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Where’s the Theory of Everything?

I We understand gravity on a
large spatial scale (planets,
stars, galaxies).

Figure: S. Bush et al.

I We understand quantum
physics on a small spatial
scale (electrons, photons,
quarks).



Are Strings the Answer?

I “Fundamental” particles are strings vibrating at different
frequencies.

I Strings wrap other dimensions!



T -Duality

Pairs of Universes
An extra dimension shaped like a circle of radius R and an extra
dimension shaped like a circle of radius α′/R yield indistinguishable
physics! (The slope parameter α′ has units of length squared.)

Figure: Large radius, few windings
Figure: Small radius, many windings



Building a Model

Locally, space-time should look like

M3,1 × V .

I M3,1 is four-dimensional space-time

I V is a d-dimensional complex manifold

I Physicists require d = 3 (6 real dimensions)

I V is a Calabi-Yau manifold



Mirror Symmetry

Physicists say . . .

I Calabi-Yau manifolds appear in pairs (V ,V ◦).

I The universes described by M3,1 × V and M3,1 × V ◦ have the
same observable physics.

Mathematicians say . . .

I Calabi-Yau manifolds appear in paired families (Vα,V
◦
α).

I The families Vα and V ◦α have dual geometric properties.



Realizing Mirror Symmetry Geometrically

We need:

I Complex manifolds

I which are Calabi-Yau

I and arise in paired or “mirror” families

I with dual geometric properties.

Varying complex structure in one family should correspond to
varying Kähler structure in the other family.



Complex Structure

An n-dimensional complex manifold is a geometric space which
looks locally like Cn.

Example: Elliptic Curves

We can think of varying the parameter τ as either changing the
complex manifold, or changing the complex structure on an
underlying topological 2-torus.



Kähler Structure
Standard Product

We can pair vectors v and w with their tails at a point z in C
using the product for complex numbers:

〈v ,w〉 = vw

Note that 〈v , v〉 = ||v ||2.

More generally, if ~v =

v1
...
vn

 and ~w =

w1
...
wn

 are vectors with

their tails at a point z = (z1, . . . , zn) in Cn, their standard
Hermitian product is given by

〈~v , ~w〉 =
∑

viwi

= ~vT~w



Kähler Structure
Hermitian metrics

A Hermitian metric H tells us how to pair tangent vectors at any
point of a complex manifold and obtain a complex number.

H(~v , ~w) = H(~w , ~v)

Elliptic Curve Example

We can use the standard Hermitian product on C to describe a
Hermitian metric for tangent vectors to an elliptic curve.
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Kähler Structure
Kähler Metrics

A Kähler metric is a special type of Hermitian metric which can be
written in local coordinates as follows. If ~v and ~w are vectors with
their tails at a point z0 in Cn,

κ(~v , ~w) = ~vT (I + G(z)) ~w .

Here I is the identity matrix and

G(z) =

g11(z) . . . g1n(z)
...

. . .
...

gn1(z) . . . gnn(z)


vanishes up to order 2 at z0.



The Geometric Ingredients of Mirror Symmetry

We need:

I Complex manifolds V

I which are Calabi-Yau

I and arise in paired or “mirror” families

I with dual geometric properties.

Varying complex structure in one family should correspond to
varying Kähler structure in the other family.



Batyrev’s Insight

We can describe mirror families of Calabi-Yau manifolds using
combinatorial objects called reflexive polytopes.



Lattice Polygons

The points in the plane with integer coordinates form a lattice N.
A lattice polygon is a polygon in the plane which has vertices in
the lattice.



Reflexive Polygons
We say a lattice polygon is reflexive if it has only one lattice point,
the origin, in its interior.

Figure: A reflexive triangle



Describing a Reflexive Polygon

I List the vertices

{(0, 1), (1, 0), (−1,−1)}
I List the equations of the edges

−x − y = −1

2x − y = −1

−x + 2y = −1
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A Dual Lattice

Let M be another copy of the points in the plane with integer
coordinates.
The dot product lets us pair points in N with points in M:

(n1, n2) · (m1,m2) = n1m1 + n2m2



Polar Polygons
Edge equations define new polygons

Let ∆ be a lattice polygon in N which contains (0, 0). The polar
polygon ∆◦ is the polygon in M given by:

{(m1,m2) : (n1, n2) · (m1,m2) ≥ −1 for all (n1, n2) ∈ ∆}

(x , y) · (−1,−1) = −1

(x , y) · (2,−1) = −1

(x , y) · (−1, 2) = −1

Figure: Our triangle’s polar polygon
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Mirror Pairs

If ∆ is a reflexive polygon, then:

I ∆◦ is also a reflexive polygon

I (∆◦)◦ = ∆.

∆ and ∆◦ are a mirror pair.



A Polygon Duality

Mirror pair of triangles

Figure: 3 boundary lattice points Figure: 9 boundary lattice points

3 + 9 = 12



Mirror Pairs of Polygons

Figure: F. Rohsiepe, “Elliptic Toric K3 Surfaces and Gauge Algebras”



Other Dimensions

Definition
Let {~v1, ~v2, . . . , ~vq} be a set of points in Rk . The polytope with
vertices {~v1, ~v2, . . . , ~vq} is the convex hull of these points.



Polar Polytopes

Let N be the lattice of points with integer coordinates in Rk . A
lattice polytope has vertices in N.
As before, we have a dual lattice M and a dot product

(n1, . . . , nk) · (m1, . . . ,mk) = n1m1 + · · ·+ nkmk

Definition
Let ∆ be a lattice polygon in N which contains (0, 0). The polar
polytope ∆◦ is the polytope in M given by:

{(m1, . . . ,mk) : (n1, . . . , nk)·(m1, . . . ,mk) ≥ −1 for all (n1, n2) ∈ ∆}



Reflexive Polytopes

Definition
A lattice polytope ∆ is reflexive if ∆◦ is also a lattice polytope.

I If ∆ is reflexive, (∆◦)◦ = ∆.

I ∆ and ∆◦ are a mirror pair.

0 1 2−1−2 0 1 2−1−2
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Reflexive Polytopes

Definition
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Mirror Polytopes Yield Mirror Spaces

polytope ←→ polar polytopey y
Laurent polynomial ←→ mirror Laurent polynomialy y

space ←→ mirror space



From Polytopes to Polynomials

I Standard basis vectors in N ↔ variables zi

(1, 0, . . . , 0)↔ z1

(0, 1, . . . , 0)↔ z2

. . .

(0, 0, . . . , 1)↔ zn

I Lattice points in ∆◦ ↔ monomials defined on (C∗)n

(m1, . . . ,mk)↔
z

(1,0,...,0)·(m1,...,mk )
1 z

(0,1,...,0)·(m1,...,mk )
2 · · · z(0,0,...,1)·(m1,...,mk )

k

I ∆◦ ↔ Laurent polynomials pα defined on (C∗)n



Example
The One-Dimensional Reflexive Polytope

0 1 2−1−2

Figure: ∆

0 1 2−1−2

Figure: ∆◦

I Standard basis vectors in N ↔ variables zi

(1)↔ z1

I Lattice points in ∆◦ ↔ monomials defined on (C∗)n

(−1)↔ z
(1)·(−1)
1 = z−1

1

(0)↔ z
(1)·(0)
1 = 1

(1)↔ z
(1)·(1)
1 = z1
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Example
Continued

0 1 2−1−2

Figure: ∆

0 1 2−1−2

Figure: ∆◦

I ∆◦ ↔ Laurent polynomials pα defined on (C∗)n

∆◦ ↔ pα = α(−1)z
−1
1 + α(0) + α(1)z

1
1

Each choice of parameters (α(−1), α(0), α(1)) defines a Laurent
polynomial.



From Polynomials to Spaces

The solutions to the Laurent polynomials pα describe geometric
spaces.

Example: One Dimensional Polytope

0 1 2−1−2

Figure: ∆

0 1 2−1−2

Figure: ∆◦

Solutions to α(−1)z
−1
1 + α(0) + α(1)z

1
1 = 0 define pairs of nonzero

points in the complex plane.

I −z−1
1 + z1 = 0

z1 = ±1

I z−1
1 + z1 = 0
z1 = ±i



From Polynomials to Spaces

The solutions to the Laurent polynomials pα describe geometric
spaces.
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Example: Two-Dimensional Polytopes

α(−1,2)z
−1
1 z2

2 + · · ·+ α(2,−1)z
2
1 z
−1
2 = 0

Figure: Real part of a curve
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Example: Four-Dimensional Polytopes

Let ∆ be the four-dimensional polytope with vertices (1, 0, 0, 0),
(0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), and (−1,−1,−1,−1).

Figure: Slice of a Calabi-Yau threefold



Compactifying

Our Laurent polynomials pα define spaces which are not compact:
||zi || can be infinitely large. We can solve this problem by adding
in some “points at infinity” using a standard procedure from
algebraic geometry.

The resulting compact spaces Vα are Calabi-Yau varieties of
dimension d = k − 1.

I When k = 2, for generic choice of α, the Vα are elliptic
curves.

I When k = 4, for generic choice of α, the Vα are smooth
3-dimensional Calabi-Yau manifolds.



Mirror Symmetry

polytope ←→ polar polytopey y
Laurent polynomials pα ←→ mirror Laurent polynomials p◦αy y

spaces Vα ←→ mirror spaces V ◦α



Counting Complex Moduli

The possible deformations of complex structure of Vα form a
complex vector space of dimension hd−1,1(Vα).
For k ≥ 4,

hd−1,1(Vα) = `(∆◦)− k − 1−
∑
Γ◦

`∗(Γ◦) +
∑
Θ◦

`∗(Θ◦)`∗(Θ̂◦)

I `() = number of lattice points

I `∗() = number of lattice points in the relative interior of a
polytope or face

I The Γ◦ are codimension 1 faces of ∆◦

I The Θ◦ are codimension 2 faces of Θ◦

I Θ̂◦ is the face of ∆ dual to Θ◦



Counting Kähler Moduli

For k ≥ 4,

h1,1(Vα) = `(∆)− k − 1−
∑

Γ

`∗(Γ) +
∑

Θ

`∗(Θ)`∗(Θ̂)

I `() = number of lattice points

I `∗() = number of lattice points in the relative interior of a
polytope or face

I The Γ are codimension 1 faces of ∆

I The Θ are codimension 2 faces of Θ

I Θ̂ is the face of ∆ dual to Θ



Comparing V and V ◦
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Mirror Symmetry from Mirror Polytopes

We have mirror families of Calabi-Yau varieties Vα and V ◦α of
dimension d = k − 1.

h1,1(Vα) = hd−1,1(V ◦α)

hd−1,1(Vα) = h1,1(V ◦α)



An Example

Four-dimensional analogue:
I ∆ has vertices (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),

and (−1,−1,−1,−1).
I ∆◦ has vertices (−1,−1,−1,−1), (4,−1,−1,−1),

(−1, 4,−1,−1), (−1,−1, 4,−1), and (−1,−1,−1, 4).

h1,1(Vα) = `(∆)− n − 1−
∑

Γ

`∗(Γ) +
∑

Θ

`∗(Θ)`∗(Θ̂)

= 6− 4− 1− 0− 0 = 1.
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Example (Continued)

I ∆ has vertices (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1),
and (−1,−1,−1,−1).

I ∆◦ has vertices (−1,−1,−1,−1), (4,−1,−1,−1),
(−1, 4,−1,−1), (−1,−1, 4,−1), and (−1,−1,−1, 4).

h1,1(Vα) = 1

h3−1,1(Vα) = `(∆◦)− n − 1−
∑
Γ◦

`∗(Γ◦) +
∑
Θ◦

`∗(Θ◦)`∗(Θ̂◦)

= 126− 4− 1− 20− 0 = 101.



The Hodge Diamond
Calabi-Yau Threefolds
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