Polytopes, Polynomials, and String Theory

Ursula Whitcher
ursula@math.hmc.edu
Harvey Mudd College

August 2010

Outline

The Group

String Theory and Mathematics

Polytopes, Fans, and Toric Varieties

Hypersurfaces and Picard-Fuchs Equations

- Dagan Karp
- Dhruv Ranganathan '12
- Paul Riggins '12
- Ursula Whitcher
- Daniel Moore '11
- Dmitri Skjorshammer '11

String Theory

- "Fundamental" particles are strings vibrating at different frequencies.
- Strings wrap extra, compact dimensions.

Gromov-Witten Theory

- Worldsheets of strings
- Moduli spaces of maps of curves
- Strong enumerative results

Mirror Symmetry

- Extra, compact dimensions are Calabi-Yau varieties.
- Mirror symmetry predicts that Calabi-Yau varieties should occur in paired or mirror families.
- Varying the complex structure of one family corresponds to varying the Kähler structure of the other family.

Lattices

Let N be a lattice isomorphic to \mathbb{Z}^{n}. The dual lattice M of N is given by $\operatorname{Hom}(N, \mathbb{Z})$; it is also isomorphic to \mathbb{Z}^{n}. We write the pairing of $v \in N$ and $w \in M$ as $\langle v, w\rangle$.

Cones

A cone in N is a subset of the real vector space $N_{\mathbb{R}}=N \otimes \mathbb{R}$ generated by nonnegative \mathbb{R}-linear combinations of a set of vectors $\left\{v_{1}, \ldots, v_{m}\right\} \subset N$. We assume that cones are strongly convex, that is, they contain no line through the origin.

Figure: Cox, Little, and Schenk

Fans

A fan Σ consists of a finite collection of cones such that:

- Each face of a cone in the fan is also in the fan
- Any pair of cones in the fan intersects in a common face.

Figure: Cox, Little, and Schenk

Simplicial Fans

We say a fan Σ is simplicial if the generators of each cone in Σ are linearly independent over \mathbb{R}.

Lattice Polytopes

A lattice polytope \diamond is the convex hull of a finite set of points in a lattice. We assume that our lattice polytopes contain the origin.

Definition

Let Δ be a lattice polytope in N which contains $(0,0)$. The polar polytope Δ° is the polytope in M given by:
$\left\{\left(m_{1}, \ldots, m_{k}\right):\left(n_{1}, \ldots, n_{k}\right) \cdot\left(m_{1}, \ldots, m_{k}\right) \geq-1\right.$ for all $\left.\left(n_{1}, n_{2}\right) \in \Delta\right\}$

Reflexive Polytopes

Definition

A lattice polytope Δ is reflexive if Δ° is also a lattice polytope.

If Δ is reflexive, $\left(\Delta^{\circ}\right)^{\circ}=\Delta$.

Fans from Polytopes

Figure: Cox, Little, and Schenk

We may define a fan using a polytope in several ways:

1. Take the fan R over the faces of $\diamond \subset N$.
2. Refine R by using other lattice points in \diamond as generators of one-dimensional cones.
3. Take the fan S over the faces of $\diamond^{\circ} \subset M$.

Toric Varieties as Quotients

- Let Σ be a fan in \mathbb{R}^{n}.
- Let $\left\{v_{1}, \ldots, v_{q}\right\}$ be generators for the one-dimensional cones of Σ.
- Σ defines an n-dimensional toric variety V_{Σ}.
- V_{Σ} is the quotient of a subset $\mathbb{C}^{q}-Z(\Sigma)$ of \mathbb{C}^{q} by a subgroup of $\left(\mathbb{C}^{*}\right)^{q}$.

Example

Let R be the fan obtained by taking cones over the faces of $\diamond . Z(\Sigma)$ consists of points of the form $\left(0,0, z_{3}, z_{4}\right)$ or $\left(z_{1}, z_{2}, 0,0\right)$.

Figure: Polygon \diamond

$$
\begin{gathered}
V_{R}=\left(\mathbb{C}^{4}-Z(\Sigma)\right) / \sim \\
\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \sim\left(\lambda_{1} z_{1}, \lambda_{1} z_{2}, z_{3}, z_{4}\right) \\
\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \sim\left(z_{1}, z_{2}, \lambda_{2} z_{3}, \lambda_{2} z_{4}\right)
\end{gathered}
$$

where $\lambda_{1}, \lambda_{2} \in \mathbb{C}^{*}$. Thus, $V_{R}=\mathbb{P}^{1} \times \mathbb{P}^{1}$.

Blowing Up

- Adding cones to a fan Σ corresponds to blowing up subvarieties of V_{Σ}
- We can use blow-ups to resolve singularities or create new varieties of interest
- Dhruv Ranganathan and Paul Riggins classified the symmetries of all toric blowups of \mathbb{P}^{3}, including varieties corresponding to the associahedron, the cyclohedron, and the graph associahedra.

Calabi-Yau Hypersurfaces

- Let \diamond be a reflexive polytope, with polar polytope \diamond°.
- Let R be the fan over the faces of \diamond
- Let Σ be a refinement of R
- Let $\left\{v_{k}\right\} \subset \diamond \cap N$ generate the one-dimensional cones of Σ

Calabi-Yau Hypersurfaces

- Let \diamond be a reflexive polytope, with polar polytope \diamond°.
- Let R be the fan over the faces of \diamond
- Let Σ be a refinement of R
- Let $\left\{v_{k}\right\} \subset \diamond \cap N$ generate the one-dimensional cones of Σ

The following polynomial defines a Calabi-Yau hypersurface in V_{Σ} :

$$
f=\sum_{x \in \diamond^{\circ} \cap M} c_{x} \prod_{k=1}^{q} z_{k}^{\left\langle v_{k}, x\right\rangle+1}
$$

If $n=3, f$ defines a K3 surface.

Quasismooth Hypersurfaces

Let Σ be a simplicial fan, and let X be a hypersurface in V_{Σ}. Suppose that X is described by a polynomial f in homogeneous coordinates.

Definition
If the products $\partial f / \partial z_{i}, i=1 \ldots q$ do not vanish simultaneously on X, we say X is quasismooth.

Picard-Fuchs Equations

- A period is the integral of a differential form with respect to a specified homology class.
- Periods of holomorphic forms encode the complex structure of varieties.
- The Picard-Fuchs differential equation of a family of varieties is a differential equation that describes the way the value of a period changes as we move through the family.

The Residue Map in \mathbb{P}^{n}

Let X be a smooth hypersurface in in \mathbb{P}^{n} described by a homogeneous polynomial f. Then there exists a residue map

$$
\text { Res : } H^{n}\left(\mathbb{P}^{n}-X\right) \rightarrow H^{n-1}(X)
$$

The Residue Map in \mathbb{P}^{n}

Let X be a smooth hypersurface in in \mathbb{P}^{n} described by a homogeneous polynomial f. Then there exists a residue map

$$
\text { Res : } H^{n}\left(\mathbb{P}^{n}-X\right) \rightarrow H^{n-1}(X)
$$

Let Ω_{0} be a homogeneous holomorphic n-form on \mathbb{P}^{n}. We may represent elements of $H^{n}\left(\mathbb{P}^{n}-X\right)$ by forms $\frac{P \Omega_{0}}{f^{k}}$, where P is a homogeneous polynomial.

Let $J(f)=<\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{n+1}}>$. We have an induced residue map
Res : $\mathbb{C}\left[z_{1}, \ldots, z_{n+1}\right] / J \rightarrow H^{n-1}(X)$.

The Griffiths-Dwork Technique in \mathbb{P}^{n}

We want to compute the Picard-Fuchs equation for a one-parameter family of Calabi-Yau hypersurfaces X_{t} in \mathbb{P}^{n}.

The Griffiths-Dwork Technique in \mathbb{P}^{n}

We want to compute the Picard-Fuchs equation for a one-parameter family of Calabi-Yau hypersurfaces X_{t} in \mathbb{P}^{n}. Plan

- $\frac{d}{d t} \int \alpha=\int \frac{d}{d t}(\alpha)$

The Griffiths-Dwork Technique in \mathbb{P}^{n}

We want to compute the Picard-Fuchs equation for a one-parameter family of Calabi-Yau hypersurfaces X_{t} in \mathbb{P}^{n}.

Plan

- $\frac{d}{d t} \int \alpha=\int \frac{d}{d t}(\alpha)$
- Since $H^{*}\left(X_{t}, \mathbb{C}\right)$ is a finite-dimensional vector space, only finitely many derivatives can be linearly independent

The Griffiths-Dwork Technique in \mathbb{P}^{n}

We want to compute the Picard-Fuchs equation for a one-parameter family of Calabi-Yau hypersurfaces X_{t} in \mathbb{P}^{n}.

Plan

- $\frac{d}{d t} \int \alpha=\int \frac{d}{d t}(\alpha)$
- Since $H^{*}\left(X_{t}, \mathbb{C}\right)$ is a finite-dimensional vector space, only finitely many derivatives can be linearly independent
- Thus, there must be $\mathbb{C}(t)$-linear relationships between derivatives of periods of the holomorphic form

The Griffiths-Dwork Technique in \mathbb{P}^{n}

We want to compute the Picard-Fuchs equation for a one-parameter family of Calabi-Yau hypersurfaces X_{t} in \mathbb{P}^{n}.

Plan

- $\frac{d}{d t} \int \alpha=\int \frac{d}{d t}(\alpha)$
- Since $H^{*}\left(X_{t}, \mathbb{C}\right)$ is a finite-dimensional vector space, only finitely many derivatives can be linearly independent
- Thus, there must be $\mathbb{C}(t)$-linear relationships between derivatives of periods of the holomorphic form
- Use Res to convert to a polynomial algebra problem in $\mathbb{C}(t)\left[z_{1}, \ldots, z_{n+1}\right] / J$

The Griffiths-Dwork Technique
 Advantages and Disadvantages

Advantages
We can work with arbitrary polynomial parametrizations of hypersurfaces.

Disadvantages
We need powerful computer algebra systems to work with $\mathbb{C}(t)\left[z_{1}, \ldots, z_{n+1}\right] / J$.

Extending the Griffiths-Dwork Technique

Cox and Katz discuss the Griffiths-Dwork technique for:

- Weighted projective spaces
- Ample hypersurfaces in varieties obtained from simplicial fans
- Discrete group quotients of these spaces

Problem
What if the fan over the faces of a polytope is not simplicial?

Extending the Residue Map

- Anvar Mavlyutov showed that Res can be defined for semiample, quasismooth hypersurfaces in simplicial toric varieties.

$$
\text { Res : } \mathbb{C}\left[z_{1}, \ldots, z_{q}\right] / J \rightarrow H^{n-1}(X) \text {. }
$$

- In this case, Res may not be injective.

The Skew Octahedron

- Let \diamond be the reflexive octahedron with vertices $v_{1}=(1,0,0)$, $v_{2}=(1,2,0), v_{3}=(1,0,2), v_{4}=(-1,0,0), v_{5}=(-1,-2,0)$, and $v_{6}=(-1,0,-2)$.
- \diamond contains 19 lattice points.
- Let R be the fan obtained by taking cones over the faces of \diamond. Then R defines a toric variety V_{R} which is isomorphic to $\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}\right) /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$.

A Symmetric Hypersurface Family

$$
\begin{aligned}
f(t) & =t \cdot z_{0} z_{1} z_{2} z_{3} z_{4} z_{5} z_{6} z_{7} z_{8} z_{9} z_{10} z_{11} z_{12} z_{13} z_{14} z_{15} z_{16} z_{17} \\
& +z_{1}^{2} z_{2}^{2} z_{5}^{2} z_{6}^{2} z_{7}^{2} z_{8}^{2} z_{9} z_{10} z_{11} z_{12} z_{13} z_{14} z_{15} \\
& +z_{10}^{2} z_{2}^{2} z_{4}^{2} z_{5}^{2} z_{6}^{2} z_{7} z_{8} z_{9}^{2} z_{11} z_{12} z_{13} z_{16} z_{17} \\
& +z_{0}^{2} z_{1}^{2} z_{2}^{2} z_{6} z_{7} z_{8}^{2} z_{10} z_{12} z_{13}^{2} z_{14} z_{15}^{2} z_{17} \\
& +z_{0}^{2} z_{2}^{2} z_{4}^{2} z_{6} z_{8} z_{9} z_{10}^{2} z_{12} z_{13}^{2} z_{15} z_{16} z_{17}^{2} \\
& +z_{1}^{2} z_{3}^{2} z_{5}^{2} z_{6} z_{7}^{2} z_{8} z_{9} z_{11}^{2} z_{12} z_{14}^{2} z_{15} z_{16} \\
& +z_{3}^{2} z_{4}^{2} z_{5}^{2} z_{6} z_{7} z_{9}^{2} z_{10} z_{11}^{2} z_{12} z_{14} z_{16}^{2} z_{17} \\
& +z_{0}^{2} z_{1}^{2} z_{3}^{2} z_{7} z_{8} z_{11} z_{12} z_{13} z_{14}^{2} z_{15}^{2} z_{16} z_{17} \\
& +z_{0}^{2} z_{3}^{2} z_{4}^{2} z_{9} z_{10} z_{11} z_{12} z_{13} z_{14} z_{15} z_{16}^{2} z_{17}^{2}
\end{aligned}
$$

The Picard-Fuchs Equation

Theorem (MSW)
Let $\omega=\int \operatorname{Res}\left(\frac{\Omega_{0}}{f}\right)$. Then ω is the period of a holomorphic form, and satisfies the Picard-Fuchs equation

$$
\frac{\partial^{3} \omega}{\partial t^{3}}+\frac{6\left(t^{2}-32\right)}{t\left(t^{2}-64\right)} \frac{\partial^{2} \omega}{\partial t^{2}}+\frac{7 t^{2}-64}{t^{2}\left(t^{2}-64\right)} \frac{\partial \omega}{\partial t}+\frac{1}{t\left(t^{2}-64\right)} \omega=0
$$

The Picard-Fuchs Equation

Theorem (MSW)
Let $\omega=\int \operatorname{Res}\left(\frac{\Omega_{0}}{f}\right)$. Then ω is the period of a holomorphic form, and satisfies the Picard-Fuchs equation

$$
\frac{\partial^{3} \omega}{\partial t^{3}}+\frac{6\left(t^{2}-32\right)}{t\left(t^{2}-64\right)} \frac{\partial^{2} \omega}{\partial t^{2}}+\frac{7 t^{2}-64}{t^{2}\left(t^{2}-64\right)} \frac{\partial \omega}{\partial t}+\frac{1}{t\left(t^{2}-64\right)} \omega=0
$$

- As expected, the differential equation is third-order
- The differential equation is a symmetric square

Polytopes, Polynomials, and String Theory

Ursula Whitcher
ursula@math.hmc.edu
Harvey Mudd College

August 2010

