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Abstract

Multiple imputation technique is becoming a popular method for analyzing data with

missing values. Several methods have been proposed for creating multiple imputations and

most of these methods assume that the data are missing at random (MAR). However, limited

diagnostic tools are available to check whether the imputations created by these methods

are reasonable. This article develops a set of diagnostic tools based on certain conditional

distributions of the observed and imputed values. These conditional distributions should

be similar if the assumed model for creating multiple imputations is a good fit. The tools

are formulated in terms of numerical summaries and graphical displays and could be easily

implemented using the standard complete data software packages. For implementing these

methods the exact nature of the model used by the imputer is not needed. The method is

illustrated using a data set with large number of variables of different types with varying

amount of missing values.

Key words: Congeniality, Diagnostics, Missing at Random, Propensity score matching,

Residuals

1 Introduction

Many data analyses involve incomplete data. Several methods have been proposed for ana-

lyzing incomplete data for particular statistical models such as multivariate normal, loglinear

models etc (see Little and Rubin (2003) for a review) and software for implementing them
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have become available. However, multiple imputation approach (Rubin (1978, 1987)) is more

convenient because it exploits the complete data software to perform the analysis and hence,

is more versatile in terms of handling a variety of statistical models. In the multiple impua-

tion approach, the missing set of values are replaced by several plausible sets of values. Each

plausible value together with the observed set of values forms a completed data. Each com-

pleted data set is analyzed using the standard complete data software. The completed data

point estimates of parameters, their the standard errors and other statistics are combined

to form a single inference (Rubin and Schenker (1986), Li et al (1991a), Li et al (1991b),

Meng and Rubin (1994) and Barnard and Rubin (1999)). Software for creating multiple

imputations and combining completed data analysis is also becoming more available.

Like any other approach for handling missing data, imputation based approaches also

make a set of assumptions and use implicit (such as Hot-deck, Predictive mean matching,

Last observation carried forward etc (Little and Rubin (2002)) or explicit (such as multi-

variate normal, linear regression etc) model assumptions (Schafer (1997)). In addition, most

imputation models assume that the data are missing at random [MAR] (Rubin (1976)).

Random draws from an approximate predictive distribution of the missing values under the

specific model are then used as imputations. Multiple imputation involves repeated inde-

pendent drawing of values from this predictive distribution.

Many practical situations involve complex data structures with missing values in several

types of variables (such as continuous, ordinal, nominal, count, semi-continuous etc) and skip

patterns (for example, some variables are not applicable to a particular group of subjects) and

restrictions (such as years of smoking which are necessarily bounded by the age of the person).

For such complex structures a sequential regression multivariate imputation approach has

been proposed (Kennickel (1992), Van Buuren and Oudshoom (2000) and Raghunathan et

al (2001)). These are Gibbs sampling type iterative procedures in which the missing values

in each variable are imputed conditional on all other variables using appropriate regression

models. The imputations are draws from the corresponding approximate posterior predictive

distribution of the missing values.

Though several methods for creating imputations are available, diagnostic tools to check

the validity of imputed values under the stated assumptions are not well developed. As
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suggested in Abayomi, Gelman and Levy (2005), it is possible to check the imputation

model fit using the observed data and appropriately fine tune the models (for example,

transforming the outcome to achieve normality, if the residual diagnostics indicate lack of

normality). However, even if the model fits the data well, randomly generated values may

not be reasonable. For example, if the log-normal model is deemed to be appropriate for

imputing missing income values based on regression diagnostics, the draws from the posterior

predictive distribution under this model when back transformed to the original scale could

be untenably large compared to the observed values (He and Raghunathan (2006)).

Another possibility is to compare the histograms, descriptive statistics or the frequency

distribution of the observed and imputed values for each variable. Such print outs are

commonly produced by software for creating imputations (see Royston (2004), Raghunathan

et al (1997)). One would expect much agreement between the observed and imputed marginal

distributions only under missing completely at random (MCAR) mechanism.

Consider as an example, Alameda County Study (Hochstim (1970), Berkman and Breslow

(1983)) a large probability sample cohort of approximately 7000 subjects selected in 1965

from the Alameda County, California. We have selected approximately 150 variables and

multiply imputed the missing values using the sequential regression approach, implemented

in IVEWARE (www.isr.umich.edu/src/smp/ive). We created M = 10 imputations.

One of the variables with missing values, Havewage, was a response to the question ”Did

you receive income from wages and salary during the past year?” Approximately 4219 (63%)

subjects answered ”Yes” and 2513 (37%) subjects answered ”No” with 196 people electing

not to answer that question. The missing data percentage is rather small but nevertheless

quite useful to illsutrate the pitfalls of comparing the marginal distribution. In the first

imputed data set, 60 (31%) were imputed to “Yes” and 136 (69%) were imputed to “No”.

The observed and imputed percentages are almost reversed. The same pattern was observed

in the remaining 9 imputed data sets. One may suspect that there is something wrong with

the imputation model based on this comparison. It is unlikely (in fact quite rare) under the

MCAR assumption but it is not clear whether this is suspicious under the MAR assumption.

As the second example, consider a continuous variable, the number of years of smoking

for the current or past smokers. This is relevant only for the current/past smokers and some
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current/past smokers did not answer this question. Figure 1 gives a pair of kernel densities

for the observed and imputed values for the current/past smokers based on the first imputed

data set. Similar pattern was observed in other imputed data sets. It appears that the

observed and imputed values are different. In fact, both Kolmogrov-Smirnov and Kuiper

tests for comparing the two distributions rejects equality for every imputed data set. Does

this mean that there is something wrong with the imputation model? The answer is yes, if

the assumed mechanism is MCAR. But it is not clear what one would expect under MAR.

In many research groups, multiple imputation may have been performed for a large set

of variables. Such strategies are operationally more efficient and may also be more statis-

tically efficient, if the model used by the imputer include sveral predictors of the variables

with missing values. However, an analyst may be interested in fitting a model involving a

subset of variables that may or may not be congenial with the imputer model (Meng, 1995,

2002). Since the analyst’s inferences are conditional on the correctness of his/her model, it is

prudent to know whether the imputation created by the imputer for the subset of variables

is reasonable under the missing at random assumption for the specific analyst model. If it is

not, then analyst may want to perform imputation under his/her model. Model diagnostics

can be used only if the model used by the imputer is available. If the imputer and analyst

are different people or in different organizations then such information may not be available.

We need a set of tools to compare the distributions of the observed and imputed values that

the user could use in the context of his/her analysis model without the exact knowledge of

the model used by the imputer.

2 Proposed Diagnostic Method

Suppose that the survey data set has n observations and p variables, Yv, v = 1, 2, . . . , p.

For simplicity assume that the survey data is a simple random sample. For complex survey

designs, we can use the design variables as predictors while imputing the missing values, a

strategy described and evaluated in Rieter, Raghunathan and Kinney (2006).

For the variable Yv with missing values assume, without loss of any generality, that

the observed values for subject s are yobs,v = {ysv, s = 1, 2, . . . , nv} and ymis,v = {ysv, s =
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nv + 1, nv + 2, . . . , n} is the set of missing values. Let Rsv = 1, s = 1, 2, . . . , nv and Rsv =

0, s = nv + 1, nv + 2, . . . , n be the response indicator. Let Yobs,−v denote the observed set

of values of Yi, i = 1, 2, . . . , v − 1, v + 1, . . . , p. Let eobs,−v = Pr(Rv = 1|Yobs,−v) be the true

response propensity for variable Yv as a function of the observed data. The propensity score

is an efficient summary of the covariates Yobs,−v and could be used compare the outcome

across the two treatment groups Rv = 1 and Rv = 0 ( Rosenbaum and Rubin (1983))

adjusted for Yobs,−v. Thus, under MAR mechanism we expect that, conditional on eobs,−v,

the distributions of yobs,v and ymis,v to be similar.

For l = 1, 2, . . . ,M , let y
(l)
mis,v = {y(l)

sv , s = nv + 1, nv + 2, . . . , n} denote the imputed

set of values for missing set ymis,v. If the imputations are reasonable under the missing

at random assumption, then the observed set yobs,v and each imputed set y
(l)
mis,v should have

similar distributions conditional on the propensity score eobs,−v. For example, we could create

quintiles based on the true response propensity and check the equality of the distributions of

the observed and missing values within each quintile. For discrete variables we could compare

the frequency distribution of the observed and imputed values. For continuous variables we

could compare the histograms or descriptive statistics within each quintile. Alternatively,

we could regress the observed and imputed values of Yv on the true propensity score and

compare the distribution of the residuals between the respondents and nonrespondents.

Obviously, the true propensity score eobs,−v is unobserved and needs to be estimated for

each subject. It may appear to be a daunting task, but multiply imputed data sets can be

used to estimate this propensity score.

The true propensity score eobs,−v can be written as

eobs,−v =
∫

Pr(R = 1|Yobs,−v, Ymis,−v)pr(Ymis,−v|Yobs,−v)dYmis,−v

as an average of the true complete data response propensity score, e−v = Pr(R = 1|Yobs,−v, Ymis,−v)

with respect to the posterior predictive distribution of Ymis,−v conditional on Yobs,−v.

Let Y
(l)
mis,−v, l = 1, 2, . . . ,M denote the M sets of imputed values for the missing values

in all the variables except Yv.Under the correct imputation model and for sufficiently large

M , the above true response propensity score can be approximated by

eobs,−v =
M∑
l

e
(l)
−v/M
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where e
(l)
−v = Pr(R = 1|Yobs,−v, Y

(l)
mis,−v) is the completed data response propensity score.

What remains is to estimate the completed data response propensity from each completed

data set for each subject and then take the average across the M response propensities. It is

fairly easy to estimate the completed-data response propensity model by using, for example,

a logistic or probit regression model with Rv as the outcome variable and the completed

data Yi, i = 1, 2, . . . , v − 1, v + 1, . . . , p as predictors. That is, for sufficiently large M , we

can approximate

êobs,−v = P̂ r(Rv = 1|Yobs,−v) =
M∑
l=1

P̂ r(Rv = 1|Yobs,−v, Y
(l)
mis,−v)/M,

In estimating the completed data response propensities, one could include interaction

terms in addition to the main effect terms; Use goodness of fit statisitics proposed, for

example, in Hosmer and Lemeshaw (1989) to fit completed data response propensity model.

One could also use nonparametric regression models such as generalized additive models to

estimate the observed data propensity scores.

3 Examples Revisited

Revisiting the imputation of variable Havewage, we estimated the propensity scores from

each completed data set and averaged them across the M = 10 data sets. We then classified

the imputed and observed values into four classes based on the top three quintiles and the

two bottom quintiles combined into a single group. The two bottom quintiles were combined

due to small number of missing values. The number of imputed values in the three groups

was 130, 37, 20 and 9 respectively. The first imputed data and the observed data proportion

of subjects reporting receiving income from wages and salaries were (20.4, 21.5), (38.6, 37.8)

(70.0, 71.8) and (44.4,89.1). The last cell being quite small is unstable. Similar pattern was

observed in the remaining 9 imputed sets. When averaged across all 10 imputations, the

imputed and observed proportions in the four cells were (19.6, 21.5), (41.9,37.8), (73.0,71.8)

and (68.0,89.1). Even though marginally, the imputed and observed proportions were very

different but conditional on the estimated propensity score, the observed and imputed pro-

portions are closer.
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For the continuous variable, yearssmoked, Figure 2 plots the observed and imputed val-

ues against propensity scores. Assuming MAR and correct imputation model, we expect the

distributions of the observed and imputed values to be similar conditional on the propensity

score. That is, for any given value of the propensity score, there should be no discernable

differences between the subjects with imputed and observed values. Again, this example

illustrates that marginal distribution of the imputed and observed subjects may be different

but it could be erroneous to conclude that imputed values are unreasonable. An alternative

graphical display is given in Figure 3, which compares the kernel densities of residuals after

regressing the observed and imputed values on the propensity scores. Under MAR assump-

tion, the two kernel densities should be overlapping as they do in Figure 3. To summarize

these results numerically, we repeated Kolmogorov-Smirnov and Kuper tests, comparing

residuals. Both tests failed to reject the equality of the conditional distributions of observed

and imputed values for all the imputed datasets.

4 Discussion

In the context of multiple imputations, we have proposed a simple method for checking

whether the imputed values are reasonable under MAR without knowing exactly the model

used by the imputer. The approach involves estimating the observed data response propen-

sity score based on all the variables except the variable under consideration and then compar-

ing the distributions of observed and imputed values conditional on the estimated propensity

score. The propensity score can be estimated by averaging the completed data estimated

propensity scores. This method can be implemented using standard software packages as it

involves repeatedly applying logistic or probit regression models to estimate the propensity

score.

Such tools can be useful to both imputers and analysts. An imputer can use these

diagnostics to check reasonableness of the imputed values under MAR before disseminating

it to various analysts. An analyst working with a subset of variables can use these tools

to check whether the imputations are compatible with the MAR assumption within this

subset. If it is not, then the analyst has the option of re-imputing the missing values within
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the subset assuming MAR (that is the analyst model is considered as the gold standard)

or may conclude that MAR assumption conditional on the subset is not reasonable. At

this point the analyst may use the original imputed values in the analysis (that is consider

the imputer model as the gold standard) or perform sensitivity analysis under nonignorable

missing data mechansims. On the other hand, if the diagnostic tools applied on a subset

do indicate that the imputed values are reasonable, then the inferences using the imputed

values will not be that different from the ones obtained by the analyst working fresh with

the incomplete data on the subset.

The proposed methodology can be extended in many ways. For example, nonparametric

regression approaches can be used to estimate the observed data propensity scores. General-

ized additive models can be used to estimate the completed data propensity scores and then

averaged across the M completed data sets. Such modifications can be easily implemented

given that software for performing such regressions is readily available in standard software

packages.

External data sets can be used in the propensity score matching. Suppose that an

external data set is available with several common set variables. Each completed data can

be appended to this external data and then estimate the propensity score. The average

of the appended completed data score can used to match and compare the distributions of

observed values in the internal and external data sets with the imputed sets of values. For

example, in an economic survey, the Current Population Survey (CPS) can be used as an

external information to check both the observed and imputed income values conditional on

a set of common covariate values.

Like any other diagnostic tools, comparisons of the observed and imputed values can

be used to check for plausibility. These are not that different from residual diagnostic

plots and summaries used in the standard regression analysis in that the assessments are

subjective. These are not formal tests of hypotheses. For categorical variables with missing

values, we can compare the imputed and observed response category percentages within the

propensity score classes. This comparison can be made formal by computing chisquare type

statistics and comparing it to some reference distribution. These may be useful but likely

to noninformative when the sample size is large because any difference becomes statistically
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detectable.

Similarly, for continuous outcomes we can use formal test statistics to compare the distri-

butions of observed and imputed values within the propensity score class or the distributions

of the residuals after regressing the propensity score, eobs,−v on Yv. Again such tests may

achieve statistical significance because of large sample size.

In this article, we have checked the conditional distributions of the observed and imputed

values on a variable by variable basis. It is possible to extend the same strategy to check

multivariate conditional distributions. Specifically, suppose that we are interested in checking

the joint distributions of the observed and imputed values of (Y 1, Y 2). Let eobs,−(1,2) be

the propensity score comparing subjects with both observed versus those with at least one

imputed variable conditional on all the variables except Y 1 and Y 2. We can use graphical

displays such as P-P plots to compare bivariate residuals or the conditional distributions

given the propensity scores for the four groups:(1) both Y 1 and Y 2 observed; (2) Y1 imputed,

Y 2 observed; (3) Y1 observed, Y2 imputed; and (4) both imputed.
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Figure 1: Kernel density estimates for the marginal distributions of the observed and 
imputed values. 
 

 
       
 
 
Figure 2: Scatter plot of the observed and imputed values against the propensity scores 
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Figure 3: Kernel density estimates of the distributions of the residuals from the regression 
of the observe/imputed values on the propensity scores. 
 

 


