K3 Surfaces with S_4 Symmetry

Ursula Whitcher ursula@math.hmc.edu

Harvey Mudd College

November 2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Dagan Karp (HMC)
- Jacob Lewis (Universität Wien)
- Daniel Moore (HMC '11)
- Dmitri Skjorshammer (HMC '11)
- Ursula Whitcher (HMC)

Outline

K3 Surfaces

Mirror symmetry and K3 surfaces

Hypersurfaces in toric varieties

Symmetric Families

Computing Picard-Fuchs Equations

References

K3 surfaces

- A K3 surface is a simply connected compact complex surfacewith trivial canonical bundle.
- All K3 surfaces are diffeomorphic.

Example

The hypersurface in \mathbb{P}^3 defined by

$$x^4 + y^4 + z^4 + w^4 = 0$$

is a K3 surface.

More examples of K3 surfaces

- Smooth quartics in \mathbb{P}^3
- Double covers of \mathbb{P}^2 branched over a smooth sextic
- Hypersurfaces in 3-dimensional Fano toric varieties

Hodge structure

The Hodge diamond of a K3 surface:

Thus, any K3 surface X admits a nowhere-vanishing holomorphic two-form ω which is unique up to scalar multiples.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Picard group

$$\operatorname{Pic}(X) = H^{1,1}(X) \cap H^2(X,\mathbb{Z})$$
 $0 \leq \operatorname{rank} \operatorname{Pic}(X) \leq 20$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Picard group

$$\operatorname{Pic}(X) = H^{1,1}(X) \cap H^2(X,\mathbb{Z})$$

 $0 \leq \operatorname{rank} \operatorname{Pic}(X) \leq 20$

- We may identify Pic(X) with the Néron-Severi group of algebraic curves using Poincaré duality.
- ▶ $\operatorname{Pic}(X) \subset \omega^{\perp}$
- rank Pic(X) can jump within a family of K3 surfaces

K3 Surfaces with S_4 Symmetry \square Mirror symmetry and K3 surfaces

A class of manifolds

Elliptic curves

- K3 surfaces
- Calabi-Yau three-folds

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ▶ ...
- Calabi-Yau n-folds

Mirror symmetry

- In string theory, the extra, compact dimensions of the universe are Calabi-Yau varieties.
- Mirror symmetry predicts that Calabi-Yau varieties should occur in paired or mirror families.
- Varying the complex structure of one family corresponds to varying the Kähler structure of the other family.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Varying complex structure for K3 surfaces

Let X_{α} be a family of K3 surfaces, and let M be a free abelian group. Suppose

 $M \hookrightarrow \operatorname{Pic}(X_{\alpha}).$

Then:

• $\omega \perp M$ for each X_{α}

 If *M* has rank 19, then the variation of complex structure has 1 degree of freedom.

Picard-Fuchs equations

- A period is the integral of a differential form with respect to a specified homology class.
- Periods of holomorphic forms encode the complex structure of varieties.
- The Picard-Fuchs differential equation of a family of varieties is a differential equation that describes the way the value of a period changes as we move through the family.
- Solutions to Picard-Fuchs equations for holomorphic forms on Calabi-Yau varieties define a mirror map.

Picard-Fuchs equations for rank 19 families

let M be a free abelian group of rank 19, and suppose $M \hookrightarrow \operatorname{Pic}(X_t)$.

- The Picard-Fuchs equation is a rank 3 ordinary differential equation.
- The PicardFuchs equation is the symmetric square of a second order homogeneous linear Fuchsian ODE. (See [D00].)

Some Picard rank 19 families

Hosono, Lian, Oguiso, Yau:

$$x + 1/x + y + 1/y + z + 1/z - \Psi = 0$$

► Verrill:

$$(1 + x + xy + xyz)(1 + z + zy + zyx) = (\lambda + 4)(xyz)$$

Narumiya-Shiga:

$$Y_0 + Y_1 + Y_2 + Y_3 - 4tY_4 \\ Y_0 Y_1 Y_2 Y_3 - Y_4^4$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Lattices

Let N be a lattice isomorphic to \mathbb{Z}^n . The dual lattice M of N is given by $\operatorname{Hom}(N, \mathbb{Z})$; it is also isomorphic to \mathbb{Z}^n . We write the pairing of $v \in N$ and $w \in M$ as $\langle v, w \rangle$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Cones

A cone in N is a subset of the real vector space $N_{\mathbb{R}} = N \otimes \mathbb{R}$ generated by nonnegative \mathbb{R} -linear combinations of a set of vectors $\{v_1, \ldots, v_m\} \subset N$. We assume that cones are strongly convex, that is, they contain no line through the origin. K3 Surfaces with S₄ Symmetry Hypersurfaces in toric varieties

Fans

A fan Σ consists of a finite collection of cones such that:

- Each face of a cone in the fan is also in the fan
- Any pair of cones in the fan intersects in a common face.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

K3 Surfaces with S₄ Symmetry └─ Hypersurfaces in toric varieties

Simplicial fans

We say a fan Σ is simplicial if the generators of each cone in Σ are linearly independent over \mathbb{R} .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lattice polytopes

A lattice polytope \diamond is the convex hull of a finite set of points in a lattice. We assume that our lattice polytopes contain the origin.

Definition

Let Δ be a lattice polytope in N which contains (0,0). The polar polytope Δ° is the polytope in M given by:

 $\{(m_1,\ldots,m_k):(n_1,\ldots,n_k)\cdot(m_1,\ldots,m_k)\geq -1 \text{ for all } (n_1,n_2)\in \Delta\}$

Reflexive polytopes

Definition

A lattice polytope Δ is reflexive if Δ° is also a lattice polytope.

If Δ is reflexive, $(\Delta^{\circ})^{\circ} = \Delta$.

Fans from polytopes

We may define a fan using a polytope in several ways:

- 1. Take the fan *R* over the faces of $\diamond \subset N$.
- 2. Refine *R* by using other lattice points in *◊* as generators of one-dimensional cones.

3. Take the fan *S* over the faces of $\diamond^\circ \subset M$.

Toric varieties as quotients

- Let Σ be a fan in \mathbb{R}^n .
- Let {v₁,..., v_q} be generators for the one-dimensional cones of Σ.

- Σ defines an *n*-dimensional toric variety V_{Σ} .
- V_Σ is the quotient of a subset C^q − Z(Σ) of C^q by a subgroup of (C^{*})^q.

K3 Surfaces with S₄ Symmetry Hypersurfaces in toric varieties

Example

Let *R* be the fan obtained by taking cones over the faces of \diamond . *Z*(Σ) consists of points of the form (0, 0, *z*₃, *z*₄) or (*z*₁, *z*₂, 0, 0).

Figure: Polygon ◊

$$V_R = (\mathbb{C}^4 - Z(\Sigma))/\sim$$

$$(z_1, z_2, z_3, z_4) \sim (\lambda_1 z_1, \lambda_1 z_2, z_3, z_4) (z_1, z_2, z_3, z_4) \sim (z_1, z_2, \lambda_2 z_3, \lambda_2 z_4)$$

where $\lambda_1, \lambda_2 \in \mathbb{C}^*$. Thus, $V_R = \mathbb{P}^1 \times \mathbb{P}^1$.

K3 Surfaces with S₄ Symmetry Hypersurfaces in toric varieties

Blowing up

- Adding cones to a fan Σ corresponds to blowing up subvarieties of V_Σ
- We can use blow-ups to resolve singularities or create new varieties of interest

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

K3 hypersurfaces

- ► Let ◊ be a 3-dimensional reflexive polytope, with polar polytope ◊°.
- ▶ Let *R* be the fan over the faces of ◊
- Let Σ be a simplicial refinement of R
- Let $\{v_k\} \subset \diamond \cap N$ generate the one-dimensional cones of Σ

K3 hypersurfaces

- ► Let ◊ be a 3-dimensional reflexive polytope, with polar polytope ◊°.
- Let R be the fan over the faces of \diamond
- Let Σ be a simplicial refinement of R
- Let $\{v_k\} \subset \diamond \cap N$ generate the one-dimensional cones of Σ

The following polynomial defines a K3 surface in V_{Σ} :

$$f = \sum_{x \in \diamond^{\circ} \cap M} c_{x} \prod_{k=1}^{q} z_{k}^{\langle v_{k}, x \rangle + 1}$$

Quasismooth hypersurfaces

Let Σ be a simplicial fan, and let X be a hypersurface in V_{Σ} . Suppose that X is described by a polynomial f in homogeneous coordinates.

Definition

If the derivatives $\partial f / \partial z_i$, $i = 1 \dots q$ do not vanish simultaneously on X, we say X is quasismooth.

Toric realizations of the rank 19 families

The polar polytopes \diamond° for [HLOY04], [V96], and [NS01].

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二回 - のへで

K3 Surfaces with S_4 Symmetry \square Symmetric Families

Symmetric polytopes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

K3 Surfaces with S₄ Symmetry └─Symmetric Families

Symmetric polytopes

The only lattice points of these polytopes are the vertices and the origin.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Symmetric polytopes

The only lattice points of these polytopes are the vertices and the origin.

The group G of orientation-preserving symmetries of the polytope acts transitively on the vertices.

Another symmetric polytope

Figure: The skew cube

$$f(t) = \left(\sum_{x \ \in \ \mathrm{vertices}(\diamond^\circ)} \prod_{k=1}^q z_k^{\langle v_k, x
angle + 1}
ight) + t \prod_{k=1}^q z_k.$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = 三 の < ⊙

K3 Surfaces with S₄ Symmetry └─Symmetric Families

Dual rotations

We may view a rotation as acting either on \diamond (inducing automorphisms on X_t) or on \diamond° (permuting the monomials of p_t).

Symplectic Group Actions

Let G be a finite group of automorphisms of a K3 surface. For $g \in G$,

$$g^*(\omega) = \rho \omega$$

where ρ is a root of unity.

Definition We say *G* acts *symplectically* if

$$g^*(\omega) = \omega$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

for all $g \in G$.

A subgroup of the Picard group

Definition

$$S_G = ((H^2(X,\mathbb{Z})^G)^{\perp})$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem ([N80a]) S_G is a primitive, negative definite sublattice of Pic(X).

K3 Surfaces with S₄ Symmetry └─Symmetric Families

The rank of S_G

Lemma

- If X admits a symplectic action by the permutation group $G = S_4$, then $\operatorname{Pic}(X)$ admits a primitive sublattice S_G which has rank 17.
- If X admits a symplectic action by the alternating group G = A₄, then Pic(X) admits a primitive sublattice S_G which has rank 16.

K3 Surfaces with S₄ Symmetry └─Symmetric Families

Why is the Picard rank 19?

Figure: \diamond

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

We can use the orbits of G on \diamond to identify divisors in $(H^2(X_t,\mathbb{Z}))^G$.

K3 Surfaces with *S*₄ Symmetry └─Symmetric Families

Why is the Picard rank 19?

Figure: ♦

We can use the orbits of G on \diamond to identify divisors in $(H^2(X_t,\mathbb{Z}))^G$.

- ► For the families of [HLOY04] and [V96], and the family defined by the skew cube, we conclude that 17 + 2 = 19.
- For the family of [NS01], we conclude that 16 + 3 = 19.

э

The Residue map

We will use a residue map to describe the cohomology of a K3 hypersurface X:

$$\operatorname{Res}: H^3(V_{\Sigma}-X) \to H^2(X).$$

Anvar Mavlyutov showed that Res is well-defined for quasismooth, semiample hypersurfaces in simplicial toric varieties.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The induced residue map

Let Ω_0 be a holomorphic 3-form on V_{Σ} . We may represent elements of $H^3(V_{\Sigma} - X)$ by forms $\frac{P\Omega_0}{f^k}$, where P is a polynomial in $\mathbb{C}[z_1, \ldots, z_q]$.

Let $J(f) = \langle \frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_q} \rangle$. We have an induced residue map $\operatorname{Res}_I : \mathbb{C}[z_1, \dots, z_q]/J \to H^2(X).$

The induced residue map

Let Ω_0 be a holomorphic 3-form on V_{Σ} . We may represent elements of $H^3(V_{\Sigma} - X)$ by forms $\frac{P\Omega_0}{f^k}$, where P is a polynomial in $\mathbb{C}[z_1, \ldots, z_q]$.

Let $J(f) = \langle \frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_q} \rangle$. We have an induced residue map $\operatorname{Res}_J : \mathbb{C}[z_1, \dots, z_q]/J \to H^2(X).$

 Res_J is injective for \mathbb{P}^3 , but not in general.

The Griffiths-Dwork technique Plan

We want to compute the Picard-Fuchs equation for a one-parameter family of K3 hypersurfaces X_t .

- ► Look for C(t)-linear relationships between derivatives of periods of the holomorphic form
- Use Res_J to convert to a polynomial algebra problem in $\mathbb{C}(t)[z_1,\ldots,z_q]/J$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Griffiths-Dwork Technique Procedure

1.

$$\frac{d}{dt}\int \operatorname{Res}\left(\frac{P\Omega}{f^{k}(t)}\right) = \int \operatorname{Res}\left(\frac{d}{dt}\left(\frac{P\Omega}{f^{k}(t)}\right)\right)$$
$$= -k\int \operatorname{Res}\left(\frac{f'(t)P\Omega}{f^{k+1}(t)}\right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The Griffiths-Dwork Technique Procedure

1.

$$\frac{d}{dt}\int \operatorname{Res}\left(\frac{P\Omega}{f^{k}(t)}\right) = \int \operatorname{Res}\left(\frac{d}{dt}\left(\frac{P\Omega}{f^{k}(t)}\right)\right)$$
$$= -k\int \operatorname{Res}\left(\frac{f'(t)P\Omega}{f^{k+1}(t)}\right)$$

2. Since $H^*(X_t, \mathbb{C})$ is a finite-dimensional vector space, only finitely many of the classes $\operatorname{Res}\left(\frac{d^j}{dt^j}\left(\frac{\Omega}{f^k(t)}\right)\right)$ can be linearly independent

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The Griffiths-Dwork Technique Procedure

1.

$$\frac{d}{dt} \int \operatorname{Res}\left(\frac{P\Omega}{f^{k}(t)}\right) = \int \operatorname{Res}\left(\frac{d}{dt}\left(\frac{P\Omega}{f^{k}(t)}\right)\right)$$
$$= -k \int \operatorname{Res}\left(\frac{f'(t)P\Omega}{f^{k+1}(t)}\right)$$

- 2. Since $H^*(X_t, \mathbb{C})$ is a finite-dimensional vector space, only finitely many of the classes $\operatorname{Res}\left(\frac{d^j}{dt^j}\left(\frac{\Omega}{f^k(t)}\right)\right)$ can be linearly independent
- 3. Use the reduction of pole order formula to compare classes of the form $\operatorname{Res}\left(\frac{P\Omega}{f^{k}(t)}\right)$ to classes of the form $\operatorname{Res}\left(\frac{Q\Omega}{f^{k-1}(t)}\right)$

The Griffiths-Dwork technique Advantages and disadvantages

Advantages

We can work with arbitrary polynomial parametrizations of hypersurfaces.

Disadvantages

We need powerful computer algebra systems to work with $\mathbb{C}(t)[z_1,\ldots,z_{n+1}]/J$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

K3 Surfaces with S₄ Symmetry └─ Computing Picard-Fuchs Equations

The Skew Octahedron

- ► Let \diamond be the reflexive octahedron shown above.
- ▶ contains 19 lattice points.
- Let R be the fan obtained by taking cones over the faces of ◊.
 Then R defines a toric variety
 V_R ≅ (P¹ × P¹ × P¹)/(Z₂ × Z₂ × Z₂).

The Picard-Fuchs equation

Theorem ([KLMSW10]) Let $A = \int \operatorname{Res}\left(\frac{\Omega_0}{f}\right)$. Then A is the period of a holomorphic form, and satisfies the Picard-Fuchs equation

$$\frac{\partial^3 A}{\partial t^3} + \frac{6(t^2 - 32)}{t(t^2 - 64)} \frac{\partial^2 A}{\partial t^2} + \frac{7t^2 - 64}{t^2(t^2 - 64)} \frac{\partial A}{\partial t} + \frac{1}{t(t^2 - 64)} A = 0.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The Picard-Fuchs equation

Theorem ([KLMSW10]) Let $A = \int \operatorname{Res}\left(\frac{\Omega_0}{f}\right)$. Then A is the period of a holomorphic form, and satisfies the Picard-Fuchs equation

$$\frac{\partial^3 A}{\partial t^3} + \frac{6(t^2 - 32)}{t(t^2 - 64)} \frac{\partial^2 A}{\partial t^2} + \frac{7t^2 - 64}{t^2(t^2 - 64)} \frac{\partial A}{\partial t} + \frac{1}{t(t^2 - 64)} A = 0.$$

- As expected, the differential equation is third-order
- The differential equation is a symmetric square

K3 Surfaces with S_4 Symmetry \square References

- Doran, C. Picard-Fuchs uniformization and modularity of the mirror map. *Communications in Mathematical Physics* 212 (2000), no. 3, 625–647.
- Hosono, S., Lian, B.H., Oguiso, K., and Yau, S.-T. Autoequivalences of derived category of a K3 surface and monodromy transformations. *Journal of Algebraic Geometry* 13, no. 3, 2004.
- Karp, D., Lewis, J., Moore, D., Skjorshammer, D., and Whitcher, U. "On a family of K3 surfaces with S₄ symmetry". http://www.math.hmc.edu/~ursula/research/S4symmetry.pdf
- Mavlyutov, A. Semiample hypersurfaces in toric varieties. *Duke Mathematical Journal* 101 (2000), no. 1, 85–116.
- Narumiya, N. and Shiga, H. The mirror map for a family of K3 surfaces induced from the simplest 3-dimensional reflexive

polytope. *Proceedings on Moonshine and related topics*, AMS 2001.

- Nikulin, V. Finite automorphism groups of Kähler K3 surfaces. *Transactions of the Moscow Mathematical Society* 38, 1980.
- SAGE Mathematics Software, Version 3.4, http://www.sagemath.org/
- Verrill, H. Root lattices and pencils of varieties. *Journal of Mathematics of Kyoto University* 36, no. 2, 1996.

The next big polytope . . .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?