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K3 Surfaces

K3 surfaces

I A K3 surface is a simply connected compact complex
surfacewith trivial canonical bundle.

I All K3 surfaces are diffeomorphic.

Example

The hypersurface in P3 defined by

x4 + y 4 + z4 + w 4 = 0

is a K3 surface.
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K3 Surfaces

More examples of K3 surfaces

I Smooth quartics in P3

I Double covers of P2 branched over a smooth sextic

I Hypersurfaces in 3-dimensional Fano toric varieties
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K3 Surfaces

Hodge structure

The Hodge diamond of a K3 surface:

1
0 0

1 20 1
0 0

1

Thus, any K3 surface X admits a nowhere-vanishing holomorphic
two-form ω which is unique up to scalar multiples.
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K3 Surfaces

The Picard group

Pic(X ) = H1,1(X ) ∩ H2(X ,Z)

0 ≤ rank Pic(X ) ≤ 20

I We may identify Pic(X ) with the Néron-Severi group of
algebraic curves using Poincaré duality.

I Pic(X ) ⊂ ω⊥

I rank Pic(X ) can jump within a family of K3 surfaces
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Mirror symmetry and K3 surfaces

A class of manifolds

I Elliptic curves

I K3 surfaces

I Calabi-Yau three-folds

I . . .

I Calabi-Yau n-folds
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Mirror symmetry and K3 surfaces

Mirror symmetry

I In string theory, the extra, compact dimensions of the universe
are Calabi-Yau varieties.

I Mirror symmetry predicts that Calabi-Yau varieties should
occur in paired or mirror families.

I Varying the complex structure of one family corresponds to
varying the Kähler structure of the other family.
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Mirror symmetry and K3 surfaces

Varying complex structure for K3 surfaces

Let Xα be a family of K3 surfaces, and let M be a free abelian
group. Suppose

M ↪→ Pic(Xα).

Then:

I ω ⊥ M for each Xα
I If M has rank 19, then the variation of complex structure has

1 degree of freedom.
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Mirror symmetry and K3 surfaces

Picard-Fuchs equations

I A period is the integral of a differential form with respect to a
specified homology class.

I Periods of holomorphic forms encode the complex structure of
varieties.

I The Picard-Fuchs differential equation of a family of varieties
is a differential equation that describes the way the value of a
period changes as we move through the family.

I Solutions to Picard-Fuchs equations for holomorphic forms on
Calabi-Yau varieties define a mirror map.
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Mirror symmetry and K3 surfaces

Picard-Fuchs equations for rank 19 families

let M be a free abelian group of rank 19, and suppose
M ↪→ Pic(Xt).

I The Picard-Fuchs equation is a rank 3 ordinary differential
equation.

I The PicardFuchs equation is the symmetric square of a second
order homogeneous linear Fuchsian ODE. (See [D00].)
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Mirror symmetry and K3 surfaces

Some Picard rank 19 families

I Hosono, Lian, Oguiso, Yau:

x + 1/x + y + 1/y + z + 1/z −Ψ = 0

I Verrill:

(1 + x + xy + xyz)(1 + z + zy + zyx) = (λ+ 4)(xyz)

I Narumiya-Shiga:

Y0 + Y1 + Y2 + Y3 − 4tY4

Y0Y1Y2Y3 − Y 4
4
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Hypersurfaces in toric varieties

Lattices

Let N be a lattice isomorphic to Zn. The dual lattice M of N is
given by Hom(N,Z); it is also isomorphic to Zn. We write the
pairing of v ∈ N and w ∈ M as 〈v ,w〉.
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Hypersurfaces in toric varieties

Cones

A cone in N is a subset of the real vector space NR = N ⊗ R
generated by nonnegative R-linear combinations of a set of vectors
{v1, . . . , vm} ⊂ N. We assume that cones are strongly convex, that
is, they contain no line through the origin.
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Hypersurfaces in toric varieties

Fans

A fan Σ consists of a finite collection of cones such that:

I Each face of a cone in the fan is also in the fan

I Any pair of cones in the fan intersects in a common face.
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Hypersurfaces in toric varieties

Simplicial fans

We say a fan Σ is simplicial if the generators of each cone in Σ are
linearly independent over R.
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Hypersurfaces in toric varieties

Lattice polytopes

A lattice polytope � is the convex hull of a finite
set of points in a lattice. We assume that our
lattice polytopes contain the origin.

Definition
Let ∆ be a lattice polytope in N which contains (0, 0). The polar
polytope ∆◦ is the polytope in M given by:

{(m1, . . . ,mk) : (n1, . . . , nk)·(m1, . . . ,mk) ≥ −1 for all (n1, n2) ∈ ∆}
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Hypersurfaces in toric varieties

Reflexive polytopes

Definition
A lattice polytope ∆ is reflexive if ∆◦ is also a lattice polytope.

If ∆ is reflexive, (∆◦)◦ = ∆.
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Hypersurfaces in toric varieties

Fans from polytopes

We may define a fan using a polytope in several ways:

1. Take the fan R over the faces of � ⊂ N.

2. Refine R by using other lattice points in � as generators of
one-dimensional cones.

3. Take the fan S over the faces of �◦ ⊂ M.
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Hypersurfaces in toric varieties

Toric varieties as quotients

I Let Σ be a fan in Rn.

I Let {v1, . . . , vq} be generators for the one-dimensional cones
of Σ.

I Σ defines an n-dimensional toric variety VΣ.

I VΣ is the quotient of a subset Cq − Z (Σ) of Cq by a
subgroup of (C∗)q.
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Hypersurfaces in toric varieties

Example

Figure: Polygon �

Let R be the fan obtained by taking cones over
the faces of �. Z (Σ) consists of points of the
form (0, 0, z3, z4) or (z1, z2, 0, 0).

VR = (C4 − Z (Σ))/ ∼

(z1, z2, z3, z4) ∼ (λ1z1, λ1z2, z3, z4)

(z1, z2, z3, z4) ∼ (z1, z2, λ2z3, λ2z4)

where λ1, λ2 ∈ C∗. Thus, VR = P1 × P1.
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Hypersurfaces in toric varieties

Blowing up

I Adding cones to a fan Σ corresponds to blowing up
subvarieties of VΣ

I We can use blow-ups to resolve singularities or create new
varieties of interest
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Hypersurfaces in toric varieties

K3 hypersurfaces

I Let � be a 3-dimensional reflexive polytope, with polar
polytope �◦.

I Let R be the fan over the faces of �
I Let Σ be a simplicial refinement of R

I Let {vk} ⊂ � ∩ N generate the one-dimensional cones of Σ

The following polynomial defines a K3 surface in VΣ:

f =
∑

x∈�◦∩M
cx

q∏
k=1

z
〈vk ,x〉+1
k
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Hypersurfaces in toric varieties
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Hypersurfaces in toric varieties

Quasismooth hypersurfaces

Let Σ be a simplicial fan, and let X be a hypersurface in VΣ.
Suppose that X is described by a polynomial f in homogeneous
coordinates.

Definition
If the derivatives ∂f /∂zi , i = 1 . . . q do not vanish simultaneously
on X , we say X is quasismooth.
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Symmetric Families

Toric realizations of the rank 19 families

The polar polytopes �◦ for [HLOY04], [V96], and [NS01].

f (t) =

 ∑
x ∈ vertices(�◦)

q∏
k=1

z
〈vk ,x〉+1
k

+ t

q∏
k=1

zk .
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Symmetric Families

Symmetric polytopes

I The only lattice points of these polytopes are the vertices and
the origin.

I The group G of orientation-preserving symmetries of the
polytope acts transitively on the vertices.
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Symmetric Families

Symmetric polytopes

I The only lattice points of these polytopes are the vertices and
the origin.

I The group G of orientation-preserving symmetries of the
polytope acts transitively on the vertices.
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Symmetric Families

Symmetric polytopes

I The only lattice points of these polytopes are the vertices and
the origin.
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Symmetric Families

Another symmetric polytope

Figure: The skew cube

f (t) =

 ∑
x ∈ vertices(�◦)

q∏
k=1

z
〈vk ,x〉+1
k

+ t

q∏
k=1

zk .
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Symmetric Families

Dual rotations

Figure: � Figure: �◦

We may view a rotation as acting either on � (inducing
automorphisms on Xt) or on �◦ (permuting the monomials of pt).
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Symmetric Families

Symplectic Group Actions

Let G be a finite group of automorphisms of a K3 surface. For
g ∈ G ,

g∗(ω) = ρω

where ρ is a root of unity.

Definition
We say G acts symplectically if

g∗(ω) = ω

for all g ∈ G .
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Symmetric Families

A subgroup of the Picard group

Definition

SG = ((H2(X ,Z)G )⊥

Theorem ([N80a])

SG is a primitive, negative definite sublattice of Pic(X ).
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Symmetric Families

The rank of SG

Lemma

I If X admits a symplectic action by the permutation group
G = S4, then Pic(X ) admits a primitive sublattice SG which
has rank 17.

I If X admits a symplectic action by the alternating group
G = A4, then Pic(X ) admits a primitive sublattice SG which
has rank 16.
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Symmetric Families

Why is the Picard rank 19?

Figure: �

We can use the orbits of G on � to identify divisors in
(H2(Xt ,Z))G .

I For the families of [HLOY04] and [V96], and the family
defined by the skew cube, we conclude that 17 + 2 = 19.

I For the family of [NS01], we conclude that 16 + 3 = 19.
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Symmetric Families

Why is the Picard rank 19?

Figure: �
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Computing Picard-Fuchs Equations

The Residue map

We will use a residue map to describe the cohomology of a K3
hypersurface X :

Res : H3(VΣ − X )→ H2(X ).

Anvar Mavlyutov showed that Res is well-defined for quasismooth,
semiample hypersurfaces in simplicial toric varieties.
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Computing Picard-Fuchs Equations

The induced residue map

Let Ω0 be a holomorphic 3-form on VΣ. We may represent
elements of H3(VΣ − X ) by forms PΩ0

f k
, where P is a polynomial in

C[z1, . . . , zq].

Let J(f ) =< ∂f
∂z1
, . . . , ∂f∂zq >. We have an induced residue map

ResJ : C[z1, . . . , zq]/J → H2(X ).

ResJ is injective for P3, but not in general.
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Computing Picard-Fuchs Equations
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Computing Picard-Fuchs Equations

The Griffiths-Dwork technique
Plan

We want to compute the Picard-Fuchs equation for a
one-parameter family of K3 hypersurfaces Xt .

I Look for C(t)-linear relationships between derivatives of
periods of the holomorphic form

I Use ResJ to convert to a polynomial algebra problem in
C(t)[z1, . . . , zq]/J



K3 Surfaces with S4 Symmetry

Computing Picard-Fuchs Equations

The Griffiths-Dwork Technique
Procedure

1.

d

dt

∫
Res

(
PΩ

f k(t)

)
=

∫
Res

(
d

dt

(
PΩ

f k(t)

))
= −k

∫
Res

(
f ′(t)PΩ

f k+1(t)

)

2. Since H∗(Xt ,C) is a finite-dimensional vector space, only

finitely many of the classes Res
(

d j

dt j

(
Ω

f k (t)

))
can be linearly

independent

3. Use the reduction of pole order formula to compare classes of

the form Res
(

PΩ
f k (t)

)
to classes of the form Res

(
QΩ

f k−1(t)

)
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Computing Picard-Fuchs Equations
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Computing Picard-Fuchs Equations
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Computing Picard-Fuchs Equations

The Griffiths-Dwork technique
Advantages and disadvantages

Advantages

We can work with arbitrary polynomial parametrizations of
hypersurfaces.

Disadvantages

We need powerful computer algebra systems to work with
C(t)[z1, . . . , zn+1]/J.
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Computing Picard-Fuchs Equations

The Skew Octahedron

I Let � be the reflexive octahedron shown above.
I � contains 19 lattice points.
I Let R be the fan obtained by taking cones over the faces of �.

Then R defines a toric variety
VR
∼= (P1 × P1 × P1)/(Z2 × Z2 × Z2).
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Computing Picard-Fuchs Equations

The Picard-Fuchs equation

Theorem ([KLMSW10])

Let A =
∫
Res

(
Ω0
f

)
. Then A is the period of a holomorphic form,

and satisfies the Picard-Fuchs equation

∂3A

∂t3
+

6(t2 − 32)

t(t2 − 64)

∂2A

∂t2
+

7t2 − 64

t2(t2 − 64)

∂A

∂t
+

1

t(t2 − 64)
A = 0.

I As expected, the differential equation is third-order

I The differential equation is a symmetric square
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The next big polytope . . .
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