# Mirror, Mirror <br> String Theory and Pairs of Polyhedra 

Ursula Whitcher

Math Reviews \& University of Wisconsin-Eau Claire
February 2017


## What do these people have in common?



Figure: Maxim
Kontsevich


Figure: Andrew Strominger


Figure: Kumrun Vafa


Figure: Mark Zuckerberg

Figure: Yuri Milner

## A Prize



The $\$ 3$ million Fundamental Prizes in Mathematics and Physics!

## What is Mirror Symmetry?



Figure: Maxim Kontsevich
"Numerous contributions which have taken the fruitful interaction between modern theoretical physics and mathematics to new heights, including the development of homological mirror symmetry."

## Lattice Polygons

The points in the plane with integer coordinates form a lattice $N$. A lattice polygon is a convex polygon in the plane which has vertices in the lattice.


## Fano Polygons

We say a lattice polygon is Fano if it has only one lattice point, the origin, in its interior.


Figure: A Fano triangle

## How Many Polygons?

Question
How many Fano polygons are there?

## Infinite Families

There are infinite families of Fano polygons.

## Infinite Families

There are infinite families of Fano polygons.
For instance, the map

$$
\binom{x}{y} \mapsto\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y}
$$

yields an infinite family of polygons.


## Infinite Families

There are infinite families of Fano polygons.
For instance, the map

$$
\binom{x}{y} \mapsto\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y}
$$

yields an infinite family of polygons.


## Infinite Families

There are infinite families of Fano polygons.
For instance, the map

$$
\binom{x}{y} \mapsto\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y}
$$

yields an infinite family of polygons.


## Infinite Families

There are infinite families of Fano polygons.
For instance, the map

$$
\binom{x}{y} \mapsto\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)\binom{x}{y}
$$

yields an infinite family of polygons.


## Polygon Symmetries

When should we consider two Fano polygons equivalent?

## Polygon Symmetries

When should we consider two Fano polygons equivalent?

- When they are related by a rotation that preserves the lattice.


## Polygon Symmetries

When should we consider two Fano polygons equivalent?

- When they are related by a rotation that preserves the lattice.
- When they are related by a reflection that preserves the lattice.


## Polygon Symmetries

When should we consider two Fano polygons equivalent?

- When they are related by a rotation that preserves the lattice.
- When they are related by a reflection that preserves the lattice.
- When they are related by a shear that preserves the lattice.


## Polygon Symmetries

When should we consider two Fano polygons equivalent?

- When they are related by a rotation that preserves the lattice.
- When they are related by a reflection that preserves the lattice.
- When they are related by a shear that preserves the lattice.
- When they are related by a finite composition of these maps.


## Symmetries and Matrices

We can describe rotations, reflections, shears, and their compositions using matrices with integer coordinates:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}=\binom{a x+b y}{c x+d y}
$$

$$
a d-b c= \pm 1
$$

## Classifying Fano Polygons

- We can classify Fano polygons up to equivalence
- There are 16 equivalence classes of Fano polygons


## 16 Fano Polygons



Figure: F. Rohsiepe, "Elliptic Toric K3 Surfaces and Gauge Algebras"

## Describing a Fano Polygon



## Describing a Fano Polygon



- List the vertices


## Describing a Fano Polygon



- List the vertices

$$
\{(0,1),(1,0),(-1,-1)\}
$$

## Describing a Fano Polygon



- List the vertices

$$
\{(0,1),(1,0),(-1,-1)\}
$$

- List the equations of the edges


## Describing a Fano Polygon



- List the vertices

$$
\{(0,1),(1,0),(-1,-1)\}
$$

- List the equations of the edges

$$
\begin{aligned}
-x-y & =-1 \\
2 x-y & =-1 \\
-x+2 y & =-1
\end{aligned}
$$

## A Dual Lattice

- Let $M$ be another copy of the points in the plane with integer coordinates.
- We refer to the plane containing $N$ as $N_{\mathbb{R}}$, and the plane containing $M$ as $M_{\mathbb{R}}$.
- The dot product lets us pair points in $N_{\mathbb{R}}$ with points in $M_{\mathbb{R}}$ :

$$
\left(n_{1}, n_{2}\right) \cdot\left(m_{1}, m_{2}\right)=n_{1} m_{1}+n_{2} m_{2}
$$

## Polar Polygons

Edge equations define new polygons
Let $M$ be another copy of the points in the plane with integer coordinates. If we start with a lattice polygon $\Delta$ in $N$ which contains $(0,0)$, we can construct a polar polygon $\Delta^{\circ}$ in the vector space $M_{\mathbb{R}}$ using the coefficients of our edge equations.

## Polar Polygons

## Edge equations define new polygons

Let $M$ be another copy of the points in the plane with integer coordinates. If we start with a lattice polygon $\Delta$ in $N$ which contains ( 0,0 ), we can construct a polar polygon $\Delta^{\circ}$ in the vector space $M_{\mathbb{R}}$ using the coefficients of our edge equations.

$$
\begin{aligned}
-1 x-1 y & =-1 \\
2 x-1 y & =-1 \\
-1 x+2 y & =-1
\end{aligned}
$$

## Polar Polygons

## Edge equations define new polygons

Let $M$ be another copy of the points in the plane with integer coordinates. If we start with a lattice polygon $\Delta$ in $N$ which contains $(0,0)$, we can construct a polar polygon $\Delta^{\circ}$ in the vector space $M_{\mathbb{R}}$ using the coefficients of our edge equations.

$$
\begin{array}{rlr}
-1 x-1 y & =-1 & (-1,-1) \\
2 x-1 y & =-1 & (2,-1) \\
-1 x+2 y & =-1 & (-1,2)
\end{array}
$$

## Polar Polygons

## Edge equations define new polygons

Let $M$ be another copy of the points in the plane with integer coordinates. If we start with a lattice polygon $\Delta$ in $N$ which contains $(0,0)$, we can construct a polar polygon $\Delta^{\circ}$ in the vector space $M_{\mathbb{R}}$ using the coefficients of our edge equations.

$$
\begin{array}{rlr}
-1 x-1 y & =-1 & (-1,-1) \\
2 x-1 y & =-1 & (2,-1) \\
-1 x+2 y & =-1 & (-1,2)
\end{array}
$$



Figure: Our triangle's polar polygon

## Mirror Pairs

If $\Delta$ is a Fano polygon, then:

- $\Delta^{\circ}$ is a lattice polygon
- In fact, $\Delta^{\circ}$ is another Fano polygon
- $\left(\Delta^{\circ}\right)^{\circ}=\Delta$.

We say that . . .

- $\Delta$ is a reflexive polygon.
- $\Delta$ and $\Delta^{\circ}$ are a mirror pair.


## A Polygon Duality

Mirror pair of triangles


Figure: 3 boundary lattice points


Figure: 9 boundary lattice points

$$
3+9=12
$$

## Other Dimensions

- A polytope is the $k$-dimensional generalization of a polygon or polyhedron.
- We construct a polytope by taking the convex hull of a finite set of vertices.
- The facets of a polytope are equations of the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{k} x_{k}=c
$$



## Polar Polytopes

Let $N$ be the lattice of points with integer coordinates in the $k$-dimensional space $\mathbb{R}^{k}$. A lattice polytope has vertices in $N$. As before, we have a dual lattice $M$ in another copy of $\mathbb{R}^{k}$.

## Polar Polytopes

Let $N$ be the lattice of points with integer coordinates in the $k$-dimensional space $\mathbb{R}^{k}$. A lattice polytope has vertices in $N$. As before, we have a dual lattice $M$ in another copy of $\mathbb{R}^{k}$.

## Definition

Let $\Delta$ be a lattice polytope in $N$ which contains $(0, \ldots, 0)$. Then we can write the facet equations for $\Delta$ in the form

$$
a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{k} x_{k}=-1
$$

The polar polytope $\Delta^{\circ}$ is the polytope with vertices given by the facet equations of $\Delta$ :

$$
\left(a_{1}, a_{2}, \ldots, a_{k}\right)
$$

## Reflexive Polytopes

## Definition

A lattice polytope $\Delta$ is reflexive if $\Delta^{\circ}$ is also a lattice polytope.

- If $\Delta$ is reflexive, $\left(\Delta^{\circ}\right)^{\circ}=\Delta$.
- $\Delta$ and $\Delta^{\circ}$ are a mirror pair.


## Reflexive Polytopes

## Definition

A lattice polytope $\Delta$ is reflexive if $\Delta^{\circ}$ is also a lattice polytope.

- If $\Delta$ is reflexive, $\left(\Delta^{\circ}\right)^{\circ}=\Delta$.
- $\Delta$ and $\Delta^{\circ}$ are a mirror pair.



## Reflexive Polytopes

## Definition

A lattice polytope $\Delta$ is reflexive if $\Delta^{\circ}$ is also a lattice polytope.

- If $\Delta$ is reflexive, $\left(\Delta^{\circ}\right)^{\circ}=\Delta$.
- $\Delta$ and $\Delta^{\circ}$ are a mirror pair.



## Fano vs. Reflexive

- Every reflexive polytope is Fano
- In dimensions $n \geq 3$, not every Fano polytope is reflexive



## Classifying Reflexive Polytopes

Up to a change of coordinates that preserves the lattice, there are .

| Dimension | Reflexive Polytopes |
| :---: | :--- |
| 1 |  |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |

## Classifying Reflexive Polytopes

Up to a change of coordinates that preserves the lattice, there are .

| Dimension | Reflexive Polytopes |
| :---: | :---: |
| 1 | 1 |
| 2 |  |
| 3 |  |
| 4 |  |
| 5 |  |

## Classifying Reflexive Polytopes

Up to a change of coordinates that preserves the lattice, there are .

| Dimension | Reflexive Polytopes |
| :---: | :---: |
| 1 | 1 |
| 2 | 16 |
| 3 |  |
| 4 |  |
| 5 |  |

## Classifying Reflexive Polytopes

Up to a change of coordinates that preserves the lattice, there are .

| Dimension | Reflexive Polytopes |
| :---: | :---: |
| 1 | 1 |
| 2 | 16 |
| 3 | 4,319 |
| 4 |  |
| 5 |  |

## Classifying Reflexive Polytopes

Up to a change of coordinates that preserves the lattice, there are .

| Dimension | Reflexive Polytopes |
| :---: | :---: |
| 1 | 1 |
| 2 | 16 |
| 3 | 4,319 |
| 4 | $473,800,776$ |
| 5 |  |

## Classifying Reflexive Polytopes

Up to a change of coordinates that preserves the lattice, there are .

| Dimension | Reflexive Polytopes |
| :---: | :---: |
| 1 | 1 |
| 2 | 16 |
| 3 | 4,319 |
| 4 | $473,800,776$ |
| 5 | $? ?$ |

## Where's the Physics?

The physicists Maximilian Kreuzer and Harald Skarke classified reflexive polytopes. What were they looking for?


Figure: Vienna String Theory Group

## A Quick Tour of Twentieth-Century Physics

- General relativity


Figure: Fermilab

Figure: Albert Einstein

## General Relativity

## Features



Figure: S. Bush et al.

- Measurements of time and distance depend on your relative speed.
- We specify events using coordinates in space-time.
- Space-time is curved.
- The curvature of space-time produces the effects of gravity.
- Useful for understanding large, massive objects such as stars and galaxies.


## General Relativity

Question

- Why is the force of gravity so weak compared to other forces?



## Quantum Physics



- The smallest components of the universe behave randomly.
- Sometimes they act like waves and sometimes they act like particles.
- There are 61 elementary particles: electrons, neutrinos, quarks, photons, gluons, etc.
- Useful for understanding small objects at high energies.


## Quantum Physics

Questions


- Why are there so many elementary particles?
- Why does the Standard Model depend on so many parameters?


## Where's the Theory of Everything?

Can we build a theory of quantum gravity?
Challenge
Quantum fluctuations in "empty" space create infinite energy!

## Are Strings the Answer?

String Theory proposes that "fundamental" particles are strings.


## Vibration Distinguishes Particles

- Particles such as electrons and photons are strings vibrating at different frequencies.



## Finite Energy

String theory "smears" the energy created by creation and destruction of particles, producing finite space-time energy.


## Extra Dimensions

For string theory to work as a consistent theory of quantum mechanics, it must allow the strings to vibrate in extra, compact dimensions.


## Is Gravity Leaking?



Figure: Nima Arkani-Hamed

If the electromagnetic force is confined to 4 dimensions but gravity can probe the extra dimensions, would this describe the apparent weakness of gravity?

## $T$-Duality

## Pairs of Universes

An extra dimension shaped like a circle of radius $R$ and an extra dimension shaped like a circle of radius $\alpha^{\prime} / R$ yield indistinguishable physics! (The slope parameter $\alpha^{\prime}$ has units of length squared.)


Figure: Large radius, few windings
Figure: Small radius, many windings

## Building a Model

At every point in 4-dimensional space-time, we should have 6 extra dimensions in the shape of a Calabi-Yau manifold.

## A-Model or B-Model?

Choosing Complex Variables

- $z=a+i b, w=c+i d$
- $z=a+i b, \bar{w}=c-i d$


## Mirror Symmetry

Physicists say . . .

- Calabi-Yau manifolds appear in pairs $\left(V, V^{\circ}\right)$.
- The universes described by $V$ and $V^{\circ}$ have the same observable physics.


## Mirror Symmetry for Mathematicians

The physicists' prediction led to mathematical discoveries! Mathematicians say . . .

- Calabi-Yau manifolds appear in paired families $\left(V_{\alpha}, V_{\alpha}^{\circ}\right)$.
- The families $V_{\alpha}$ and $V_{\alpha}^{\circ}$ have dual geometric properties.


## Batyrev's Insight

We can write equations for mirror families of Calabi-Yau manifolds using reflexive polytopes.


## Mirror Polytopes Yield Mirror Spaces

polytope
$\longleftrightarrow$
polar polytope


Laurent polynomial $\longleftrightarrow$ mirror Laurent polynomial

space

mirror space

## A Recipe for a Space

- Each dimension of our polytope gives us a variable
- Each lattice point in our polynomial gives us exponents for our variables
- We add all the variables to obtain a polynomial
- Solutions to this equation are the space we want!
- Using the polar dual polytope gives us the dual space.


## Example

The One-Dimensional Reflexive Polytope


Figure: $\Delta$
Figure: $\Delta^{\circ}$

- Standard basis vectors in $N \leftrightarrow$ variables $z_{i}$
(1) $\leftrightarrow z_{1}$


## Example

The One-Dimensional Reflexive Polytope


Figure: $\Delta$
Figure: $\Delta^{\circ}$

- Standard basis vectors in $N \leftrightarrow$ variables $z_{i}$
(1) $\leftrightarrow z_{1}$
- Lattice points in $\Delta^{\circ} \leftrightarrow$ monomials defined on $\left(\mathbb{C}^{*}\right)^{n}$

$$
\begin{aligned}
(-1) & \leftrightarrow z_{1}^{-1} \\
(0) & \leftrightarrow z_{1}^{0}=1 \\
(1) & \leftrightarrow z_{1}^{1}=z_{1}
\end{aligned}
$$

## Example

## Continued



Figure: $\Delta$


Figure: $\Delta^{\circ}$

- $\Delta^{\circ} \leftrightarrow$ Laurent polynomials $p_{\alpha}$

$$
\Delta^{\circ} \leftrightarrow p_{\alpha}=\alpha_{(-1)} z_{1}^{-1}+\alpha_{(0)}+\alpha_{(1)} z_{1}^{1}
$$

Each choice of parameters $\left(\alpha_{(-1)}, \alpha_{(0)}, \alpha_{(1)}\right)$ defines a Laurent polynomial.

## From Polynomials to Spaces

The solutions to the Laurent polynomials $p_{\alpha}$ describe geometric spaces.

## From Polynomials to Spaces

The solutions to the Laurent polynomials $p_{\alpha}$ describe geometric spaces.

Example: One Dimensional Polytope


Figure: $\Delta$
Figure: $\Delta^{\circ}$
Solutions to $\alpha_{(-1)} z_{1}^{-1}+\alpha_{(0)}+\alpha_{(1)} z_{1}^{1}=0$ define pairs of nonzero points.

$$
-z_{1}^{-1}+z_{1}=0
$$

## From Polynomials to Spaces

The solutions to the Laurent polynomials $p_{\alpha}$ describe geometric spaces.

Example: One Dimensional Polytope


Figure: $\Delta$
Figure: $\Delta^{\circ}$
Solutions to $\alpha_{(-1)} z_{1}^{-1}+\alpha_{(0)}+\alpha_{(1)} z_{1}^{1}=0$ define pairs of nonzero points.

$$
\begin{aligned}
- & -z_{1}^{-1}+z_{1}=0 \\
& z_{1}= \pm 1
\end{aligned}
$$

## From Polynomials to Spaces

The solutions to the Laurent polynomials $p_{\alpha}$ describe geometric spaces.

Example: One Dimensional Polytope


Figure: $\Delta$
Figure: $\Delta^{\circ}$
Solutions to $\alpha_{(-1)} z_{1}^{-1}+\alpha_{(0)}+\alpha_{(1)} z_{1}^{1}=0$ define pairs of nonzero points.

- $-z_{1}^{-1}+z_{1}=0$
$z_{1}= \pm 1$
- $z_{1}^{-1}+z_{1}=0$


## From Polynomials to Spaces

The solutions to the Laurent polynomials $p_{\alpha}$ describe geometric spaces.
Example: One Dimensional Polytope


Figure: $\Delta$
Figure: $\Delta^{\circ}$
Solutions to $\alpha_{(-1)} z_{1}^{-1}+\alpha_{(0)}+\alpha_{(1)} z_{1}^{1}=0$ define pairs of nonzero points.

- $-z_{1}^{-1}+z_{1}=0$
$z_{1}= \pm 1$
- $z_{1}^{-1}+z_{1}=0$
$z_{1}= \pm i$


## Example: One-Dimensional Polytope

Continued
We can graph our points in the complex plane.


## Example: Two-Dimensional Polytopes



$$
\alpha_{(-1,2)} z_{1}^{-1} z_{2}^{2}+\cdots+\alpha_{(2,-1)} z_{1}^{2} z_{2}^{-1}=0
$$

## Example: Two-Dimensional Polytopes



$$
\alpha_{(-1,2)} z_{1}^{-1} z_{2}^{2}+\cdots+\alpha_{(2,-1)} z_{1}^{2} z_{2}^{-1}=0
$$

Figure: Real part of a curve


Figure: Another real curve


## Example: Four-Dimensional Polytopes

Let $\Delta$ be the four-dimensional polytope with vertices ( $1,0,0,0$ ), $(0,1,0,0),(0,0,1,0),(0,0,0,1)$, and $(-1,-1,-1,-1)$. Then $\Delta$ defines a three complex-dimensional or six real-dimensional Calabi-Yau manifold!


## Compactifying

Our Laurent polynomials $p_{\alpha}$ define spaces which are not compact: $\left\|z_{i}\right\|$ can be infinitely large. We can solve this problem by adding in some "points at infinity" using a standard procedure from algebraic geometry together with the data of our polytope.

## Calabi-Yau Varieties

The resulting compact spaces $V_{\alpha}$ are Calabi-Yau varieties of dimension $d=k-1$.

- When $k=2$, for generic choice of $\alpha$, the $V_{\alpha}$ are elliptic curves.
- When $k=3$, for generic choice of $\alpha$, the $V_{\alpha}$ are K3 surfaces.
- When $k=4$, for generic choice of $\alpha$, the $V_{\alpha}$ are 3-dimensional Calabi-Yau varieties.


## Mirror Symmetry

If we start with the polar polytope, we obtain a second family of geometric spaces which is the mirror family of the first.
polytope $\quad \longleftrightarrow \quad$ polar polytope


Laurent polynomials $p_{\alpha} \longleftrightarrow$ mirror Laurent polynomials $p_{\alpha}^{\circ}$

spaces $V_{\alpha}$

mirror spaces $V_{\alpha}^{\circ}$

## For Further Reading

圊 Charles Doran and U.W.
"From Polygons to String Theory."
Mathematics Magazine, December 2012.
Brian Greene.
The Elegant Universe.
New York: Vintage Books, 1999, 2003.
葍 Bjorn Poonen and Fernando Rodriguez-Villegas.
"Lattice Polygons and the Number 12."
The American Mathematical Monthly, March 2000.

