in a systematic, coordinated way, rather
than each following an independent direction.

A second option is to annotate RTE examples more fully, but without com-
mitting to a particular representation for explanations. As a partial measure, an
annotation standard for determining and recording the entailment phenomena that
are required to predict the entailment label for an entailment pair would allow
at least an approximate understanding of which capabilities a given RTE system
has, by checking the correlations between correctly labeled examples and the ac-
tive entailment phenomena. In addition, such labeling would allow researchers to
quickly extract entailment corpora with specific characteristics, allowing evalua-
tion of phenomena-specific resources in the context of RTE performance. These
questions are raised, and an annotation standard proposed, in Sammons, et al. [49].

1.6. USEFUL RESOURCES 55

1.6 Useful Resources

This section gives some information about resources used by some of the RTE
systems evaluated in the RTE challenges.

1.6.1 Publications

Many RTE researchers participate in the NIST TAC RTE challenge, which pub-
lishes data sets and descriptions of participating RTE systems at its web site 12.
You can find pointers to additional research publications on RTE at the ACL RTE
portal 13. Other publications relating to RTE appear in conferences such as ACL,
EMNLP, COLING, and AAAI; ACL and EMNLP papers are available online via
the ACL anthology 14.

1.6.2 Knowledge Resources

The ACL RTE portal named above also has pointers to some useful knowledge
resources 15, such as collections of rules, some of which are mentioned in the case
studies in section 1.4. The ACL RTE portal also has several complete RTE systems
available for download.

1.6.3 Natural Language Processing Packages

Some popular NLP frameworks are LingPipe 16, UIMA 17, NLTK 18 and GATE 19,
though there are other publicly available frameworks. Some of these frameworks
also offer NLP modules for Named Entity Recognition, Co-reference, segmenta-
tion, etc. We have also found Thrift 20 and XML RPC libraries (such as that of
Apache 21) to be useful resources for distributing NLP tools across multiple com-
puters.

A number of research groups make NLP annotation tools available. Stanford 22

offers a POS tagger, syntactic parser, and named entity recognizer, together with

12http://www.nist.gov/tac/
13http://www.aclweb.org/aclwiki/index.php?title=Textual Entailment
14http://aclweb.org/anthology-new/
15http://www.aclweb.org/aclwiki/index.php?title=RTE Knowledge Resources
16http://alias-i.com/lingpipe/
17http://incubator.apache.org/uima/
18http://www.nltk.org/
19http://gate.ac.uk/
20http://incubator.apache.org/thrift/
21http://ws.apache.org/xmlrpc/
22http://nlp.stanford.edu

56 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

some resources to simplify some NLP programming tasks. The Cognitive Com-
putation group 23 offers a large suite of NLP tools, including the state-of-the-art
(as of Spring 2010) Illinois- Named Entity Tagger, Co-reference resolver, Part-of-
Speech tagger, Chunker (shallow parser), and Semantic Role Labeler. They have
also released their Named Entity and Lexical similarity metrics (Illinois-NESim
and Illinois-WNSim). They also offer Learning-Based Java (LBJ), an extension
to the Java programming language, which simplifies development and deployment
of machine learning techniques as integral parts of java applications, and includes
some useful NLP tools such as a sentence-level and word-level segmenter. Many
researchers use syntactic parsers by Michael Collins 24, Dan Bikel 25, and Eugene
Charniak 26.

There are many more implementations of these and other NLP tools, and even
more publications describing unpublished applications. Those listed above are a
popular subset that should help you to get started.

1.7 Summary

The task of Recognizing Textual Entailment provides a general, representation-
agnostic framework for semantic inference in text processing, allowing researchers
to entertain a wide range of approaches to solve the problem. The approach of
the Natural Language Processing community to other textual inference problems
like Named Entity Recognition and Resolution has been to tackle “component”
inference tasks that can be thought of as part of some unspecified, comprehensive
inference process. A popular approach to RTE is to think of Recognizing Textual
Entailment as a framework that integrates (subsets of) these components in a way
that fills in the gaps of this overarching process; it is in this spirit that we have
proposed the RTE framework described in this chapter.

We have sought to address several distinct requirements that are in tension with
each other:

• The ability to incorporate an arbitrary selection of existing NLP resources,
which may not be consistent in granularity (word vs. phrase vs. predicate-
argument-structure), formalism, or availability across languages.

• The flexibility to accommodate developer constraints such as engineering
effort and run-time complexity.

23http://L2R.cs.uiuc.edu/cogcomp
24http://people.csail.mit.edu/mcollins/code.html
25http://www.cis.upenn.edu/ dbikel/software.html
26ftp://ftp.cs.brown.edu/pub/nlparser/

1.7. SUMMARY 57

• The capacity to add new NLP analytics and knowledge resources in a mod-
ular way.

• The versatility to allow developers to use a range of approaches to inference.

The concept of alignment is a natural way to think about the RTE problem as it
allows the modularization of knowledge resources via a multi-view representation
of enriched text in tandem with specialized, constituent-level similarity metrics.
At the system level, this allows straightforward extension of the different stages to
accommodate new resources.

The framework we have proposed has been designed with respect to dominant
approaches to developing NLP resources in various languages, and is intended to
allow development in any language for which appropriate resources are available.
It also allows for a trade-off between representational expressivity and computa-
tional speed: if shallower (less structured) knowledge resources and NLP analytics
are used, a simpler inference algorithm and swifter processing will result. This
also accommodates users working in languages with fewer NLP resources: while
sophisticated inference may be limited by availability of NLP resources, it is still
possible to develop an RTE system working at a shallower level of representation.

In our survey of promising research in the field, we have illustrated differ-
ent approaches to various aspects of the RTE problem including representation,
application of background knowledge resources, approaches to alignment, and in-
ference techniques. To allow readers to incorporate insights from these works into
their own RTE systems, we have indicated how the execution of each approach
matches the framework we have specified.

Recognizing Textual Entailment is a complex problem, and solutions require
significant planning and effort. Our goal has been to provide you with the tools
to quickly get started within a model that can be extended to accommodate im-
provements in specific sub-tasks, and a roadmap of relevant research and useful
resources.

58 CHAPTER 1. RECOGNIZING TEXTUAL ENTAILMENT

Bibliography

[1] Roy Bar-Haim, Ido Dagan, Iddo Greental, Idan Szpektor, and Moshe Fried-
man. Semantic inference at the lexical-syntactic level for textual entailment
recognition. In Proceedings of the ACL-PASCAL Workshop on Textual En-
tailment and Paraphrasing, pages 131–136, Prague, June 2007. Association
for Computational Linguistics.

[2] Luisa Bentivogli, Ido Dagan, Hoa Trang Dang, Danilo Giampiccolo, and
Bernando Magnini. The fifth pascal recognizing textual entailment challenge.
In Text Analysis Conference (TAC), 2009.

[3] S. Bloehdorn and A. Moschitti. Combined syntactic and semantic kernels for
text classification. In ECIR, 2007.

[4] C. Brockett. Aligning the rte 2006 corpus. Technical Report MSR-TR-2007-
77, Microsoft Research, 2007.

[5] Asli Celikyilmaz, Marcus Thint, and Zhiheng Huang. A graph-based semi-
supervised learning for question-answering. In Proc. of the Annual Meeting
of the ACL, pages 719–727, Suntec, Singapore, August 2009. Association for
Computational Linguistics.

[6] Nathaniel Chambers, Daniel Cer, Trond Grenager, David Hall, Chloé Kiddon,
Bill MacCartney, Marie-Catherine de Marneffe, Daniel Ramage, Eric Yen,
and Christopher D. Manning. Learning alignments and leveraging natural
logic. In Proceedings of the ACL-PASCAL Workshop on Textual Entailment
and Paraphrasing, pages 165–170, 2007.

[7] M. Chang, L. Ratinov, and D. Roth. Constraints as prior knowledge. In ICML
Workshop on Prior Knowledge for Text and Language Processing, pages 32–
39, July 2008.

59

60 BIBLIOGRAPHY

[8] Ming-Wei Chang, Dan Goldwasser, Dan Roth, and Vivek Srikumar. Dis-
criminative learning over constrained latent representations. In Proceedings
of HLT: NAACL, pages 429–437, 2010.

[9] Timothy Chklovski and Patrick Pantel. VerbOcean: Mining the Web for Fine-
Grained Semantic Verb Relations. In Proceedings of Conference on Empir-
ical Methods in Natural Language Processing (EMNLP-04), pages 33–40,
2004.

[10] Peter Clark and Phil Harrison. An Inference-Based Approach to Recognizing
Entailment. In Text Analysis Conference (TAC), pages 63–72, 2009.

[11] Peter Clark and Phil Harrison. An inference-based approach to recognizing
entailment. In Notebook papers and Results, Text Analysis Conference (TAC),
pages 63–72, 2009.

[12] Robin Cooper, Dick Crouch, Jan Van Eijck, Chris Fox, Johan Van Genabith,
Jan Jaspars, Hans Kamp, David Milward, Manfred Pinkal, Massimo Poesio,
, and Steve Pulman. Using the framework. Technical report, 1996.

[13] I. Dagan, O. Glickman, and B. Magnini. The PASCAL Recognising Textual
Entailment Challenge. 3944, 2006.

[14] H.T. Dang and K. Owczarzak. Overview of the tac 2009 summarization track.
In Text Analysis Conference (TAC), 2009.

[15] Marie-Catherine de Marneffe, Trond Grenager, Bill MacCartney, Daniel Cer,
Daniel Ramage, Chloé Kiddon, and Christopher D. Manning. Aligning se-
mantic graphs for textual inference and machine reading. In AAAI Spring
Symposium at Stanford 2007, 2007.

[16] Marie-Catherine de Marneffe, Anna N. Rafferty, and Christopher D. Man-
ning. Finding contradictions in text. In Proceedings of ACL-08: HLT, pages
1039–1047, Columbus, Ohio, June 2008. Association for Computational Lin-
guistics.

[17] Péter Dienes and Amit Dubey. Antecedent recovery: Experiments with a
trace tagger. In Proceedings of the 2003 Conference on Empirical Methods in
Natural Language Processing, pages 33–40. Association for Computational
Linguistics, 2003.

[18] Quang Do, Dan Roth, Mark Sammons, Yuancheng Tu, and V.G.Vinod Vy-
diswaran. Robust, Light-weight Approaches to compute Lexical Similarity.

BIBLIOGRAPHY 61

Computer Science Research and Technical Reports, University of Illinois,
2010. http://L2R.cs.uiuc.edu/∼danr/Papers/DRSTV10.pdf.

[19] C. Fellbaum. WordNet: An Electronic Lexical Database. MIT Press, 1998.

[20] Sanda Harabagiu and Andrew Hickl. Methods for Using Textual Entailment
in Open-Domain Question Answering. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and 44th Annual Meeting of
the Association for Computational Linguistics, pages 905–912, Sydney, Aus-
tralia, July 2006. Association for Computational Linguistics.

[21] Sanda Harabagiu and Andrew Hickl. Methods for using textual entailment
in open-domain question answering. In Proceedings of the 21st International
Conference on Computational Linguistics and 44th Annual Meeting of the
Association for Computational Linguistics, pages 905–912, 2006.

[22] P. Harrison and M. Maxwell. A new implementation of gpsg. In Proceedings
of the 6th Canadian Conference on AI (CSCSI’86), pages 78–83, 1986.

[23] Andrew Hickl. Using discourse commitments to recognize textual entailment.
In Proceedings of the 22nd COLING Conference, 2008.

[24] Andrew Hickl and Jeremy Bensley. A Discourse Commitment-Based Frame-
work for Recognizing Textual Entailment. In Proceedings of the ACL-
PASCAL Workshop on Textual Entailment and Paraphrasing, pages 171–176,
2007.

[25] Eduard Hovy. Learning by reading: An experiment in text analysis. In
Text, Speech and Dialog, volume 4188 of Lecture Notes in Computer Sci-
ence, pages 3–12. Springer Berlin/Heidelberg, 2006.

[26] A. Iftene and M.-A. Moruz. Uaic participation at rte5. In Notebook papers
and Results, Text Analysis Conference (TAC), pages 367–376, 2009.

[27] Milen Koulyekov and Bernardo Magnini. Recognizing textual entailment
with tree edit distance algorithms. In Proceedings of RTE 2005, 2005.

[28] D. Lin and P. Pantel. DIRT: discovery of inference rules from text. In Proc. of
ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2001,
pages 323–328, 2001.

[29] B. MacCartney, T. Grenager, and M. de Marneffe. Learning to recognize
features of valid textual entailments. In Proceedings of RTE-NAACL 2006,
2006.

62 BIBLIOGRAPHY

[30] Bill MacCartney, Michel Galley, and Christopher D. Manning. A phrase-
based alignment model for natural language inference. In Proceedings
of the Conference on Empirical Methods in Natural Language Processing
(EMNLP-2008), 2008.

[31] Bill MacCartney and Christopher D. Manning. An extended model of natural
logic. In The Eighth International Conference on Computational Semantics
(IWCS-8), Tilburg, Netherlands, 2009.

[32] Mitchell P. Marcus, Beatrice Santorini, and Mary A. Marcinkiewicz. Build-
ing a large annotated corpus of english: The penn treebank. Computational
Linguistics, 19(2):313–330, 1994.

[33] C. Matuszek, J. Cabral, M. Witbrock, and J. DeOliveira. An introduction to
the syntax and content of cyc. In Proceedings of the 2006 AAAI Spring Sym-
posium on Formalizing and Compiling Background Knowledge and Its Ap-
plications to Knowledge Representation and Question Answering, Stanford,
CA, March 2006. AAAI.

[34] Y. Mehdad, F. M. Zanzotto, and A. Moschitti. Semker: Syntactic/semantic
kernels for recognizing textual entailment. In Notebook papers and Results,
Text Analysis Conference (TAC), pages 259–265, 2009.

[35] Yashar Mehdad and Bernardo Magnini. A word overlap baseline for the rec-
ognizing textual entailment task, 2009.

[36] Yashar Mehdad, Matteo Negri, Elena Cabrio, Milen Kouylekov, and
Bernardo Magnini. Edits: An open source framework for recognizing tex-
tual entailment. In Notebook papers and Results, Text Analysis Conference
(TAC), pages 169–178, 2009.

[37] Yashar Mehdad, Matteo Negri, Elena Cabrio, Milen Kouylekov, and
Bernardo Magnini. EDITS: An Open Source Framework for Recognizing
Textual Entailment. In Text Analysis Conference (TAC), pages 169–178,
2009.

[38] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K.J. Miller. Wordnet: An
on-line lexical database. International Journal of Lexicography, 3(4):235–
312, 1990.

[39] S. Mirkin, R. Bar-Haim, E. Shnarch, A. Stern, and I. Szpektor. Addressing
discourse and document structure in the rte search task. In Text Analysis
Conference (TAC), 2009.

BIBLIOGRAPHY 63

[40] Shachar Mirkin, Lucia Specia, Nicola Cancedda, Ido Dagan, Marc Dymet-
man, and Idan Szpektor. Source-language entailment modeling for translat-
ing unknown terms. In Proceedings of ACL/AFNLP, pages 791–799, Suntec,
Singapore, August 2009. Association for Computational Linguistics.

[41] Homeland Security Newswire. Darpa awards BBN $30 million in machine
reading project, 2009.

[42] Sebastian Padó, Marie-Catherine de Marneffe, Bill MacCartney, Anna N.
Rafferty, Eric Yeh, and Christopher D. Manning. Deciding entailment and
contradiction with stochastic and edit distance-based alignment. In Text Anal-
ysis Conference (TAC), 2008.

[43] Sebastian Padó, Michel Galley, Dan Jurafsky, and Christopher D. Manning.
Robust machine translation evaluation with entailment features. In Proceed-
ings of ACL/AFNLP, pages 297–305, Suntec, Singapore, August 2009. Asso-
ciation for Computational Linguistics.

[44] M. Palmer, D. Gildea, and P. Kingsbury. The Proposition Bank: An Anno-
tated Corpus of Semantic Roles. Computational Linguistics, 31(1):71–106,
March 2005.

[45] Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Miltsakaki, Livio Robaldo,
Aravind Joshi, and Bonnie Webber. The penn discourse treebank 2.0. In
Proceedings of the 6th International Conference on Language Resources and
Evaluation (LREC 2008), 2008.

[46] V. Punyakanok, D. Roth, and W. Yih. Natural language inference via depen-
dency tree mapping: An application to question answering. In submission,
2004.

[47] D. Roth and M. Sammons. A unified representation and inference paradigm
for natural language processing. Technical Report UIUCDCS-R-2008-2969,
UIUC Computer Science Department, Jun 2008.

[48] Dan Roth, Mark Sammons, and V.G.Vinod Vydiswaran. A Framework for
Entailed Relation Recognition. In Proc. of the Annual Meeting of the Associ-
ation of Computational Linguistics (ACL), Singapore, August 2009. Associ-
ation for Computational Linguistics.

[49] Mark Sammons, V.G.Vinod Vydiswaran, and Dan Roth. “Ask not what Tex-
tual Entailment can do for you...”. In ACL, Uppsala, Sweden, July 2010.
Association for Computational Linguistics.

64 BIBLIOGRAPHY

[50] Mark Sammons, V.G.Vinod Vydiswaran, T. Vieira, N. Johri, M.-W. Chang,
D. Goldwasser, V. Srikumar, G. Kundu, Y. Tu, K. Small, J. Rule, Q. Do, and
D. Roth. Relation Alignment for Textual Entailment Recognition. In Text
Analysis Conference (TAC), 2009.

[51] Idan Szpektor, Ido Dagan, Roy Bar-Haim, and Jacob Goldberger. Contextual
preferences. In Proceedings of ACL-08: HLT, pages 683–691, Columbus,
Ohio, June 2008. Association for Computational Linguistics.

[52] Rui Wang, Yi Zhang, and Guenter Neumann. A joint syntactic-semantic rep-
resentation for recognizing textual relatedness. In Notebook papers and Re-
sults, Text Analysis Conference (TAC), pages 133–139, 2009.

[53] Alexander Yates, Michele Banko, Matthew Broadhead, Michael Cafarella,
Oren Etzioni, and Stephen Soderland. TextRunner: Open information extrac-
tion on the web. In Proceedings of Human Language Technologies: The An-
nual Conference of the North American Chapter of the Association for Com-
putational Linguistics (NAACL-HLT), pages 25–26, Rochester, New York,
USA, April 2007. Association for Computational Linguistics.

	Recognizing Textual Entailment
	Introduction
	The Recognizing Textual Entailment Task
	Problem Definition
	The Challenge of RTE
	Evaluating Textual Entailment System Performance
	Applications of Textual Entailment Solutions
	RTE in Other Languages

	A Framework for Recognizing Textual Entailment
	Requirements
	Analysis
	Useful Components
	A General Model
	Implementation
	Alignment
	Inference
	Training

	Case Studies
	Extracting Discourse Commitments
	Edit Distance Based RTE
	Transformation-based Approaches
	Logical Representation and Inference
	Learning Alignment Independently of Entailment
	Leveraging Multiple Alignments for RTE
	Natural Logic
	Syntactic Tree Kernels
	Global Similarity using Limited Dependency Context
	Latent Alignment Inference for RTE

	Taking RTE Further
	Improve Analytics
	Invent/Tackle New Problems
	Develop Knowledge Resources
	Better RTE Evaluation

	Useful Resources
	Publications
	Knowledge Resources
	Natural Language Processing Packages

	Summary

