Mirror, Mirror String Theory and Pairs of Polyhedra

Ursula Whitcher

Math Reviews & University of Wisconsin-Eau Claire

February 2017

What do these people have in common?

Figure: Maxim Kontsevich

Figure: Andrew Strominger

Figure: Kumrun Vafa

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Figure: Yuri Milner

Figure: Mark Zuckerberg

A Prize

The \$3 million Fundamental Prizes in Mathematics and Physics!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What is Mirror Symmetry?

Figure: Maxim Kontsevich

"Numerous contributions which have taken the fruitful interaction between modern theoretical physics and mathematics to new heights, including the development of homological mirror symmetry."

Lattice Polygons

The points in the plane with integer coordinates form a lattice N. A lattice polygon is a convex polygon in the plane which has vertices in the lattice.

Fano Polygons

We say a lattice polygon is Fano if it has only one lattice point, the origin, in its interior.

Figure: A Fano triangle

How Many Polygons?

Question

How many Fano polygons are there?

There are infinite families of Fano polygons.

There are infinite families of Fano polygons. For instance, the map

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

yields an infinite family of polygons.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

There are infinite families of Fano polygons. For instance, the map

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

yields an infinite family of polygons.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

There are infinite families of Fano polygons. For instance, the map

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

yields an infinite family of polygons.

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

There are infinite families of Fano polygons. For instance, the map

$$\begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$$

yields an infinite family of polygons.

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Polygon Symmetries

When should we consider two Fano polygons equivalent?

▶ When they are related by a rotation that preserves the lattice.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

▶ When they are related by a rotation that preserves the lattice.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

When they are related by a reflection that preserves the lattice.

- ▶ When they are related by a rotation that preserves the lattice.
- When they are related by a reflection that preserves the lattice.
- ▶ When they are related by a shear that preserves the lattice.

- ▶ When they are related by a rotation that preserves the lattice.
- When they are related by a reflection that preserves the lattice.
- ► When they are related by a shear that preserves the lattice.
- When they are related by a finite composition of these maps.

We can describe rotations, reflections, shears, and their compositions using matrices with integer coordinates:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} ax + by \\ cx + dy \end{pmatrix}$$

$$ad - bc = \pm 1$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Classifying Fano Polygons

- We can classify Fano polygons up to equivalence
- There are 16 equivalence classes of Fano polygons

16 Fano Polygons

Figure: F. Rohsiepe, "Elliptic Toric K3 Surfaces and Gauge Algebras"

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

List the vertices

List the vertices

 $\{(0,1),(1,0),(-1,-1)\}$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

List the vertices

$$\{(0,1),(1,0),(-1,-1)\}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

List the equations of the edges

List the vertices

$$\{(0,1),(1,0),(-1,-1)\}$$

List the equations of the edges

$$-x - y = -1$$

$$2x - y = -1$$

$$-x + 2y = -1$$

A Dual Lattice

- Let *M* be another copy of the points in the plane with integer coordinates.
- ► We refer to the plane containing N as N_ℝ, and the plane containing M as M_ℝ.
- The dot product lets us pair points in $N_{\mathbb{R}}$ with points in $M_{\mathbb{R}}$:

$$(n_1, n_2) \cdot (m_1, m_2) = n_1 m_1 + n_2 m_2$$

Edge equations define new polygons

Let M be another copy of the points in the plane with integer coordinates. If we start with a lattice polygon Δ in N which contains (0,0), we can construct a polar polygon Δ° in the vector space $M_{\mathbb{R}}$ using the coefficients of our edge equations.

Edge equations define new polygons

Let M be another copy of the points in the plane with integer coordinates. If we start with a lattice polygon Δ in N which contains (0,0), we can construct a polar polygon Δ° in the vector space $M_{\mathbb{R}}$ using the coefficients of our edge equations.

$$-1x - 1y = -1$$
$$2x - 1y = -1$$
$$-1x + 2y = -1$$

Edge equations define new polygons

Let M be another copy of the points in the plane with integer coordinates. If we start with a lattice polygon Δ in N which contains (0,0), we can construct a polar polygon Δ° in the vector space $M_{\mathbb{R}}$ using the coefficients of our edge equations.

-1x - 1y = -1	(-1,-1)
2x - 1y = -1	(2, -1)
-1x + 2y = -1	(-1, 2)

Edge equations define new polygons

Let M be another copy of the points in the plane with integer coordinates. If we start with a lattice polygon Δ in N which contains (0,0), we can construct a polar polygon Δ° in the vector space $M_{\mathbb{R}}$ using the coefficients of our edge equations.

-1x - 1y = -1	(-1,-1)
2x - 1y = -1	(2, -1)
-1x + 2y = -1	(-1, 2)

Figure: Our triangle's polar polygon

Mirror Pairs

If Δ is a Fano polygon, then:

- Δ° is a lattice polygon
- In fact, Δ° is another Fano polygon

$$\blacktriangleright (\Delta^{\circ})^{\circ} = \Delta.$$

We say that . . .

- Δ is a reflexive polygon.
- Δ and Δ° are a mirror pair.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A Polygon Duality

Mirror pair of triangles

Figure: 3 boundary lattice points

Figure: 9 boundary lattice points

(日)、

э.

$$3 + 9 = 12$$

Other Dimensions

- A polytope is the k-dimensional generalization of a polygon or polyhedron.
- We construct a polytope by taking the convex hull of a finite set of vertices.
- The facets of a polytope are equations of the form

 $a_1x_1+a_2x_2+\cdots+a_kx_k=c.$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Polar Polytopes

Let N be the lattice of points with integer coordinates in the k-dimensional space \mathbb{R}^k . A lattice polytope has vertices in N. As before, we have a dual lattice M in another copy of \mathbb{R}^k .

Polar Polytopes

Let N be the lattice of points with integer coordinates in the k-dimensional space \mathbb{R}^k . A lattice polytope has vertices in N. As before, we have a dual lattice M in another copy of \mathbb{R}^k .

Definition

Let Δ be a lattice polytope in N which contains $(0, \ldots, 0)$. Then we can write the facet equations for Δ in the form

$$a_1x_1 + a_2x_2 + \cdots + a_kx_k = -1.$$

The polar polytope Δ° is the polytope with vertices given by the facet equations of Δ :

$$(a_1, a_2, \ldots, a_k).$$

Reflexive Polytopes

Definition

A lattice polytope Δ is reflexive if Δ° is also a lattice polytope.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- If Δ is reflexive, $(\Delta^{\circ})^{\circ} = \Delta$.
- Δ and Δ° are a mirror pair.
Reflexive Polytopes

Definition

A lattice polytope Δ is reflexive if Δ° is also a lattice polytope.

- If Δ is reflexive, $(\Delta^{\circ})^{\circ} = \Delta$.
- Δ and Δ° are a mirror pair.

Reflexive Polytopes

Definition

A lattice polytope Δ is reflexive if Δ° is also a lattice polytope.

- If Δ is reflexive, $(\Delta^{\circ})^{\circ} = \Delta$.
- Δ and Δ° are a mirror pair.

Fano vs. Reflexive

- Every reflexive polytope is Fano
- ▶ In dimensions $n \ge 3$, not every Fano polytope is reflexive

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

. .

Up to a change of coordinates that preserves the lattice, there are .

Dimension	Reflexive Polytopes
1	
2	
3	
4	
5	

. .

Up to a change of coordinates that preserves the lattice, there are .

Dimension	Reflexive Polytopes
1	1
2	
3	
4	
5	

. .

Up to a change of coordinates that preserves the lattice, there are .

Dimension	Reflexive Polytopes
1	1
2	16
3	
4	
5	

. .

Up to a change of coordinates that preserves the lattice, there are .

Dimension	Reflexive Polytopes
1	1
2	16
3	4,319
4	
5	

. .

Up to a change of coordinates that preserves the lattice, there are .

Dimension	Reflexive Polytopes
1	1
2	16
3	4,319
4	473,800,776
5	

. .

Up to a change of coordinates that preserves the lattice, there are .

Dimension	Reflexive Polytopes
1	1
2	16
3	4,319
4	473,800,776
5	??

Where's the Physics?

The physicists Maximilian Kreuzer and Harald Skarke classified reflexive polytopes. What were they looking for?

Figure: Vienna String Theory Group

-

A Quick Tour of Twentieth-Century Physics

General relativity

Quantum mechanics

Figure: Fermilab

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Figure: Albert Einstein

General Relativity

Features

Figure: S. Bush et al.

- Measurements of time and distance depend on your relative speed.
- We specify events using coordinates in space-time.
- Space-time is curved.
- The curvature of space-time produces the effects of gravity.
- Useful for understanding large, massive objects such as stars and galaxies.

General Relativity Question

Why is the force of gravity so weak compared to other forces?

Quantum Physics

- ► The smallest components of the universe behave randomly.
- Sometimes they act like waves and sometimes they act like particles.
- There are 61 elementary particles: electrons, neutrinos, quarks, photons, gluons, etc.
- Useful for understanding small objects at high energies.

Quantum Physics

Questions

- Why are there so many elementary particles?
- Why does the Standard Model depend on so many parameters?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Where's the Theory of Everything?

Can we build a theory of quantum gravity?

Challenge

Quantum fluctuations in "empty" space create infinite energy!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Are Strings the Answer?

String Theory proposes that "fundamental" particles are strings.

Vibration Distinguishes Particles

 Particles such as electrons and photons are strings vibrating at different frequencies.

・ロト ・ 雪 ト ・ ヨ ト

- B

Finite Energy

String theory "smears" the energy created by creation and destruction of particles, producing finite space-time energy.

Extra Dimensions

For string theory to work as a consistent theory of quantum mechanics, it must allow the strings to vibrate in extra, compact dimensions.

Is Gravity Leaking?

Figure: Nima Arkani-Hamed

If the electromagnetic force is confined to 4 dimensions but gravity can probe the extra dimensions, would this describe the apparent weakness of gravity?

T-Duality

Pairs of Universes

An extra dimension shaped like a circle of radius R and an extra dimension shaped like a circle of radius α'/R yield indistinguishable physics! (The slope parameter α' has units of length squared.)

Figure: Large radius, few windings

Figure: Small radius, many windings

At every point in 4-dimensional space-time, we should have 6 extra dimensions in the shape of a Calabi-Yau manifold.

(ロ)、(型)、(E)、(E)、 E) の(の)

A-Model or B-Model?

Choosing Complex Variables

$$\blacktriangleright$$
 $z = a + ib$, $w = c + id$

$$\blacktriangleright$$
 $z = a + ib$, $\overline{w} = c - id$

(ロ)、(型)、(E)、(E)、 E) の(の)

Mirror Symmetry

Physicists say . . .

- Calabi-Yau manifolds appear in pairs (V, V°) .
- The universes described by V and V° have the same observable physics.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mirror Symmetry for Mathematicians

The physicists' prediction led to mathematical discoveries! Mathematicians say . . .

- Calabi-Yau manifolds appear in paired families $(V_{\alpha}, V_{\alpha}^{\circ})$.
- The families V_{α} and V_{α}° have dual geometric properties.

Batyrev's Insight

We can write equations for mirror families of Calabi-Yau manifolds using reflexive polytopes.

Mirror Polytopes Yield Mirror Spaces

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A Recipe for a Space

- Each dimension of our polytope gives us a variable
- Each lattice point in our polynomial gives us exponents for our variables

- We add all the variables to obtain a polynomial
- Solutions to this equation are the space we want!
- Using the polar dual polytope gives us the dual space.

Example

The One-Dimensional Reflexive Polytope

• Standard basis vectors in $N \leftrightarrow$ variables z_i

 $(1) \leftrightarrow z_1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

The One-Dimensional Reflexive Polytope

• Standard basis vectors in $N \leftrightarrow$ variables z_i

 $(1) \leftrightarrow z_1$

• Lattice points in $\Delta^{\circ} \leftrightarrow$ monomials defined on $(\mathbb{C}^*)^n$

$$egin{aligned} (-1) \leftrightarrow z_1^{-1} \ (0) \leftrightarrow z_1^0 = 1 \ (1) \leftrightarrow z_1^1 = z_1 \end{aligned}$$

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 臣 … のへで

• $\Delta^{\circ} \leftrightarrow$ Laurent polynomials p_{lpha}

$$\Delta^{\circ} \leftrightarrow \boldsymbol{p}_{\alpha} = \alpha_{(-1)} \boldsymbol{z}_{1}^{-1} + \alpha_{(0)} + \alpha_{(1)} \boldsymbol{z}_{1}^{1}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Each choice of parameters $(\alpha_{(-1)}, \alpha_{(0)}, \alpha_{(1)})$ defines a Laurent polynomial.

The solutions to the Laurent polynomials p_{α} describe geometric spaces.

The solutions to the Laurent polynomials p_{α} describe geometric spaces.

Example: One Dimensional Polytope

►
$$-z_1^{-1} + z_1 = 0$$

The solutions to the Laurent polynomials p_{α} describe geometric spaces.

Example: One Dimensional Polytope

•
$$-z_1^{-1} + z_1 = 0$$

 $z_1 = \pm 1$

The solutions to the Laurent polynomials p_{α} describe geometric spaces.

Example: One Dimensional Polytope

•
$$-z_1^{-1} + z_1 = 0$$

 $z_1 = \pm 1$
• $z_1^{-1} + z_1 = 0$
From Polynomials to Spaces

The solutions to the Laurent polynomials p_{α} describe geometric spaces.

Example: One Dimensional Polytope

•
$$-z_1^{-1} + z_1 = 0$$

 $z_1 = \pm 1$
• $z_1^{-1} + z_1 = 0$
 $z_1 = \pm i$

Example: One-Dimensional Polytope

Continued

We can graph our points in the complex plane.

Example: Two-Dimensional Polytopes

$$\alpha_{(-1,2)}z_1^{-1}z_2^2 + \dots + \alpha_{(2,-1)}z_1^2z_2^{-1} = 0$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Example: Two-Dimensional Polytopes

Figure: Real part of a curve

Figure: Another real curve

Example: Four-Dimensional Polytopes

Let Δ be the four-dimensional polytope with vertices (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), and (-1, -1, -1, -1). Then Δ defines a three complex-dimensional or six real-dimensional Calabi-Yau manifold!

Compactifying

Our Laurent polynomials p_{α} define spaces which are not compact: $||z_i||$ can be infinitely large. We can solve this problem by adding in some "points at infinity" using a standard procedure from algebraic geometry together with the data of our polytope.

The resulting compact spaces V_{α} are Calabi-Yau varieties of dimension d = k - 1.

- When k = 2, for generic choice of α, the V_α are elliptic curves.
- When k = 3, for generic choice of α , the V_{α} are K3 surfaces.

When k = 4, for generic choice of α, the V_α are 3-dimensional Calabi-Yau varieties.

Mirror Symmetry

If we start with the polar polytope, we obtain a second family of geometric spaces which is the mirror family of the first.

For Further Reading

Charles Doran and U.W.

"From Polygons to String Theory." *Mathematics Magazine*, December 2012.

Brian Greene. *The Elegant Universe*. New York: Vintage Books, 1999, 2003.

 Bjorn Poonen and Fernando Rodriguez-Villegas.
 "Lattice Polygons and the Number 12." The American Mathematical Monthly, March 2000.