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Let’s look at a hypersurface in the toric variety V� described by the triangle � in the N lattice with vertices
at (0, 1),(2,−1), and (−2,−1). (This triangle and its dual are illustrated in Avram et al., Figure 1.) The
triangle � has eight lattice points aside from the origin. We label them as follows: v1 = (1, 0), v2 = (−1, 0),
v3 = (0, 1), v4 = 2,−1), v5 = (−2,−1), v6 = (1,−1), v7 = (0,−1), v8 = (−1,−1). Each vertex corresponds to
a homogeneous coordinate in the homogeneous-coordinate description of V�.

Vertices v1, v2, and the origin define a one-dimensional reflexive polytope contained in �. This data yields
a fibration of V� with a P1 fiber; the fiber has homogeneous coordinates (z1, z2). According to Perevalov and
Skarke Equation (27), the base space of this fibration is another copy of P1 with homogeneous coordinates
(zupper, zlower), where zupper = z3 and zlower = z4z5z6z7z8.

We have the following equation for a hypersurface in V�:

p =
∑

x∈�0∩M

cx

n∏
k=1

z
〈vk,x〉+1
k .

We would like to write an equation for the restriction of p to our fiber. To do this, we use Equations
(18) and (19) from Kreuzer and Skarke. The first step is to divide the vertices of �0 into equivalence classes
according to the rule:

x ∼ y if x− y ∈ Mbase.

In our example, Mbase is generated by (0, 1). Thus, the vertices of �0 fall into the following equivalence
classes: [(0, 1)] = {(0, 1), (0, 0), (0,−1)}, [(1,−1)] = {(1,−1)}, and [(−1,−1)] = {(−1,−1)}. Equation (19) of
Kreuzer and Skarke tells us that we can rewrite p as

p = a′[(0,1)]z1z2 + a′[(1,−1)]z
2
1 + a′[(−1,−1)]z

2
2 .

The coefficients a′[(0,1)], a′[(1,−1)], and a′[(−1,−1)] are as follows:

a′[(0,1)] = a(0,1)z
2
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The coefficients depend only on the coordinates z3, . . . , z8, which are used to define the base space. However,
the coefficients do not depend only on the coordinates (zupper, zlower) of our base space. Consider the point
(λ, 1) in the base space. This point corresponds to many different choices of the z3, . . . , z8. For example, we
may take z3 = λ, z4 = 2, z5 = 1/2, and z6 = z7 = z8 = 1. In this case, p becomes

p1 = (a(0,1)λ
2 + a(0,0)λ + a(0,−1))z1z2 + a(1,−1)16z2

1 + a(−1,−1)
1
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z2
2 .

But if z3 = λ, z4 = 1/2, z5 = 2, and z6 = z7 = z8 = 1, then p becomes

p2 = (a(0,1)λ
2 + a(0,0)λ + a(0,−1))z1z2 + a(1,−1)

1
16

z2
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2 .
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The polynomials p1 and p2 are different (except for certain very special choices of the coefficients a(1,−1)

and a(−1,−1)) and vanish on different subsets of the fiber. Thus, we have defined two different hypersurfaces
in the fiber which correspond to the same base point (λ, 1).
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