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Abstract

Researchers and scientists increasingly find themselves in the position of having to
quickly understand large amounts of technical material. Our goal is to effectively serve
this need by using bibliometric text mining and summarization techniques to generate
summaries of scientific literature. We show how we can use citations to produce auto-
matically generated, readily consumable, technical extractive summaries. We first propose
C-LexRank, a model for summarizing single scientific articles based on citations, which
employs community detection and extracts salient information-rich sentences. Next, we
further extend our experiments to summarize a set of papers, which cover the same sci-
entific topic. We generate extractive summaries of a set of Question Answering (QA) and
Dependency Parsing (DP) papers, their abstracts, and their citation sentences and show
that citations have unique information amenable to creating a summary.

1. Introduction

In today’s rapidly expanding disciplines, scientists and scholars are constantly faced with
the daunting task of keeping up with knowledge in their field. In addition, the increasingly
interconnected nature of real-world tasks often requires experts in one discipline to rapidly
learn about other areas in a short amount of time. Cross-disciplinary research requires
scientists in areas such as linguistics, biology, and sociology to learn about computational
approaches and applications such as computational linguistics, biological modeling, and
social networks. Authors of journal articles and books must write accurate summaries of
previous work, ranging from short summaries of related research to in-depth historical notes.
Interdisciplinary review panels are often called upon to review proposals in a wide range of
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areas, some of which may be unfamiliar to panelists. Thus, they must learn about a new
discipline “on the fly” in order to relate their own expertise to the proposal.

Our goal is to effectively serve these needs by combining two currently available tech-
nologies: (1) bibliometric lexical link mining that exploits the structure of citations and (2)
summarization techniques that exploit the content of the material in both the citing and
cited papers.

It is generally agreed upon that manually written abstracts are good summaries of indi-
vidual papers. More recently, Qazvinian and Radev (2008) argued that citation sentences
(i.e., set of sentences that appear in other papers and cite a given article) are useful in
creating a summary of important contributions of a research paper. Kaplan, Iida, and
Tokunaga (2009) introduced “citation-site” as a block of text that includes a citation and
discusses the cited text. This work used a machine learning method for extracting citations
from research papers and evaluates the result using an annotated corpus of 38 papers citing
4 articles. Moreover, Qazvinian and Radev (2010) showed the usefulness of using implicit
citations (i.e., context sentences, sentences that occur before or after a citation sentence
and do not explicitly cite the target paper, but discuss its contributions) in summary gen-
eration. Teufel (2005) argued that citations could contain subjective content, and that this
content can be exploited for summary generation. Additional work (Mohammad et al.,
2009) demonstrated the usefulness of citations for producing multi-document summaries of
scientific articles. Follow-up work indicated that further improvements to citation handling
enables the production of more fluent summaries (Whidby, 2012).

In our work, we develop summarization systems that exploit citations. Specifically,

• We compare and contrast the usefulness of abstracts and of citations in automatically
generating a technical summary on a given topic from multiple research papers. Our
findings suggest that abstracts and citations have some overlapping information but
they also have a significant amount of unique summary-amenable information. Par-
ticularly, we provide evidence that citation sentences contain crucial information that
is not available, or hard to extract, from abstracts and papers alone.

• We propose C-LexRank, a graph based summarization system. This method models a
set of citing sentences as a network in which vertices are sentences and edges represent
their lexical similarity. C-LexRank then identifies vertex communities (clusters) in
this network, and selects sentences from different communities to increase diversity in
the summary. Using 30 different sets of citation sentences extracted from 6 different
NLP topics in the ACL1 Anthology Network, we show that C-LexRank is effective
in producing a summary of a paper’s contributions. We compare C-LexRank with a
wide range of state-of-the-art summarization systems that leverage diversity (MMR,
DivRank, MASCS), employ graph structure (DivRank, LexRank), or employ sentence
compression (MASCS) to produce a summary.

• We extend our experiments from summarizing the contributions of a single article to
generating summaries of scientific topics. Our evaluation experiments for extractive
summary generation are applied to a set of 10 papers in the research area of Question
Answering (QA) and another set of 16 papers on Dependency Parsing (DP).

1. Association for Computational Linguistics
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We provide some background for this work including the primary features of a technical
summary and also the types of input that are used in our study (full papers, abstracts, and
citation sentences).

1.1 Background

Automatically creating technical extractive summaries is significantly distinct from tradi-
tional multi-document summarization. Below we describe the primary characteristics of a
technical extractive summary and we present different types of input texts that we used for
the production of extractive summaries.

1.1.1 Technical Extractive Summaries

In the case of multi-document summarization, the goal is to produce a readable presenta-
tion of multiple documents, whereas in the case of technical summary creation, the goal
is to convey the key features and basic underpinnings of a particular field, early and late
developments, important contributions and findings, contradicting positions that may re-
verse trends or start new sub-fields, and basic definitions and examples that enable rapid
understanding of a field by non-experts.

A prototypical example of a technical summary is that of “chapter notes,” i.e., short
(50–500 word) descriptions of sub-areas found at the end of chapters of textbooks, such as
Jurafsky and Martin’s (2008). One might imagine producing such descriptions automati-
cally, then hand-editing them and refining them for use in an actual textbook.

Previously Mohammad et al. (2009) conducted a human analysis of these chapter notes
and revealed a set of conventions, an outline of which is provided here (with example
sentences in italics):

1. Introductory/opening statement: The earliest computational use of X was in Y, con-
sidered by many to be the foundational work in this area.

2. Definitional follow up: X is defined as Y.

3. Elaboration of definition (e.g., with an example): Most early algorithms were based
on Z.

4. Deeper elaboration, e.g., pointing out issues with initial approaches: Unfortunately,
this model seems to be wrong.

5. Contrasting definition: Algorithms since then...

6. Introduction of additional specific instances / historical background with citations:
Two classic approaches are described in Q.

7. References to other summaries: R provides a comprehensive guide to the details behind
X.

The notion of text level categories or zoning of technical papers—related to the summary
components enumerated above—has been investigated previously in the work of Teufel and
Moens (2002) and Nanba, Kando, and Okumura (2000). These earlier works focused on
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the analysis of scientific papers based on their rhetorical structure and on determining the
portions of papers that contain new results, comparisons to earlier work, etc. The work
described here focuses on the synthesis of technical summary based on knowledge gleaned
from rhetorical structure not unlike that of the work of these earlier researchers, but guided
by structural patterns along the lines of the conventions listed above.

Although our current approach to summary creation does not yet incorporate a fully
pattern-based component, our ultimate objective is to apply these patterns to guide the
creation and refinement of the final output. As a first step toward this goal, we use citation
sentences (closest in structure to the patterns identified by convention 7 above) to pick out
the most important content for summary creation.

1.1.2 Scholarly Texts

Published research on a particular topic can be summarized from two different kinds of
sources: (1) where an author describes her own work and (2) where others describe an
author’s work (usually in relation to their own work). The author’s description of her own
work can be found in her paper. How others perceive her work is spread across other papers
that cite her work.

Traditionally, technical summary generation has been tackled by summarizing a set of
research papers pertaining to the topic. However, individual research papers usually come
with manually-created “summaries”—their abstracts. The abstract of a paper may have
sentences that set the context, state the problem statement, mention how the problem is
approached, and the bottom-line results—all in 200 to 500 words. Thus, using only the
abstracts (instead of full papers) as input to a summarization system is worth exploring.

Whereas the abstract of a paper presents what the authors think to be the important
aspects of a paper, the citations to a paper capture what others in the field perceive as
the broader contributions of the paper. The two perspectives are expected to have some
overlap in their content, but the citations also contain additional information not found in
abstracts (Elkiss, Shen, Fader, Erkan, States, & Radev, 2008; Nakov & Hearst, 2012). For
example, authors may describe how a particular methodology from one paper was combined
with another from a different paper to overcome some of the drawbacks of each. Citations
are also indicators of what contributions described in a paper were influential over time.

Another feature that distinguishes citations from abstracts is that citations tend to have
a certain amount of redundant information. This is because multiple papers may describe
the same contributions of a target paper. This redundancy can be exploited by automatic
systems to determine the important contributions of the target paper.

Our goal is to test the hypothesis that an effective technical summary will reflect infor-
mation on research not only from the perspective of its authors but also from the perspective
of others who use, commend, discredit, or add to it. Before describing our experiments with
technical papers, abstracts, and citations, we first summarize relevant prior work that used
these sources of information as input.

The rest of this paper is organized as follows. After reviewing the related work, we
present an analysis of citations and demonstrate that they contain summary-amenable
information. In the process, we develop C-LexRank, a citation-based summarization system.
In Section 5, we show that state-of-the-art automatic summarization systems create more
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contentful summaries of citations of individual documents than those created simply by
random sampling. We also show that C-LexRank performs better than other state-of-the-
art summarization systems when producing both 100- and 200-word extracts. In Section 6,
we extend our experiments to summarize a set of papers representing the same scientific
topic using the source texts as well as citations to the topic papers. Additionally, we show
the usefulness of citation sentences in automatically generating a technical summary on a
given topic. We observe that, as expected, abstracts are useful in summary creation, but,
notably, we also conclude that citations contain crucial information not present in (or at
least, not easily extractable from) abstracts. We further discover that abstracts are author-
biased and thus complementary to the broader perspective inherent in citation sentences;
these differences enable the use of a range of different levels and types of information in the
summary.

2. Related Work

In this section, we review related prior work in two categories. First, we review previous
research on citation analysis, and then we discuss prior work on capturing diversity in
automatic text summarization.

2.1 Citation Analysis

Previous work has analyzed citation and collaboration networks (Teufel, Siddharthan, &
Tidhar, 2006; Newman, 2001) and scientific article summarization (Teufel & Moens, 2002).
Bradshaw (2002, 2003) benefited from citations to determine the content of articles and
introduce “Reference Directed Indexing” to improve the results of a search engine. Nanba,
Abekawa, Okumura, and Saito (2004) and Nanba et al. (2000) analyzed citation sentences
and automatically categorize citations into three groups using 160 pre-defined phrase-based
rules. This categorization was then used to build a tool to help researchers analyze citations
and write scientific summaries. Nanba and Okumura (1999) also discussed the same citation
categorization to support a system for writing a survey. Nanba and Okumura (1999) and
Nanba et al. (2000) reported that co-citation implies similarity by showing that the textual
similarity of co-cited papers is proportional to the proximity of their citations in the citing
article.

Previous work has shown the importance of the citation sentences in understanding
scientific contributions. Elkiss et al. (2008) performed a large-scale study on citations and
their importance. They conducted several experiments on a set of 2, 497 articles from the
free PubMed Central (PMC) repository2 and 66 from ACM digital library. Results from this
experiment confirmed that the average cosine between sentences in the set of citations to an
article is consistently higher than that of its abstract. They also reported that this number
is much greater than the average cosine between citation sentences and a randomly chosen
document, as well as between citation sentences and the abstract. Finally, they concluded
that the content of citing sentences has much greater uniformity than the content of the
corresponding abstract, implying that citations are more focused and contain additional
information that does not appear in abstracts.

2. http://www.pubmedcentral.gov
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Nakov and Hearst (2012) performed a detailed manual study of citations in the area
of molecular interactions and found that the set of citations to a given target paper cover
most information found in the abstract of that article, as well as 20% more concepts, mainly
related to experimental procedures.

Kupiec, Pedersen, and Chen (1995) used the abstracts of scientific articles as a target
summary. They used 188 Engineering Information summaries that are mostly indicative
in nature. Kan, Klavans, and McKeown (2002) used annotated bibliographies to cover
certain aspects of summarization and suggest guidelines that summaries should also include
metadata and critical document features as well as the prominent content-based features.

Siddharthan and Teufel (2007) described a new reference task and show high human
agreement as well as an improvement in the performance of argumentative zoning (Teufel,
2005). In argumentative zoning—a rhetorical classification task—seven classes (Own, Other,
Background, Textual, Aim, Basis, and Contrast) are used to label sentences according to
their role in the author’s argument.

The problem of automatic related work summarization is addressed by Hoang and Kan
(2010). In their work, Hoang and Kan used a set of keywords representing a hierarchy of
paper topics and assigned a score to each input sentence to construct an extractive summary.

Athar (2011) addressed the problem of identifying positive and negative sentiment polar-
ity in citations to scientific papers. Similarly, Athar and Teufel (2012) used context-enriched
citations to classify scientific sentiment towards a target paper.

2.2 Leveraging Diversity in Summarization

In summarization, a number of previous methods have focused on the diversity of per-
spectives. Mei, Guo, and Radev (2010) introduced DivRank, a diversity-focused ranking
methodology based on reinforced random walks in information networks. Their random
walk model, which incorporates the rich-gets-richer mechanism to PageRank with rein-
forcements on transition probabilities between vertices, showed promising results on the
Document Understanding Conference (DUC) 2004 dataset. DivRank is a state-of-the-art
graph-based method and it leverages the diversity of perspectives in summarization. There-
fore, we chose this algorithm as an important baseline in our experiments and we will discuss
it in more detail in Section 4.

A similar ranking algorithm, described by Zhu, Goldberg, Van Gael, and Andrzejewski
(2007), is the Grasshopper ranking model, which leverages an absorbing random walk. This
model starts with a regular time-homogeneous random walk, and in each step the vertex with
the highest weight is set as an absorbing state. Paul, Zhai, and Girju (2010) addressed the
problem of summarizing opinionated text using Comparative LexRank, a random walk model
inspired by LexRank (Erkan & Radev, 2004). Comparative LexRank first assigns different
sentences to clusters based on their contrastiveness with each other. It then modifies the
graph based on cluster information and performs LexRank on the modified cosine similarity
graph.

Perhaps the most well-known summarization method to address diversity in summariza-
tion is Maximal Marginal Relevance (MMR) (Carbonell & Goldstein, 1998). This method
is based on a greedy algorithm that selects sentences in each step that are the least similar
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to the summary so far. We compare our summarization output with that of MMR and
discuss this algorithm in more details in Section 4.

In prior work on evaluating independent contributions in content generation, Voorhees
(1998) studied IR systems and showed that relevance judgments differ significantly between
humans but relative rankings show high degrees of stability across annotators. In other
work, van Halteren and Teufel (2004) asked 40 Dutch students and 10 NLP researchers
to summarize a BBC news report, resulting in 50 different summaries. They also used 6
DUC-provided summaries, and annotations from 10 student participants and 4 additional
researchers, to create 20 summaries for another news article in the DUC datasets. They
calculated the Kappa statistic (Carletta, 1996; Krippendorff, 1980) and observed high agree-
ment, indicating that the task of atomic semantic unit (factoid) extraction can be robustly
performed in naturally occurring text, without any copy-editing.

The diversity of perspectives and the growth of the factoid inventory (Qazvinian &
Radev, 2011b) also affects evaluation in text summarization. Evaluation methods are ei-
ther extrinsic, in which the summaries are evaluated based on their quality in performing
a specific task (Spärck-Jones, 1999) or intrinsic where the quality of the summary itself is
evaluated, regardless of any applied task (van Halteren & Teufel, 2003; Nenkova & Passon-
neau, 2004). These evaluation methods assess the information content in the summaries
that are generated automatically.

3. Citation-Based Summarization

The ACL Anthology Network3 (AAN) is a manually curated resource built on top of the
ACL Anthology4 (Bird, Dale, Dorr, Gibson, Joseph, Kan, Lee, Powley, Radev, & Tan,
2008). AAN includes all the papers published by ACL and related organizations as well
as the Computational Linguistics journal over a period of four decades. AAN consists of
more than 18, 000 papers from more than 14, 000 authors, each distinguished with a unique
ACL ID, together with their full-texts, abstracts, and citation information. It also includes
other valuable metadata such as author affiliations, citation and collaboration networks, and
various centrality measures (Radev, Muthukrishnan, & Qazvinian, 2009; Joseph & Radev,
2007).

To study citations across different areas within Computational Linguistics, we first ex-
tracted six different sets of papers from AAN corresponding to 6 different NLP topics: De-
pendency Parsing (DP), Phrase-based Machine Translation (PBMT), Text Summarization
(Summ), Question Answering (QA), Textual Entailment (TE), and Conditional Random
Fields (CRF). To build each set, we matched the topic phrase against the title and the con-
tent of AAN papers, and extracted the 5 highest cited papers. Table 1 shows the number
of articles and the number of citation sentences in each topic5. The number of citations in
each set shows that number of sentences that are used as an input to various summarization
systems in our experiments.

3. http://clair.si.umich.edu/anthology/
4. http://www.aclweb.org/anthology-new/
5. The number of incoming citations are from AAN’s 2008 release.
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ACL ID Title Year # citations

D
P

C96-1058 Three New Probabilistic Models For Dependency Parsing ... 1996 66
P97-1003 Three Generative, Lexicalized Models For Statistical Parsing 1997 50
P99-1065 A Statistical Parser For Czech 1999 54
P05-1013 Pseudo-Projective Dependency Parsing 2005 40
P05-1012 On-line Large-Margin Training Of Dependency Parsers 2005 71

P
B

M
T

N03-1017 Statistical Phrase-Based Translation 2003 172
W03-0301 An Evaluation Exercise For Word Alignment 2003 11
J04-4002 The Alignment Template Approach To Statistical Machine Translation 2004 49
N04-1033 Improvements In Phrase-Based Statistical Machine Translation 2004 23
P05-1033 A Hierarchical Phrase-Based Model For Statistical Machine Translation 2005 65

S
u

m
m

A00-1043 Sentence Reduction For Automatic Text Summarization 2000 19
A00-2024 Cut And Paste Based Text Summarization 2000 20
C00-1072 The Automated Acquisition Of Topic Signatures ... 2000 19
W00-0403 Centroid-Based Summarization Of Multiple Documents ... 2000 28
W03-0510 The Potential And Limitations Of Automatic Sentence Extraction ... 2003 14

Q
A

A00-1023 A Question Answering System Supported By Information Extraction 2000 13
W00-0603 A Rule-Based Question Answering System For Reading ... 2002 19
P02-1006 Learning Surface Text Patterns For A Question Answering System 2002 72
D03-1017 Towards Answering Opinion Questions: Separating Facts From Opinions ... 2003 39
P03-1001 Offline Strategies For Online Question Answering ... 2003 27

T
E

D04-9907 Scaling Web-Based Acquisition Of Entailment Relations 2004 12
H05-1047 A Semantic Approach To Recognizing Textual Entailment 2005 7
H05-1079 Recognising Textual Entailment With Logical Inference 2005 9
W05-1203 Measuring The Semantic Similarity Of Texts 2005 17
P05-1014 The Distributional Inclusion Hypotheses And Lexical Entailment 2005 10

C
R

F

N03-1023 Weekly Supervised Natural Language Learning ... 2003 29
N04-1042 Accurate Information Extraction from Research Papers ... 2004 24
W05-0622 Semantic Role Labelling with Tree CRFs 2005 9
P06-1009 Discriminative Word Alignment with Conditional Random Fields 2006 33
W06-1655 A Hybrid Markov/Semi-Markov CRF for Sentence Segmentation 2006 20

Table 1: Papers were extracted from 6 different NLP topics in AAN: Dependency Parsing
(DP), Phrase-based Machine Translation (PBMT), Text Summarization (Summ),
Question Answering (QA), Textual Entailment (TE), and Conditional Random
Fields (CRF). Each set consists of the 5 highest cited papers in AAN’s 2008 release
whose title and content matched the corresponding topic phrase.
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Below we describe our approach to citation analysis, including our calculation of inter-
judge agreement. We then describe our C-LexRank method for extracting citation sen-
tences.

3.1 Citation Analysis

To analyze citations, we designed an annotation task that requires explicit definitions that
distinguish between phrases that represent the same or different information units. Unfortu-
nately, there is little consensus in the literature on such definitions. Therefore, following van
Halteren and Teufel (2003), Qazvinian and Radev (2011b) we made the following distinc-
tion. We define a nugget to be a phrasal information unit (i.e., any phrase that would
contain some information about the contributions of the cited paper). Different nuggets
may all represent the same atomic semantic unit, which we refer to as a factoid. In the
context of citations, a factoid refers to a unique contribution of a target paper mentioned
in a citation sentence. For example, the following set of citations to Eisner’s (1996) fa-
mous parsing paper illustrate the set of factoids about this paper and suggest that different
authors who cite a particular paper may discuss different contributions (factoids) of that
paper.

In the context of DPs, this edge based factorization method was proposed by Eisner (1996).

Eisner (1996) gave a generative model with a cubic parsing algorithm based on an edge
factorization of trees.

Eisner (1996) proposed an O(n3) parsing algorithm for PDG.

If the parse has to be projective, Eisner’s (1996) bottom-up-span algorithm can be used
for the search.

This example also suggests that different authors use different wordings (nuggets) to
represent the same factoids. For instance, cubic parsing and O(n3) parsing algorithm are
two nuggets that represent the same factoid about (Eisner, 1996). A similar example, which
we will use throughout the paper, is the paper by Cohn and Blunsom (2005) (identified with
the ACL ID W05-0622 in Table 1). This paper is cited in 9 different sentences within AAN.
All of these sentences are listed in Table 2. In each sentence, the nuggets extracted by the
annotators are underlined. As this table suggests, a citation sentence may not discuss any
of the contributions of the cited paper. For instance, the last sentence does not contain
any factoids about Cohn and Blunsom’s (2005) work. The nuggets that are identified using
the citation to the paper (Cohn & Blunsom, 2005) account for a total number of 3 factoids
(contributions) identified for this paper: f1, tree structures; f2, semantic role labeling; and
f3, a pipelined approach.

Following these examples, we asked two annotators with background in Natural Lan-
guage Processing to review each citing sentence and extract a list of phrases that represent
a contribution of the cited paper.6 Moreover, to ensure that the extracted nuggets are
explicitly mentioned in the citations, we asked the annotators to rely merely on the set
of citations to do the task and not on their background on this topic or the source of the

6. One of the annotators is an author of this paper.
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cited paper. Finally, we reviewed each list and collapsed phrases that represent the same
contribution (factoid).

Finding agreement between annotated well-defined nuggets is straightforward and can
be calculated in terms of Kappa. However, when nuggets themselves are to be extracted
by annotators, the task becomes less obvious. To calculate the agreement, we annotated
5 randomly selected citation sets twice (1 paper from each of the NLP areas in Table 1),
and designed a simple evaluation scheme based on Kappa. For each n-gram, w, in a given
citation sentence, we determine w is part of any nugget in either human annotations. If w
occurs in both or neither, then the two annotators agree on it, and otherwise they do not.
Based on this agreement setup, we can formalize the κ statistic as:

κ =
Pr(a)− Pr(e)

1− Pr(e)
(1)

where Pr(a) is the relative observed agreement among annotators, and Pr(e) is the prob-
ability that annotators agree by chance if each annotator is randomly assigning categories.

Table 3 shows the unigram, bigram, and trigram-based κ between the two human anno-
tators (Human1, Human2) in the five datasets that were annotated twice. These results
suggest that human annotators can reach substantial agreement when trigram nuggets are
examined, and have reasonable agreement for unigram and bigram nuggets.

3.2 C-LexRank

In this section we describe C-LexRank as a method to extract citing sentences that cover
a diverse set of factoids. Our method works by modeling the set of citations as a network
of sentences and identifying communities of sentences that cover similar factoids. Once a
good division of sentences is made, we extract salient sentences from different communities.
Figure 1 illustrates a representative example that depicts C-LexRank’s process.

3.2.1 Citation Summary Network

In the first step (as shown in Figure 1 (a)), we model the set of sentences that cite a specific
paper with a network in which vertices represent citing sentences and undirected weighted
edges show the degree of semantic relatedness between vertex pairs, normally quantified
by a similarity measure. We refer to this network as the Citation Summary Network of
an article. The similarity function should ideally assign high scores to sentence pairs that
have the same factoids, and should assign low scores to sentences that talk about different
contributions of the target paper.

Previously, Qazvinian and Radev (2008) examined 7 different similarity measures in-
cluding TF-IDF with various IDF databases, longest common sub-sequence, generation
probability (Erkan, 2006), and the Levenstein distance on a training set of citations. They
showed that the cosine similarity measure that employs TF-IDF vectors assigns higher sim-
ilarities to pairs that contain the same factoids. Following Qazvinian and Radev (2008), we
use the cosine similarity between TF-IDF vector models that employ a general IDF corpus7

to construct the citation summary network of each article.

7. We use the IDF corpus in the Mead summarization system (Radev et al., 2004), which is generated using
the English portion of the Hong Kong News parallel corpus (Ma, 2000).
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factoid Citation Sentence

1 f1 Our parsing model is based on a conditional random field model, however,
unlike previous TreeCRF work, e.g., (Cohn & Blunsom, 2005; Jousse et
al., 2006), we do not assume a particular tree structure, and instead find the
most likely structure and labeling.

2 f3 Some researchers (Xue & Palmer, 2004; Koomen et al., 2005; Cohn & Blun-
som, 2005; Punyakanok et al., 2008; Toutanova et al., 2005, 2008) used a
pipelined approach to attack the task.

3 f2 They have been used for tree labelling, in XML tree labelling (Jousse et al.,
2006) and semantic role labelling tasks (Cohn & Blunsom, 2005).

4 f1 Finally, probabilistic models have also been applied to produce the struc-
tured output, for example, generative models (Thompson, Levy, & Manning,
2003), sequence tagging with classifiers (Màrquez et al., 2005; Pradhan et al.,
2005), and Conditional Random Fields on tree structures (Cohn & Blunsom
2005).

5 f3 As for SRL on news, most researchers used the pipelined approach, i.e., di-
viding the task into several phases such as argument identification, argument
classification, global inference, etc., and conquering them individually (Xue &
Palmer, 2004; Koomen et al., 2005; Cohn & Blunsom, 2005; Punyakanok
et al., 2008; Toutanova et al., 2005, 2008).

6 f1, f2 Although T-CRFs are relatively new models, they have already been applied to
several NLP tasks, such as semantic role labeling, semantic annotation, word
sense disambiguation, image modeling (Cohn & Blunsom, 2005; Tang et
al., 2006; Jun et al., 2009; Awasthi et al., 2007).

7 f2 The model can be used for tasks like syntactic parsing (Finkel et al., 2008)
and semantic role labeling (Cohn & Blunsom, 2005).

8 f1 Regarding novel learning paradigms not applied in previous shared tasks, we
find Relevant Vector Machine (RVM), which is a kernel-based linear discrimi-
nant inside the framework of Sparse Bayesian Learning (Johansson & Nugues,
2005) and Tree Conditional Random Fields (T-CRF) (Cohn & Blunsom,
2005), that extend the sequential CRF model to tree structures.

9 N/A We use CRFs as our models for both tasks (Cohn & Blunsom, 2005).

Table 2: The AAN paper W05-0622 on CRF by Cohn & Blunsom (2005) is cited in nine
different AAN sentences. In each citation sentence, the nuggets extracted by the
annotators are underlined.
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Average κ
unigram bigram trigram

Human1 vs. Human2
A00-1023 1.000 0.615 0.923
H05-1079 0.889 0.667 0.556
P05-1013 0.427 0.825 0.975
W03-0301 0.455 0.636 0.818
W05-0622 0.778 0.667 0.778

Average 0.710 0.682 0.810

Table 3: Agreement between different annotators in terms of Kappa in 5 citation sets.

(a) Citation summary network (b) Community structure (c) C-LexRank output

Figure 1: The C-LexRank method extracts citing sentences that cover a diverse set of fac-
toids. The citation summary network in (a) models the set of sentences that cite
a specific paper, where vertices represent citing sentences and (weighted) edges
show the degree of semantic relatedness between vertex pairs. The community
structure in (b) corresponds to clustered sets of representative sentences extracted
from citation sentences. The C-LexRank output in (c) corresponds to the candi-
date sentences from different clusters that are used for building a summary.

3.2.2 Community Structure

In the second step (as shown in Figure 1 (b)), we extract vertex communities from the
citation summary network to generate summaries. We generate summaries by extracting
representative sentences from the citation summary network. Intuitively, a good summary
should include sentences that represent different contributions of a paper. Therefore, a good
sentence selection from the citation summary network will include vertices that are similar
to many other vertices and which are not very similar to each other. On the other hand,
a bad selection would include sentences that are only representing a small set of vertices
in the graph. This is very similar to the concept of maximizing social influence in social
networks (Kempe, Kleinberg, & Éva Tardos, 2003). Figure 2 shows an example in which the
selected two vertices in the citation summary networks represent a small subset of vertices
(left) and a larger subset of vertices (right). In our work we try to select vertices that
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maximize the size of the set of vertices that they represent. We achieve this by detecting
different vertex communities in the citation summary network.

(a) Bad sentence selection (b) Good sentence selection

Figure 2: Summaries are produced by using vertex coverage to select a set of representative
vertices corresponding to sentences. Selecting two similar vertices will cause the
summary to cover fewer contributions of the target paper in (a), while selecting
less similar vertices as the summary will increase the coverage of the summary
(b).

In order to find vertex communities and thus a good sentence selection, we exploit the
small-world property of citation summary networks. A network is called small-world, if
most of its vertices are not neighbors of each other, but can be reached from one another
by a small number of steps (Watts & Strogatz, 1998). Recent research has shown that a
wide range of natural graphs such as biological networks (Ravasz, Somera, Mongru, Oltvai,
& Barabási, 2002), food webs (Montoya & Solé, 2002), brain neurons (Bassett & Bullmore,
2006) and human languages (Ferrer i Cancho & Solé, 2001) exhibit the small-world property.

This common characteristic can be detected using two basic statistical properties: the
clustering coefficient C, and the average shortest path length `. The clustering coefficient
of a graph measures the number of closed triangles in the graph. It describes how likely
it is that two neighbors of a vertex are connected (Newman, 2003). Watts and Strogatz
(1998) define the clustering coefficient as the average of the local clustering values for each
vertex.

C =

∑n
i=1 ci
n

(2)

The local clustering coefficient ci for the ith vertex is the number of triangles connected
to vertex i divided by the total possible number of triangles connected to vertex i. Watts
and Strogatz (1998) show that small-world networks are highly clustered and obtain rela-
tively short paths (i.e., ` is small). Previous work (Qazvinian & Radev, 2011a) shows that
citation summary networks are highly clustered. These networks have small shortest paths
and obtain clustering coefficient values that are significantly larger than random networks.
Moreover, Qazvinian and Radev suggest that this is because of a community structure,
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(a) Citation summary network (b) Latent community structure
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(c) Clustering output (d) C-LexRank ranking

Figure 3: The C-LexRank algorithm operates as follows on Cohn and Blunsom’s (2005)
citation summary network: In the network (a), the vertices are citation sentences
(annotated with their nuggets from Table 2), and each edge is the cosine simi-
larity between the corresponding node pairs. (b) shows that the network has an
underlying structure which is captured by C-LexRank in (c). Finally, (d) shows
the C-LexRank output where vertex size is proportional to its LexRank value
within the cluster.

where each community is composed of a set of highly connected vertices with a small number
of edges that fall between communities.

Figure 3 (a) illustrates a real citation summary network built using the citation sentences
in Table 2 in which each vertex is labeled with its corresponding nugget. With some re-
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arrangement of the vertices in Figure 3 (b), it becomes clear that the citation summary
network of this paper has an underlying community structure in which sentences that cover
similar factoids are closer to each other and form communities. For instance, in this network
there are at least 3 observable communities: one that is about “f1: tree structure,” one
about “f2: semantic role labeling” and the last one about the “f3: pipelined approach” as
proposed by Cohn and Blunsom (2005).

In order to detect these communities automatically we use modularity. Modularity,
(Newman, 2004a), is a measure to evaluate the divisions that a community detection algo-
rithm generates. For a division with g groups, they define matrix eg×g whose component
eij is the fraction of edges in the original network that connect vertices in components i, j.
Then the modularity Q can be defined as:

Q =
∑
i

eii −
∑
ijk

eijeki (3)

Intuitively, Q is the fraction of all the edges that are embedded within communities minus
the expected value of the same quantity in a network with the same degrees but in which
edges are placed at random regardless of the community structure. Newman and Girvan
(2004) and Newman (2004b) showed across a wide range of simulated and real-world net-
works that larger Q values are correlated with better graph clusterings. It is also shown
by Newman (2004b) that if no edges exist that connect vertices across different clusters
then Q = 1, and conversely if the number of inter-cluster edges is no better than random
then Q = 0. Other work (Smyth & White, 2005) showed empirically that modularity works
well in practice in terms of both (a) finding good clusterings of vertices in networks where
community structure is evident, and (b) indicating what the appropriate number of clusters
k is for such a graph.

C-LexRank uses the clustering algorithm of Clauset, Newman, and Moore (2004), which
exploits modularity to detect vertex communities in a network. This network clustering
method, as discussed by Clauset et al. (2004) is a hierarchical agglomeration algorithm,
which works by greedily optimizing the modularity in a linear running time for sparse
graphs. More particularly, their method continuously merges vertex or cluster pairs with the
highest similarity and stops when modularity reaches the maximum value. This clustering
algorithm is efficient (O(n log2 n) in the number of nodes, n) and does not require a pre-
determined number of clusters. These two characteristics makes this community detection
algorithm particularly useful.

Figure 3 (c) shows how the clustering algorithm detects factoid communities in Cohn and
Blunsom’s (2005) citation summary network. In this figure, we have color-coded vertices
based on their community. The clustering algorithm assigns sentences 1, 4 and 8 (which
are all about the tree structures) to one cluster; sentences 3, 6 and 7 (which are all about
semantic role labeling) to another cluster; and finally assigns sentences 2, 5 and 9 (sentences
2 and 5 are both about pipelined approach) to the last cluster. This figure also shows that
sentence 6, which discusses two factoids (“semantic role labeling” and “T-CRF”) connects
the two vertex communities (corresponding to 2 factoids) as a bridge.

To evaluate how well the clustering method works in all of our datasets, we calculated
both the purity and the normalized mutual information (NMI) for the divisions in each
citation set, extracted using the community detection algorithm. Purity (Zhao & Karypis,
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2001) is a method in which each cluster is assigned to the class with the majority vote in
the cluster, and the accuracy of this assignment is then measured by dividing the number
of correctly assigned documents by N . More formally:

purity(Ω,C) =
1

N

∑
k

max
j
|ωk ∩ cj | (4)

where Ω = {ω1, ω2, . . . , ωK} is the set of clusters and C = {c1, c2, . . . , cJ} is the set of
classes. ωk is interpreted as the set of documents in the cluster ωk and cj as the set of
documents in the class cj .

We also calculate the normalized mutual information (NMI). Manning, Raghavan, and
Schütze (2008) describe NMI as follows. Let us assume Ω = {ω1, ω2, . . . , ωK} is the set of
clusters and C = {c1, c2, . . . , cJ} is the set of classes. Then,

NMI(Ω,C) =
I(Ω;C)

[H(Ω) +H(C)]/2
(5)

where I(Ω;C) is the mutual information:

I(Ω,C) =
∑
k

∑
j

P (ωk ∩ cj) log
P (ωk ∩ cj)
P (ωk)P (cj)

(6)

=
∑
k

∑
j

|ωk ∩ cj |
N

log
N |ωk ∩ cj |
|ωk||cj |

(7)

in which P (ωk), P (cj), and P (ωk ∩ cj) are the probabilities of a document being in cluster
ωk, class cj , and in the intersection of ωk and cj , respectively; and H is entropy:

H(Ω) = −
∑
k

P (ωk) logP (ωk) (8)

= −
∑
k

|ωk|
N

log
|ωk|
N

(9)

I(Ω;C) in Equation 6 measures the amount of information that we would lose about
the classes without the cluster assignments. The normalization factor ([H(Ω) + H(C)]/2)
in Equation 5 enables us to trade off the quality of the clustering against the number of
clusters, since entropy tends to increase with the number of clusters. For example, H(Ω)
reaches its maximum when each document is assigned to a separate cluster. Because NMI is
normalized, we can use it to compare cluster assignments with different numbers of clusters.
Moreover, [H(Ω) +H(C)]/2 is a tight upper bound for I(Ω;C), making NMI obtain values
between 0 and 1. Table 4 lists the average Purity and NMI across the papers in our collected
dataset, along with the analogous numbers for a division of the same size where vertices are
randomly assigned to clusters.

3.2.3 Ranking

The third step of the C-LexRank process (as shown in Figure 1 (c)) is applied after the
graph is clustered and the communities are formed. To produce the C-LexRank output,
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average 95% Confidence Interval

purity(Ω,C) 0.461 [0.398, 0.524]
purity(Ωrandom,C) 0.389 [0.334, 0.445]

NMI(Ω,C) 0.312 [0.251, 0.373]
NMI(Ωrandom,C) 0.182 [0.143, 0.221]

Table 4: The average purity (in boldface) and normalized mutual information (NMI) values
are shown for the papers in our collected dataset, along with analogous values for
a division of the same size where vertices are randomly assigned to clusters.

we extract sentences from different clusters to build a summary. We start with the largest
cluster and extract sentences using LexRank (Erkan & Radev, 2004) within each cluster. In
other words, for each cluster Ωi we made a lexical network of the sentences in that cluster
(Ni). Using LexRank we can find the most central sentences in Ni as salient sentences of Ωi

to include in the main summary. We choose, for each cluster Ωi, the most salient sentence
of Ωi, and if we have not reached the summary length limit, we do that for the second most
salient sentences of each cluster, and so on. The cluster selection is in order of decreasing
size. Figure 3 (d) shows Cohn and Blunsom’s (2005) citation summary network, in which
each vertex is plotted with a size proportional to its LexRank value within its cluster. This
figure shows how C-LexRank emphasizes on selecting a diverse set of sentences covering a
diverse set of factoids.

Previously, we mentioned that factoids with higher weights appear in a greater number
of sentences, and clustering aims to cluster such fact-sharing sentences in the same commu-
nities. Thus, starting with the largest community is important to ensure that the system
summary first covers the factoids that are more frequently mentioned in other citation
sentences and thus are more important.

The last sentence in the example in Table 2 is as follows. “We use CRFs as our models
for both tasks (Cohn & Blunsom, 2005).” This sentence shows that a citation may not
cover any contributions of the target paper. Such sentences are assigned by the community
detection algorithm in C-LexRank to clusters to which they are semantically most similar.
The intuition behind employing LexRank within each cluster is to try to avoid extracting
such sentences for the summary, since LexRank within a cluster enforces extracting the most
central sentence in that cluster. In order to verify this, we also try a variant of C-LexRank
in which we do not select sentences from clusters based on their salience in the cluster, but
rather in a round-robin fashion, in which all the sentences within a cluster are equally likely
to be selected. We call this variant C-RR.

Table 5 shows the 100-word summary constructed using C-LexRank for our exemplar
paper, in which different nuggets are illustrated in bold. This summary is a perfect summary
in terms of covering the different factoids about the paper. It includes citing sentences that
talk about “tree CRF,” “pipelined approach,” and “Semantic Role Labeling,” which are
indeed Cohn and Blunsom’s (2005) three main contributions.
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Our parsing model is based on a conditional random field model, however, unlike
previous TreeCRF work, e.g., (Cohn & Blunsom, 2005; Jousse et al., 2006), we do
not assume a particular tree structure, and instead find the most likely structure
and labeling.
Some researchers (Xue & Palmer, 2004; Koomen et al., 2005; Cohn & Blunsom,
2005; Punyakanok et al., 2008; Toutanova et al., 2005, 2008) used a pipelined
approach to attack the task.
The model can be used for tasks like syntactic parsing (Finkel et al., 2008) and
Semantic Role Labeling (Cohn & Blunsom, 2005).

Table 5: This 100-word summary was constructed using C-LexRank for Cohn and Blun-
som’s (2005) citation summary network. Factoids are shown in bold face.

4. Other Methods

In our experiments in Section 5 we compare C-LexRank to a number of other summarization
systems. We compare C-LexRank with random summarization to find a lower-bound on
the pyramid scores in our experiments. We use LexRank and C-RR as two variants of C-
LexRank to investigate the usefulness of community detection and salient vertex selection in
C-LexRank. We evaluate DivRank as a state of the art graph-based summarization system
that leverages diversity as well as MMR as a widely used diversity-based summarization
system. Finally, we use Multiple Alternate Sentence Compression Summarizer (MASCS) as
a system that does not rely merely on extraction, but rather produces a list of candidates
by applying pre-defined sentence-compression rules.

4.1 Random

This method simply chooses citations in random order without replacement. Since a citing
sentence may cover no information about the cited paper (as in the last sentence in Table 2),
randomization has the drawback of selecting citations that have no valuable information
in them. Moreover, the random selection procedure is more prone to produce redundant
summaries as citing sentences that discuss the same factoid may be selected.

4.2 LexRank

One of the systems that we compare C-LexRank with is LexRank (Erkan & Radev, 2004).
It works by first building a graph of all the documents (di) in a cluster. The edges between
corresponding vertices (di) represent the cosine similarity between them if the cosine value
is above a threshold (0.10 following Erkan & Radev, 2004). Once the network is built, the
system finds the most central sentences by performing a random walk on the graph.

p(dj) = (1− λ)
1

|D|
+ λ

∑
di

p(di)P (di → dj) (10)
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Equation 10 shows that the probability that the random walker would visit dj depends
on a random jump element as well as the probability that the random walk visits each of
its neighbors (di) times the transition probability between di and dj , P (di → dj).

Comparing C-LexRank summaries with the ones from LexRank gives insight into how
we can benefit from detecting communities in citation sets. Essentially, C-LexRank is the
same as LexRank if all the vertices are assigned to the same cluster. By construction,
C-LexRank should produce more diverse summaries covering different perspectives by cap-
turing communities of sentences that discuss the same factoids.

4.3 MMR

Maximal Marginal Relevance (MMR) is proposed by Carbonell and Goldstein (1998) and
is a widely used algorithm in generating summaries that reflect the diversity of perspectives
in the source documents (Das & Martins, 2007). MMR uses the pairwise cosine similarity
matrix and greedily chooses sentences that are the least similar to those already in the
summary. In particular,

MMR = argminDi∈D−A

[
max
Dj∈A

Sim(Di, Dj)
]

(11)

where A is the set of documents in the summary, initialized to A = ∅. In Equation 11,
a sentence Di that is not in the summary A is chosen such that its highest similarity to
summary sentences maxDj∈A Sim(Di, Dj) is minimum among all unselected sentences.

4.4 DivRank

We also compare C-LexRank with a state-of-the-art graph-based summarization system
that leverages diversity, DivRank. DivRank is based on calculating stationary distribution
of vertices using a modified random walk model. Unlike other time-homogeneous random
walks (e.g., PageRank), DivRank does not assume that the transition probabilities remain
constant over time.

DivRank uses a vertex-reinforced random walk model to rank graph vertices based on
a diversity based centrality. The basic assumption in DivRank is that the transition prob-
ability from a vertex to other is reinforced by the number of previous visits to the target
vertex (Mei et al., 2010). Particularly, let us assume pT (u, v) is the transition probability
from any vertex u to vertex v at time T . Then,

pT (di, dj) = (1− λ).p∗(dj) + λ.
p0(di, dj).NT (dj)

DT (di)
(12)

where NT (dj) is the number of times the walk has visited dj up to time T and,

DT (di) =
∑
dj∈V

p0(di, dj)NT (dj) (13)

Here, p∗(dj) is the prior distribution that determines the preference of visiting vertex
dj , and p0(u, v) is the transition probability from u to v prior to any reinforcement. Mei et
al. argue that the random walk could stay at the current state at each time, and therefore
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assumes a hidden link from each vertex to itself, thus defining p0(u, v) as:

p0(u, v) =

{
α.w(u,v)

deg(u) if u 6= v

1− α if u = v
(14)

Here, we try two variants of this algorithm: DivRank, in which p∗(dj) is uniform, and
DivRank with priors in which p∗(dj) ∝ l(Dj)

−β, where l(Dj) is the number of the words
in the document Dj and β is a parameter (0.1 in our experiments). This prior distribution
assigns larger probabilities to shorter sentences which will increase their likelihood of being
salient. This will cause more sentences to be included in the summary, and might increase
the factoid coverage. In our experiments, we follow Mei et al. (2010) and set λ = 0.90 and
α = 0.25.

4.5 MASCS

The last summarization system that we use as a baseline is Multiple Alternate Sentence
Compression Summarizer (MASCS) (Zajic, Dorr, Lin, & Schwartz, 2007). Similar to pre-
vious previous baseline systems, MASCS’s goal is to leverage diversity in summarization.
MASCS performs preprocessing on sentences that transforms them into new sentences,
thus expanding the pool of candidates available for inclusion in a summary beyond the
set of sentences that occur in source documents. This is what makes MASCS somewhat
non-extractive. In addition, the preprocessing used in MASCS for these experiments was
specifically adapted to the genre of citation sentences from scientific papers (Whidby, 2012).

More particularly, MASCS is a summarization system that utilizes Trimmer’s (Zajic
et al., 2007) sentence compression candidates to create summaries for a single or set of
documents. Summarization with MASCS is performed in three stages. In the first stage,
MASCS generates several compressed sentence candidates for every sentence in a document
from the cluster. The second stage involves calculating various ranking features for each of
the compressed sentence candidates. In the final stage, sentence candidates are chosen for
inclusion in the summary, and are chosen based on a linear combination of features.

Trimmer can leverage the output of any constituency parser that uses the Penn Treebank
conventions. At present, the Stanford Parser (Klein & Manning, 2003) is used. The set of
compressions is ranked according to a set of features that may include metadata about the
source sentences, details of the compression process that generated the compression, and
externally calculated features of the compression.

Summaries are constructed by iteratively adding compressed sentences from the candi-
date pool until a length threshold is met. Candidates are chosen by an implementation of
MMR that uses features directly calculated from a candidate, metadata about a candidate’s
source and its compression history, relevance of the candidate to the topic and redundancy
of the candidate to already selected candidates. The redundancy score in MASCS uses an
index of the words (w) in the document set:∑

w

log(λ.P (w|summary) + (1− λ).P (w|corpus)) (15)

where λ is a weighting factor (set to 0.3 in our experiments).
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5. Experiments

We used the 30 sets of citations listed in Table 1 and employ C-LexRank to produce two
extractive summaries with different summary lengths (100 and 200 words) for each set.
In addition to C-LexRank and C-RR, we also performed the same experiments with the
baseline methods described in Section 4, most of which are aimed at leveraging diversity in
summarization.

5.1 Evaluation

To evaluate our system, we use the pyramid evaluation method (Nenkova & Passonneau,
2004). Each factoid in the citations to a paper corresponds to a summary content unit
(SCU) in (Nenkova & Passonneau, 2004).

The score given by the pyramid method for a summary is the ratio of the sum of the
weights of its factoids to the sum of the weights of an optimal summary. This score ranges
from 0 to 1, and high scores show the summary content contains more heavily weighted
factoids. If a factoid appears in more citation sentences than another factoid, it is more
important, and thus should be assigned a higher weight. To weight the factoids we build a
pyramid, and each factoid falls in a tier. Each tier shows the number of sentences a factoid
appears in. Thus, the number of tiers in the pyramid is equal to the citation summary size.
If a factoid appears in more sentences, it falls in a higher tier. So, if the factoid fi appears
|fi| times in the citation summary it is assigned to the tier T|fi|.

The pyramid score formula that we use is computed as follows. Suppose the pyramid
has n tiers, Ti, where tier Tn on top and T1 on the bottom. The weight of the factoids in
tier Ti will be i (i.e. they appeared in i sentences). If |Ti| denotes the number of factoids in
tier Ti, and Di is the number of factoids in the summary that appear in Ti, then the total
factoid weight for the summary is as follows.

D =
n∑
i=1

i×Di (16)

Additionally, the optimal pyramid score for a summary with X factoids, is

Max =
n∑

i=j+1

i× |Ti|+ j × (X −
n∑

i=j+1

|Ti|) (17)

where j = maxi(
∑n

t=i |Tt| ≥ X). Subsequently, the pyramid score for a summary is calcu-
lated as follows.

P =
D

Max
(18)

5.2 Results and Discussion

Table 6 shows the average pyramid score of the summaries generated using different methods
with different lengths. Longer summaries result in higher pyramid scores since the amount
of information they cover is greater than shorter summaries. For the random sentence
extraction baseline, we repeat the experiment with 100 different randomly generated seed
values and report the average pyramid score of these summaries in Table 6. This table shows
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Length: 100 words Length: 200 words

Method pyramid 95% C.I. pyramid 95% C.I.

Random 0.535 [0.526,0.645] 0.748 [0.740,0.755]
MMR 0.600 [0.501,0.699] 0.761 [0.685,0.838]
LexRank 0.604 [0.511,0.696] 0.784 [0.725,0.844]
DivRank 0.644 [0.580,0.709] 0.769 [0.704,0.834]
DivRank (with priors) 0.632 [0.545,0.719] 0.778 [0.716,0.841]
MASCS 0.571 [0.477,0.665] 0.772 [0.705,0.840]
C-RR 0.513 [0.436,0.591] 0.755 [0.678,0.832]
C-LexRank 0.647 [0.565,0.730] 0.799 [0.732,0.866]

C.I.=Confidence Interval

Table 6: Average pyramid scores are shown for two different summary lengths (100 words
and 200 words) for eight different methods, including a summary generator based
on random citation sentence selection. C-LexRank outperforms all other methods
that leverage diversity as well as random summaries and LexRank. Highest scores
for each input source are shown in bold.

that C-LexRank outperforms all other methods that leverage diversity as well as random
summaries and LexRank. The results in this table also suggest that employing LexRank
within each cluster is essential for the selection of salient citing sentences, as the average
pyramid scores from C-RR, where sentences are picked in a round-robin fashion, are lower.

5.2.1 Effect of Community Detection

The community detection that C-LexRank employs assigns highly similar citing sentences
to the same cluster. This enables C-LexRank to produce a diverse summary by selecting
sentences from different clusters. This selection is done by assigning a score to each vertex
using LexRank within the cluster. The modularity-based clustering method described in
Section 3.2.2, which works by maximizing modularity in a clustering, will always produce at
least 2 clusters. Intuitively, in a network in which all the vertices are assigned to the same
community, the fraction of edges that are embedded within that community is equal to the
expected value of the same quantity in a network in which edges are placed at random.
This will make Q obtain its lower-bound, Q = 0.

However, in the hypothetical case where all the vertices belong to the same cluster, C-
LexRank will be the same as LexRank (i.e., it will perform LexRank on the entire network).
Therefore, comparing C-LexRank and LexRank helps us understand the effect of clustering
on summary quality. Table 6 shows that C-LexRank produces summaries that obtain
higher pyramid scores at both 100 words and 200 words. Table 7 shows the 100-word
summary that was constructed using LexRank for Cohn and Blunsom’s (2005) citations.
This summary, unlike the one produced by C-LexRank (Table 5), does not cover all of
the factoids of the target paper (e.g., “pipelined approach”). Moreover, this summary has
redundant information (e.g., TreeCRF vs. T-CRF) and contains a citation sentence that
does not cover any of the contributions of Cohn and Blunsom.
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The model can be used for tasks like syntactic parsing (Finkel et al., 2008) and
semantic role labeling (Cohn & Blunsom, 2005).
We use CRFs as our models for both tasks (Cohn & Blunsom, 2005).
Our parsing model is based on a conditional random field model, however, unlike
previous TreeCRF work, e.g., (Cohn & Blunsom, 2005; Jousse et al., 2006), we do
not assume a particular tree structure, and instead find the most likely structure
and labeling.
Although T-CRFs are relatively new models, they have already been applied to
several NLP tasks, such as semantic role labeling, semantic annotation, word
sense disambiguation, image modeling (Cohn & Blunsom, 2005; Tang et al., 2006;
Jun et al., 2009; Awasthi et al., 2007).

Table 7: The summary constructed using LexRank and Cohn and Blunsom’s (2005) citation
sentences. Compared to the C-LexRank summary (in Table 5), LexRank does not
produce a summary of all Cohn and Blunsom’s (2005) contributions (The summary
is not truncated for clarity).

5.2.2 Salient Vertex Extraction

Selecting representative sentences (vertices) from different clusters is done using LexRank
in the C-LexRank algorithm. More particularly, for each cluster, C-LexRank first extracts
a subgraph of the network representing vertices and edges in that cluster, and then employs
LexRank to assign a salience score to each vertex. An alternative idea could be selecting
sentences from clusters at random (C-RR). In C-RR, we traverse between clusters in a
round-robin fashion and randomly select a previously unselected sentence from the cluster
to include a summary.

Comparing C-LexRank with C-RR enables us to understand the effect of salience selec-
tion within communities. Selecting vertices that are not a good representative of the cluster
may result in picking sentences that do not cover contributions of the target paper (e.g.,
sentence 9 from Table 2 – vertex 9 in Figure 3 (d)). In fact, Table 6 shows that C-LexRank
produces summaries with relatively 20% and 5% higher pyramid scores than C-RR when
extracting 100 and 200 word summaries respectively. Moreover, C-RR performs better when
longer summaries are produced since it extracts a greater number of sentences from each
cluster increasing the likelihood of covering different factoids captured by different clusters.

6. Summaries of Scientific Topics

In previous sections, we described C-LexRank as a method to identify communities of
citations that discuss the same scientific contributions. We showed that C-LexRank is
effective in summarizing contributions of single scientific papers. However, the ultimate
goal of our work is to investigate whether citations have summary-amenable information
and also to build an end-to-end system that receives a query representing a scientific topic
(such as “dependency parsing”) and produces a citation-based automatic summary of the
given topic.
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In this section, we extend our experiments on using the tools explained in previous
sections for automatic summarization of scientific topics. Our evaluation experiments for
extractive summary generation are on a set of papers in the research area of Question
Answering (QA) and another set of papers on Dependency Parsing (DP). The two sets of
papers were compiled by selecting all the papers in AAN that had the words “Question
Answering” and “Dependency Parsing,” respectively, in the title and the content. There
were 10 papers in the QA set and 16 papers in the DP set. We also compiled the citation
sentences for the 10 QA papers and the citation sentences for the 16 DP papers.

6.1 Data Preparation

Our goal is to determine if citations do indeed have useful information that one will want
to put in a summary and if so, how much of this information is not available in the orig-
inal papers and their abstracts. For this we evaluate each of the automatically generated
summaries using two separate approaches: nugget-based pyramid evaluation and ROUGE.
Recall-Oriented Understudy for Gisting Evaluation (ROUGE) is a metric that evaluates
automatic summaries by comparing them against a set of human written references (Lin,
2004).

Two sets of gold standard data were manually created from the QA and DP citation
sentences and abstracts, respectively:8 (1) We asked three annotators9 with background in
Natural Language Processing to identify important nuggets of information worth including
in a summary. (2) We asked four NLP researchers10 to write 250-word summaries of the
QA and DP datasets. Then we determined how well the different automatically generated
summaries perform against these gold standards. If the citations contain only redundant in-
formation with respect to the abstracts and original papers, then the summaries of citations
will not perform better than others.

6.1.1 Nugget Annotations

For our first evaluation approach we used a nugget-based evaluation methodology (Voorhees,
2003; Nenkova & Passonneau, 2004; Hildebrandt, Katz, & Lin, 2004; Lin & Demner-
Fushman, 2006). We asked three annotators with background in Natural Language Process-
ing to review the citation sentences and/or abstract sets for each of the papers in the QA
and DP sets and manually extract prioritized lists of 2–8 “factoids,” or main contributions,
supplied by each paper. Each factoid was assigned a weight based on the frequency with
which it was listed by annotators as well as the priority it was assigned in each case. Our
automatically generated summaries were then scored based on the number and weight of
the nuggets that they covered.

More particularly, the annotators had two distinct tasks for the QA set, and one for the
DP set: (1) extract nuggets for each of the 10 QA papers, based only on the citations to
those papers; (2) extract nuggets for each of the 10 QA papers, based only on the abstracts
of those papers; and (3) extract nuggets for each of the 16 DP papers, based only on the
citations to those papers.

8. Creating gold standard data from complete papers is fairly arduous, and was not pursued.
9. Two of the annotators are authors of this paper.

10. All of the annotators are authors of this paper.
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Human Performance: Pyramid score
Human1 Human2 Human3 Human4 Average

Input: QA citations
QA–CT nuggets 0.524 0.711 0.468 0.695 0.599
QA–AB nuggets 0.495 0.606 0.423 0.608 0.533

Input: QA abstracts
QA–CT nuggets 0.542 0.675 0.581 0.669 0.617
QA–AB nuggets 0.646 0.841 0.673 0.790 0.738

Input: DP citations
DP–CT nuggets 0.245 0.475 0.378 0.555 0.413

Table 8: Pyramid scores were computed for human-created summaries of QA and DP data.
The summaries were evaluated using nuggets drawn from QA citation sentences
(QA–CT), QA abstracts (QA–AB), and DP citation sentences (DP–CT).

One annotator completed the three tasks in full and the remaining two annotators
jointly completed tasks 1 and 3, providing us with two complete annotations of the QA
and DP citation sets and one annotation of the QA abstract set. For each task, annotators
constructed lists of 2–8 prioritized nuggets per paper. This gave us 81 distinct nuggets from
the QA citation set, 45 nuggets from the QA abstract set, and 144 nuggets from the DP
citation set. By collapsing similar nuggets, we were able to identify 34 factoids for the QA
citation set, 27 factoids for the QA abstract set, and 57 factoids for the DP citation set.
We obtained a weight for each factoid by reversing its priority out of 8 (e.g., a factoid listed
with priority 1 was assigned a weight of 8, a nugget listed with priority 2 was assigned a
weight of 7, etc.) and summing the weights over each listing of that factoid.11

6.1.2 Expert Summaries

In addition to nugget annotations, we asked four NLP researchers to write 250-word sum-
maries of the QA citation set, QA abstract set and DP citation set.

Table 8 gives the pyramid scores of the 250-word summaries manually produced by
experts. The summaries were evaluated using the nuggets drawn from the QA citations, QA
abstracts, and DP citations. The average of their scores (listed in the rightmost column)
may be considered a good score to aim for by the automatic summarization methods.
Additionally, Table 9 presents ROUGE scores (Lin, 2004) of each of expert-written 250-
word summaries against each other (e.g., Human1 versus all others and so forth). The
average (last column) could be considered a ceiling in the performance of the automatic
summarization systems.

11. Results obtained with other weighting schemes that ignored priority ratings and multiple mentions of
a nugget by a single annotator showed the same trends as the ones shown by the selected weighting
scheme.
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Human Performance: ROUGE-2
human1 human2 human3 human4 average

Input: QA citations
QA–CT refs. 0.181 0.196 0.076 0.202 0.163
QA–AB refs. 0.112 0.140 0.071 0.158 0.120

Input: QA abstracts
QA–CT refs. 0.131 0.110 0.122 0.115 0.120
QA-AB refs. 0.265 0.198 0.180 0.254 0.224

Input: DP citations
DP–CT refs. 0.155 0.126 0.120 0.165 0.142

Table 9: ROUGE-2 scores were obtained for each of the manually created summaries by
using the other three as reference. ROUGE-1 and ROUGE-L followed similar
patterns.

6.2 Automatic Extractive Summaries

We used four summarization systems for our summary-creation approach: C-LexRank, C-
RR, LexRank and MASCS.

We automatically generated summaries for both QA and DP from three different types
of documents: (1) full papers from the QA and DP sets—QA and DP full papers (PA),
(2) only the abstracts of the QA and DP papers—QA and DP abstracts (AB), and (3) the
citation sentences corresponding to the QA and DP papers—QA and DP citations (CT).

We generated 24 (4× 3× 2) summaries, each of length 250 words, by applying MASCS,
LexRank, and C-LexRank on the three data types (citation sentences, abstracts, and full
papers) for both QA and DP. (Table 10 shows a fragment of one of the automatically
generated summaries from QA citation sentences.) We created six (3 × 2) additional 250-
word summaries by randomly choosing sentences from citations, abstracts, and full papers
of QA and DP. We will refer to them as random summaries.

Most of work in QA and paraphrasing focused on folding paraphrasing knowledge
into question analyzer or answer locater (Rinaldi et al., 2003; Tomuro, 2003).
In addition, number of researchers have built systems to take reading comprehension
examinations designed to evaluate children’s reading levels (Charniak et al., 2000;
Hirschman et al., 1999; Ng et al., 2000; Riloff & Thelen, 2000; Wang et al., 2000).
So-called “ definition ” or “ other ” questions at recent TREC evaluations (Voorhees,
2005) serve as good examples.
To better facilitate user information needs, recent trends in QA research have shifted
towards complex, context-based, and interactive question answering (Voorhees,
2001; Small et al., 2003; Harabagiu et al., 2005).

Table 10: A fragment of one of the MASCS-generated summaries is illustrated here using
the QA citation sentences as input.
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System Performance: Pyramid score
Random C-LexRank C-RR LexRank MASCS

Input: QA citations
QA–CT nuggets 0.321 0.434 0.268 0.295 0.616
QA–AB nuggets 0.305 0.388 0.349 0.320 0.543

Input: QA abstracts
QA–CT nuggets 0.452 0.383 0.480 0.441 0.404
QA–AB nuggets 0.623 0.484 0.574 0.606 0.622

Input: QA full papers
QA–CT nuggets 0.239 0.446 0.299 0.190 0.199
QA–AB nuggets 0.294 0.520 0.387 0.301 0.290

Input: DP citations
DP–CT nuggets 0.219 0.231 0.170 0.372 0.136

Input: DP abstracts
DP–CT nuggets 0.321 0.301 0.263 0.311 0.312

Input: DP full papers
DP–CT nuggets 0.032 0.000 0.144 * 0.280

Table 11: Pyramid scores were computed for automatic summaries of QA and DP data. The
summaries were evaluated using nuggets drawn from QA citation sentences (QA–
CT), QA abstracts (QA–AB), and DP citation sentences (DP–CT). LexRank is
computationally intensive and so was not run on the DP-PA dataset, as indicated
by * (about 4000 sentences). Highest scores for each input source are shown in
bold.

Table 11 gives the pyramid score values of the summaries generated by the four au-
tomatic summarizers, evaluated using nuggets drawn from the QA citation sentences, QA
abstracts, and DP citation sentences. The table also includes results for the baseline random
summaries.

When we used the nuggets from the abstracts set for evaluation, the summaries created
from abstracts scored higher than the corresponding summaries created from citations and
papers. Further, the best summaries generated from citations outscored the best summaries
generated from papers. When we used the nuggets from citation sets for evaluation, the best
automatic summaries generated from citations outperform those generated from abstracts
and full papers. All these pyramid results demonstrate that citations can contain useful
information that is not available in the abstracts or the original papers, and that abstracts
can contain useful information that is not available in the citations or full papers.

Among the various automatic summarizers, MASCS performed best at this task, in
two cases exceeding the average human performance. Note also that the random summa-
rizer outscored the automatic summarizers in cases where the nuggets were taken from a
source different from that used to generate the summary. However, one or two summarizers
still tended to do well. This indicates a difficulty in extracting the overlapping summary-
amenable information across the two sources.
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System Performance: ROUGE-2
Random C-LexRank C-RR LexRank MASCS

Input: QA citations
QA–CT refs. 0.116 0.170 0.095 0.135 0.170
QA–AB refs. 0.083 0.117 0.076 0.070 0.103

Input: QA abstracts
QA–CT refs. 0.045 0.059 0.061 0.054 0.041
QA–AB refs. 0.121 0.136 0.122 0.203 0.134

Input: QA full papers
QA–CT refs. 0.030 0.036 0.036 0.282 0.040
QA–AB refs. 0.046 0.059 0.050 0.105 0.075

Input: DP citations
DP–CT refs. 0.107 0.132 0.087 0.049 0.101

Input: DP abstracts
DP–CT refs. 0.070 0.073 0.053 0.203 0.072

Input: DP full papers
DP–CT refs. 0.038 0.025 0.034 * 0.046

Table 12: ROUGE-2 scores of automatic summaries of QA and DP data. The summaries
were evaluated by using human references created from QA citation sentences
(QA–CT), QA abstracts (QA–AB), and DP citation sentences (DP–CT). These
results are obtained after Jack-knifing the human references so that the values can
be compared to those in Table 4. LexRank is computationally intensive and so
was not run on the DP full papers set, as indicated by ‘*’ (about 4,000 sentences).
Highest scores for each input source are shown in bold.
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We then evaluated each of the random summaries and those generated by the four
summarization systems against the references. Table 12 lists ROUGE scores of summaries
when the manually created 250-word summary of the QA citation sentences, summary of the
QA abstracts, and the summary of the DP citation sentences, were used as gold standard.

When we use manually created citation summaries as reference, then the summaries
generated from citations obtained significantly better ROUGE scores than the summaries
generated from abstracts and full papers (p < 0.05) [Result 1]. This confirms that cru-
cial information, amenable to creating a summary and present in citation sentences is not
available, or hard to extract, from abstracts and papers alone. Further, the summaries
generated from abstracts performed significantly better than those generated from the full
papers (p < 0.05) [Result 2]. This suggests that abstracts and citations are generally
denser in summary-amenable information than full papers.

When we use manually created abstract summaries as reference, then the summaries
generated from abstracts obtained significantly better ROUGE scores than the summaries
generated from citations and full papers (p < 0.05) [Result 3]. Further, and more impor-
tantly, the summaries generated from citations performed significantly better than those
generated from the full papers (p < 0.05) [Result 4]. Again, this suggests that abstracts
and citations are richer in summary-amenable information. These results also show that
abstracts of papers and citations have some overlapping information (Result 2 and Re-
sult 4), but they also have a significant amount of unique summary-amenable information
(Result 1 and Result 3).

Among the automatic summarizers, C-LexRank and LexRank perform best. This is
unlike the results found through the nugget-evaluation method, where MASCS performed
best. This suggests that MASCS is better at identifying more useful nuggets of information,
but C-LexRank and LexRank are better at producing unigrams and bigrams expected in a
summary. To some extent this may be due to MASCS’s compression preprocessing, which
breaks large, complex sentences into smaller, finer-grained units of content that correspond
better to the amount of content in a nugget.

7. Conclusion

In this paper, we investigated the usefulness of directly summarizing citation sentences
(set of sentences that cite a paper) in the automatic creation of technical summaries. We
proposed C-LexRank, a graph-based summarization model and generated summaries of
30 single scientific articles selected from 6 different topics in the ACL Anthology Network
(AAN). We also generated summaries of a set of Question Answering (QA) and Dependency
Parsing (DP) papers, their abstracts, and their citation sentences using four state-of-the-
art summarization systems (C-LexRank, C-RR, LexRank, and MASCS). We then used two
different approaches, nugget-based pyramid and ROUGE, to evaluate the summaries. The
results from both approaches and all four summarization systems show that both citation
sentences and abstracts have unique summary-amenable information. These results also
demonstrate that multidocument summarization—especially technical summary creation—
benefits considerably from citations.

We next plan to generate summaries using both citation sentences and abstracts together
as input. Given the overlapping content of abstracts and citation sentences, discovered in
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the current study, it is clear that redundancy detection will be an integral component of this
future work. Creating readily consumable technical summaries is a hard task, especially
when using only raw text and simple summarization techniques. Therefore, we intend to
combine these summarization and bibliometric techniques with suitable visualization meth-
ods towards the creation of iterative technical survey tools—systems that present summaries
and bibliometric links in a visually convenient manner and which incorporate user feedback
to produce even better summaries.

Current work on generating topic summaries is focused almost exclusively on extracting
diverse factoid-rich summaries. Meanwhile, the fluency of the produced summaries has been
mostly ignored. In future work, we plan to employ some post-processing techniques such
as reference scope extraction and sentence simplification, as described by Abu-Jbara and
Radev (2011), to generate more readable and cohesive summaries.
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