K3 Surfaces with \mathcal{S}_{4} Symmetry

Ursula Whitcher
ursula@math.hmc.edu
Harvey Mudd College

May 2011

- Dagan Karp (HMC)
- Jacob Lewis (Universität Wien)
- Daniel Moore (HMC '11)
- Dmitri Skjorshammer (HMC '11)
- Ursula Whitcher (HMC)

Outline

K3 Surfaces and Picard-Fuchs Equations

Hypersurfaces in Toric Varieties

Symmetric Families

Computing Picard-Fuchs Equations

Modular Properties

References

K3 surfaces

K3 surfaces are named after Kummer, Kähler, Kodaira . . .

and the mountain K 2 .

Examples of K3 surfaces

All K3 surfaces are diffeomorphic.

- Smooth quartics in \mathbb{P}^{3}
- Double covers of \mathbb{P}^{2} branched over a smooth sextic

$$
w^{2}=f_{6}(x, y, z)
$$

- Hypersurfaces in certain 3-dimensional toric varieties

K3 surfaces from elliptic curves

Let E_{1} and E_{2} be elliptic curves, and let $A=E_{1} \times E_{2}$.

- The Kummer surface $\operatorname{Km}(A)$ is the minimal resolution of $A /\{ \pm 1\}$.
- The Shioda-Inose surface $S I(A)$ is the minimal resolution of $K m(A) / \beta$, where β is an appropriately chosen involution.

The Hodge diamond of a K3 surface

Any K3 surface X admits a nowhere-vanishing holomorphic two-form ω which is unique up to scalar multiples.

The Picard group

$$
\begin{aligned}
\operatorname{Pic}(X) & =H^{1,1}(X, \mathbb{C}) \cap H^{2}(X, \mathbb{Z}) \\
0 & \leq \operatorname{rank} \operatorname{Pic}(X) \leq 20
\end{aligned}
$$

The Picard group

$$
\begin{aligned}
\operatorname{Pic}(X) & =H^{1,1}(X, \mathbb{C}) \cap H^{2}(X, \mathbb{Z}) \\
0 & \leq \operatorname{rank} \operatorname{Pic}(X) \leq 20
\end{aligned}
$$

- We may identify $\operatorname{Pic}(X)$ with the Néron-Severi group of algebraic curves using Poincaré duality.
- $\operatorname{Pic}(X) \subset \omega^{\perp}$
- rank $\operatorname{Pic}(X)$ can jump within a family of K 3 surfaces

Varying complex structure for K3 surfaces

Let X_{α} be a family of K 3 surfaces, and let M be a free abelian group. Suppose

$$
M \hookrightarrow \operatorname{Pic}\left(X_{\alpha}\right) .
$$

Then:

- $\omega \perp M$ for each X_{α}
- If M has rank 19 , then the variation of complex structure has 1 degree of freedom.

Picard-Fuchs equations

- A period is the integral of a differential form with respect to a specified homology class.
- Periods of holomorphic forms encode the complex structure of varieties.
- The Picard-Fuchs differential equation of a family of varieties is a differential equation that describes the way the value of a period changes as we move through the family.
- Solutions to Picard-Fuchs equations for holomorphic forms on Calabi-Yau varieties define the mirror map.

Picard-Fuchs equations for rank 19 families

Let M be a free abelian group of rank 19, and suppose $M \hookrightarrow \operatorname{Pic}\left(X_{t}\right)$.

- The Picard-Fuchs equation is Fuchsian.
- The Picard-Fuchs equation is a rank 3 ordinary differential equation.

Symmetric Squares

The symmetric square of the differential equation

$$
a_{2} \frac{\partial^{2} A}{\partial t^{2}}+a_{1} \frac{\partial A}{\partial t}+a_{0} A=0
$$

is

$$
\begin{aligned}
a_{2}^{2} \frac{\partial^{3} A}{\partial t^{3}}+3 a_{1} a_{2} \frac{\partial^{2} A}{\partial t^{2}}+\left(4 a_{0} a_{2}+\right. & \left.2 a_{1}^{2}+a_{2} a_{1}^{\prime}-a_{1} a_{2}^{\prime}\right) \frac{\partial A}{\partial t}+ \\
& \left(4 a_{0} a_{1}+2 a_{0}^{\prime} a_{2}-2 a_{0} a_{2}^{\prime}\right) A=0
\end{aligned}
$$

where primes denote derivatives with respect to t.

Picard-Fuchs equations and symmetric squares

Theorem
[D00, Theorem 5] The Picard-Fuchs equation of a family of rank-19 lattice-polarized K3 surfaces can be written as the symmetric square of a second-order homogeneous linear Fuchsian differential equation.

Some Picard rank 19 families

- Hosono, Lian, Oguiso, Yau:

$$
x+1 / x+y+1 / y+z+1 / z-\Psi=0
$$

- Verrill:

$$
(1+x+x y+x y z)(1+z+z y+z y x)=(\lambda+4)(x y z)
$$

- Narumiya-Shiga:

$$
\begin{array}{r}
Y_{0}+Y_{1}+Y_{2}+Y_{3}-4 t Y_{4} \\
Y_{0} Y_{1} Y_{2} Y_{3}-Y_{4}^{4}
\end{array}
$$

Lattices

Let N be a lattice isomorphic to \mathbb{Z}^{n}. The dual lattice M of N is given by $\operatorname{Hom}(N, \mathbb{Z})$; it is also isomorphic to \mathbb{Z}^{n}. We write the pairing of $v \in N$ and $w \in M$ as $\langle v, w\rangle$.

Cones

A cone in N is a subset of the real vector space $N_{\mathbb{R}}=N \otimes \mathbb{R}$ generated by nonnegative \mathbb{R}-linear combinations of a set of vectors $\left\{v_{1}, \ldots, v_{m}\right\} \subset N$. We assume that cones are strongly convex, that is, they contain no line through the origin.

Figure: Cox, Little, and Schenk

Fans

A fan Σ consists of a finite collection of cones such that:

- Each face of a cone in the fan is also in the fan
- Any pair of cones in the fan intersects in a common face.

Figure: Cox, Little, and Schenk

Simplicial fans

We say a fan Σ is simplicial if the generators of each cone in Σ are linearly independent over \mathbb{R}.

Lattice polytopes

A lattice polytope \diamond is the convex hull of a finite set of points in a lattice. We assume that our lattice polytopes contain the origin.

Definition

Let Δ be a lattice polytope in N which contains $(0,0)$. The polar polytope Δ° is the polytope in M given by:
$\left\{\left(m_{1}, \ldots, m_{k}\right):\left(n_{1}, \ldots, n_{k}\right) \cdot\left(m_{1}, \ldots, m_{k}\right) \geq-1\right.$ for all $\left.\left(n_{1}, n_{2}\right) \in \Delta\right\}$

Reflexive polytopes

Definition

A lattice polytope Δ is reflexive if Δ° is also a lattice polytope.

If Δ is reflexive, $\left(\Delta^{\circ}\right)^{\circ}=\Delta$.

Fans from polytopes

We may define a fan using a polytope in several ways:

1. Take the fan R over the faces of $\diamond \subset N$.
2. Refine R by using other lattice points in \diamond as generators of one-dimensional cones.
3. Take the normal fan S to $\diamond^{\circ} \subset M$.

Toric varieties as quotients

- Let Σ be a fan in \mathbb{R}^{n}.
- Let $\left\{v_{1}, \ldots, v_{q}\right\}$ be generators for the one-dimensional cones of Σ.
- Σ defines an n-dimensional toric variety V_{Σ}.
- V_{Σ} is the quotient of a subset $\mathbb{C}^{q}-Z(\Sigma)$ of \mathbb{C}^{q} by a subgroup of $\left(\mathbb{C}^{*}\right)^{q}$.
- Each one-dimensional cone corresponds to a coordinate z_{i} on V_{Σ}.

Example

Let R be the fan obtained by taking cones over the faces of $\diamond . Z(\Sigma)$ consists of points of the form $\left(0,0, z_{3}, z_{4}\right)$ or ($z_{1}, z_{2}, 0,0$).
Figure: Polygon \diamond

$$
\begin{gathered}
V_{R}=\left(\mathbb{C}^{4}-Z(\Sigma)\right) / \sim \\
\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \sim\left(\lambda_{1} z_{1}, \lambda_{1} z_{2}, z_{3}, z_{4}\right) \\
\left(z_{1}, z_{2}, z_{3}, z_{4}\right) \sim\left(z_{1}, z_{2}, \lambda_{2} z_{3}, \lambda_{2} z_{4}\right)
\end{gathered}
$$

where $\lambda_{1}, \lambda_{2} \in \mathbb{C}^{*}$. Thus, $V_{R}=\mathbb{P}^{1} \times \mathbb{P}^{1}$.

K3 hypersurfaces

- Let \diamond be a 3-dimensional reflexive polytope, with polar polytope \diamond°.
- Let R be the fan over the faces of \diamond
- Let Σ be a simplicial refinement of R
- Let $\left\{v_{k}\right\} \subset \diamond \cap N$ generate the one-dimensional cones of Σ
- Let c_{X} be complex numbers

K3 hypersurfaces

- Let \diamond be a 3-dimensional reflexive polytope, with polar polytope \diamond°.
- Let R be the fan over the faces of \diamond
- Let Σ be a simplicial refinement of R
- Let $\left\{v_{k}\right\} \subset \diamond \cap N$ generate the one-dimensional cones of Σ
- Let c_{X} be complex numbers

The following polynomial defines a $K 3$ surface X in V_{Σ} :

$$
f=\sum_{x \in \diamond^{\circ} \cap M} c_{x} \prod_{k=1}^{q} z_{k}^{\left\langle v_{k}, x\right\rangle+1}
$$

Quasismooth and regular hypersurfaces

Let Σ be a simplicial fan, and let X be a hypersurface in V_{Σ}. Suppose that X is described by a polynomial f in homogeneous coordinates.

Definition
If the derivatives $\partial f / \partial z_{i}, i=1 \ldots q$ do not vanish simultaneously on X, we say X is quasismooth.

Quasismooth and regular hypersurfaces

Let Σ be a simplicial fan, and let X be a hypersurface in V_{Σ}. Suppose that X is described by a polynomial f in homogeneous coordinates.

Definition

If the derivatives $\partial f / \partial z_{i}, i=1 \ldots q$ do not vanish simultaneously on X, we say X is quasismooth.

Definition
If the products $z_{i} \partial f / \partial z_{i}, i=1 \ldots q$ do not vanish simultaneously on X, we say X is regular and f is nondegenerate.

Semiample hypersurfaces

- Let R be a fan over the faces of a reflexive polytope
- Let Σ be a refinement of R
- We have a proper birational morphism $\pi: V_{\Sigma} \rightarrow V_{R}$
- Let Y be an ample divisor in V_{R}, and suppose $X=\pi^{*}(Y)$

Then X is semiample:

Definition

We say that a Cartier divisor D is semiample if D is generated by global sections and the intersection number $D^{n}>0$.

Toric realizations of the rank 19 families

The polar polytopes \diamond° for [HLOY04], [V96], and [NS01].

$$
f(t)=\left(\sum_{x \in \operatorname{vertices}\left(\diamond^{0}\right)} \prod_{k=1}^{q} z_{k}^{\left\langle v_{k}, x\right\rangle+1}\right)+t \prod_{k=1}^{q} z_{k}
$$

What do these polytopes have in common?

What do these polytopes have in common?

- The only lattice points of these polytopes are the vertices and the origin.

What do these polytopes have in common?

- The only lattice points of these polytopes are the vertices and the origin.
- The group G of orientation-preserving symmetries of the polytope acts transitively on the vertices.

Another symmetric polytope

Figure: The skew cube

$$
f(t)=\left(\sum_{x \in \operatorname{vertices}\left(\diamond^{\circ}\right)} \prod_{k=1}^{q} z_{k}^{\left\langle v_{k}, x\right\rangle+1}\right)+t \prod_{k=1}^{q} z_{k} .
$$

Dual rotations

Figure: \diamond

Figure: \diamond°

We may view a rotation as acting either on \diamond (inducing automorphisms on X_{t}) or on \diamond° (permuting the monomials of $f(t))$.

Symplectic Group Actions

Let G be a finite group of automorphisms of a K3 surface. For $g \in G$,

$$
g^{*}(\omega)=\rho \omega
$$

where ρ is a root of unity.
Definition
We say G acts symplectically if

$$
g^{*}(\omega)=\omega
$$

for all $g \in G$.

A subgroup of the Picard group

Definition

$$
S_{G}=\left(\left(H^{2}(X, \mathbb{Z})^{G}\right)^{\perp}\right.
$$

Theorem ([N80a])
S_{G} is a primitive, negative definite sublattice of $\operatorname{Pic}(X)$.

The rank of S_{G}

Lemma

- If X admits a symplectic action by the permutation group $G=\mathcal{S}_{4}$, then $\operatorname{Pic}(X)$ admits a primitive sublattice S_{G} which has rank 17.
- If X admits a symplectic action by the alternating group $G=\mathcal{A}_{4}$, then $\operatorname{Pic}(X)$ admits a primitive sublattice S_{G} which has rank 16.

Why is the Picard rank 19?

Figure: \diamond

We can use the orbits of G on \diamond to identify divisors in $\left(H^{2}\left(X_{t}, \mathbb{Z}\right)\right)^{G}$.

Why is the Picard rank 19?

Figure: \diamond

We can use the orbits of G on \diamond to identify divisors in $\left(H^{2}\left(X_{t}, \mathbb{Z}\right)\right)^{G}$.

- For the families of [HLOY04] and [V96], and the family defined by the skew cube, we conclude that $17+2=19$.
- For the family of [NS01], we conclude that $16+3=19$.

The residue map

We will use a residue map to describe the cohomology of a K3 hypersurface X :

$$
\text { Res : } H^{3}\left(V_{\Sigma}-X\right) \rightarrow H^{2}(X) .
$$

Anvar Mavlyutov showed that Res is well-defined for quasismooth, semiample hypersurfaces in simplicial toric varieties.

Two ideals

Definition
The Jacobian ideal $J(f)$ is the ideal of $\mathbb{C}\left[z_{1}, \ldots, z_{q}\right]$ generated by the partial derivatives $\partial f / \partial z_{i}, i=1 \ldots q$.

Definition
[BC94] The ideal $J_{1}(f)$ is the ideal quotient

$$
\left\langle z_{1} \partial f / \partial z_{1}, \ldots, z_{q} \partial f / \partial z_{q}\right\rangle: z_{1} \cdots z_{q}
$$

The induced residue map

Let Ω_{0} be a holomorphic 3-form on V_{Σ}. We may represent elements of $H^{3}\left(V_{\Sigma}-X\right)$ by forms $\frac{P \Omega_{0}}{f^{k}}$, where P is a polynomial in $\mathbb{C}\left[z_{1}, \ldots, z_{q}\right]$.

Mavlyutov described two induced residue maps on semiample hypersurfaces:

- Res $: \mathbb{C}\left[z_{1}, \ldots, z_{q}\right] / J \rightarrow H^{2}(X)$ is well-defined for quasismooth hypersurfaces
- $\operatorname{Res}_{J_{1}}: \mathbb{C}\left[z_{1}, \ldots, z_{q}\right] / J_{1} \rightarrow H^{2}(X)$ is well-defined for regular hypersurfaces.

Whither injectivity?

Res J is injective for smooth hypersurfaces in \mathbb{P}^{3}, but this does not hold in general.

Theorem
[M00] If X is a regular, semiample hypersurface, then the residue map $\operatorname{Res}_{\jmath_{1}}$ is injective.

The Griffiths-Dwork technique Plan

We want to compute the Picard-Fuchs equation for a one-parameter family of K3 hypersurfaces X_{t}.

- Look for $\mathbb{C}(t)$-linear relationships between derivatives of periods of the holomorphic form
- Use Res」 to convert to a polynomial algebra problem in $\mathbb{C}(t)\left[z_{1}, \ldots, z_{q}\right] / J(f)$

The Griffiths-Dwork technique

Procedure
1.

$$
\begin{aligned}
\frac{d}{d t} \int \operatorname{Res}\left(\frac{P \Omega}{f^{k}(t)}\right) & =\int \operatorname{Res}\left(\frac{d}{d t}\left(\frac{P \Omega}{f^{k}(t)}\right)\right) \\
& =-k \int \operatorname{Res}\left(\frac{f^{\prime}(t) P \Omega}{f^{k+1}(t)}\right)
\end{aligned}
$$

The Griffiths-Dwork technique

Procedure
1.

$$
\begin{aligned}
\frac{d}{d t} \int \operatorname{Res}\left(\frac{P \Omega}{f^{k}(t)}\right) & =\int \operatorname{Res}\left(\frac{d}{d t}\left(\frac{P \Omega}{f^{k}(t)}\right)\right) \\
& =-k \int \operatorname{Res}\left(\frac{f^{\prime}(t) P \Omega}{f^{k+1}(t)}\right)
\end{aligned}
$$

2. Since $H^{*}\left(X_{t}, \mathbb{C}\right)$ is a finite-dimensional vector space, only finitely many of the classes $\operatorname{Res}\left(\frac{d^{j}}{d t^{j}}\left(\frac{\Omega}{f^{k}(t)}\right)\right)$ can be linearly independent

The Griffiths-Dwork technique

Procedure
1.

$$
\begin{aligned}
\frac{d}{d t} \int \operatorname{Res}\left(\frac{P \Omega}{f^{k}(t)}\right) & =\int \operatorname{Res}\left(\frac{d}{d t}\left(\frac{P \Omega}{f^{k}(t)}\right)\right) \\
& =-k \int \operatorname{Res}\left(\frac{f^{\prime}(t) P \Omega}{f^{k+1}(t)}\right)
\end{aligned}
$$

2. Since $H^{*}\left(X_{t}, \mathbb{C}\right)$ is a finite-dimensional vector space, only finitely many of the classes $\operatorname{Res}\left(\frac{d^{j}}{d t^{j}}\left(\frac{\Omega}{f^{k}(t)}\right)\right)$ can be linearly independent
3. Use the reduction of pole order formula to compare classes of the form $\operatorname{Res}\left(\frac{P \Omega}{f^{k+1}(t)}\right)$ to classes of the form $\operatorname{Res}\left(\frac{Q \Omega}{f^{k}(t)}\right)$

The Griffiths-Dwork technique

Implementation

Reduction of pole order

$$
\frac{\Omega_{0}}{f^{k+1}} \sum_{i} P_{i} \frac{\partial f}{\partial x_{i}}=\frac{1}{k} \frac{\Omega_{0}}{f^{k}} \sum_{i} \frac{\partial P_{i}}{\partial x_{i}}+\text { exact terms }
$$

We use Groebner basis techniques to rewrite polynomials in terms of $J(f)$.

The Griffiths-Dwork technique

Advantages and disadvantages

Advantages
We can work with arbitrary polynomial parametrizations of hypersurfaces.

Disadvantages
We need powerful computer algebra systems to work with $J(f)$ and $\mathbb{C}(t)\left[z_{1}, \ldots, z_{q}\right] / J(f)$.

The Skew Octahedron

- Let \diamond be the reflexive octahedron shown above.
- \diamond contains 19 lattice points.
- Let R be the fan obtained by taking cones over the faces of \diamond. Then R defines a toric variety
$V_{R} \cong\left(\mathbb{P}^{1} \times \mathbb{P}^{1} \times \mathbb{P}^{1}\right) /\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}\right)$.
- Consider the family of K 3 surfaces X_{t} defined by $f(t)=\left(\sum_{x \in \operatorname{vertices}\left(\diamond^{\circ}\right)} \prod_{k=1}^{q} z_{k}^{\left\langle v_{k}, x\right\rangle+1}\right)+t \prod_{k=1}^{q} z_{k}$.
- X_{t} are generally quasismooth but not regular.

The Picard-Fuchs equation

Theorem ([KLMSW10])
Let $A=\int \operatorname{Res}\left(\frac{\Omega_{0}}{f}\right)$. Then A is the period of a holomorphic form on X_{t}, and A satisfies the Picard-Fuchs equation

$$
\frac{\partial^{3} A}{\partial t^{3}}+\frac{6\left(t^{2}-32\right)}{t\left(t^{2}-64\right)} \frac{\partial^{2} A}{\partial t^{2}}+\frac{7 t^{2}-64}{t^{2}\left(t^{2}-64\right)} \frac{\partial A}{\partial t}+\frac{1}{t\left(t^{2}-64\right)} A=0 .
$$

As expected, the differential equation is third-order and Fuchsian.

Symmetric square root

The symmetric square root of our Picard-Fuchs equation is:

$$
\frac{\partial^{2} A}{\partial t^{2}}+\frac{\left(2 t^{2}-64\right)}{t\left(t^{2}-64\right)} \frac{\partial A}{\partial t}+\frac{1}{4\left(t^{2}-64\right)} A=0
$$

Mirror Moonshine

Mirror Moonshine for a one-parameter family of K3 surfaces arises when there exists a genus 0 modular group $\Gamma \subset P S L_{2}(\mathbb{R})$ such that

- The Picard-Fuchs equation gives the base of the family the structure of a (pull-back of a) modular curve \mathbb{H} / Γ.
- The mirror map is commensurable with a hauptmodul for Γ.
- The holomorphic solution to the Picard-Fuchs equation is a Γ-modular form of weight 2.

Mirror Moonshine from geometry

Example	$[\mathrm{HLOY} 04]$	$[\mathrm{V} 96]$
Shioda-Inose structure	$E_{1}, E_{2}\left(E_{1} \times E_{2}\right)$	$S I\left(E_{1} \times E_{2}\right)$
$\operatorname{Pic}(X)^{\perp}$	$H \oplus\langle 12\rangle$	$H \oplus\langle 6\rangle$
Γ	$\Gamma_{0}(6)+6$	$\Gamma_{0}(6)+3 \subset \Gamma_{0}(3)+3$

Geometry of the skew octahedron family

- X_{t} is a family of Kummer surfaces
- Each surface can be realized as $\operatorname{Km}\left(E_{t} \times E_{t}\right)$
- The generic transcendental lattice is $2 H \oplus\langle 4\rangle$

The modular group

We use our symmetric square root and the table of [LW06] to show that:

$$
\begin{aligned}
\Gamma & =\Gamma_{0}(4 \mid 2) \\
& =\left\{\left.\left(\begin{array}{cc}
a & b / 2 \\
4 c & d
\end{array}\right) \in P S L_{2}(\mathbb{R}) \right\rvert\, a, b, c, d \in \mathbb{Z}\right\}
\end{aligned}
$$

$\Gamma_{0}(4 \mid 2)$ is conjugate in $P S L_{2}(\mathbb{R})$ to $\Gamma_{0}(2) \subset P S L_{2}(\mathbb{Z})=\Gamma_{0}(1)+1$.

囯 Batyrev，V．and Cox，D．On the Hodge structure of projective hypersurfaces in toric varieties．Duke Mathematical Journal 75， 1994.

Doran，C．Picard－Fuchs uniformization and modularity of the mirror map．Communications in Mathematical Physics 212 （2000），no．3，625－647．

雷 Hosono，S．，Lian，B．H．，Oguiso，K．，and Yau，S．－T． Autoequivalences of derived category of a $K 3$ surface and monodromy transformations．Journal of Algebraic Geometry 13，no．3， 2004.

Rarp，D．，Lewis，J．，Moore，D．，Skjorshammer，D．，and Whitcher，U．＂On a family of K3 surfaces with \mathcal{S}_{4} symmetry＂． http：／／www．math．hmc．edu／～ursula／research／S4symmetry．pdf

目 Lian，B．H．and Wiczer，J．L．Genus Zero Modular Functions， 2006.
http：／／people．brandeis．edu／～lian／Schiff．pdf
目 Mavlyutov，A．Semiample hypersurfaces in toric varieties． Duke Mathematical Journal 101 （2000），no．1，85－116．

圊 Narumiya，N．and Shiga，H．The mirror map for a family of K3 surfaces induced from the simplest 3－dimensional reflexive polytope．Proceedings on Moonshine and related topics，AMS 2001.
（ini Nikulin，V．Finite automorphism groups of Kähler K3 surfaces． Transactions of the Moscow Mathematical Society 38， 1980.

圊 SAGE Mathematics Software，Version 3．4， http：／／www．sagemath．org／

Rerrill，H．Root lattices and pencils of varieties．Journal of Mathematics of Kyoto University 36，no．2， 1996.

K3 Surfaces with \mathcal{S}_{4} Symmetry
$\left\llcorner_{\text {References }}\right.$

The next big polytope . . .

