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                     Abstract 

Multiple imputation is a general purpose method 
for analyzing data with missing values. Under 
this approach the missing set of values is 
replaced by several plausible sets of missing 
values to yield completed data sets. Each 
completed data set is then analyzed separately 
and the results (estimates, standard errors, test 
statistics etc) are combined to form a single 
inference. It is fairly well established that the 
imputations should be draws from a predictive 
distribution of the missing values and should 
condition on as many covariates as possible. A 
sequential regression imputation method  uses a  
Gibbs sampling style iterative process of 
drawing values from a predictive distribution 
corresponding to a sequence of conditional 
regression models to impute the missing values 
in any given variable with all other variables as 
predictors. The conditional regression models 
are usually parametric. In practice, however, 
many variables have distribution that very 
difficult to classify or transform to satisfy 
standard parametric distribution assumptions. 
We develop and evaluate a modification of this 
method. We construct propensity score for 
missing the given variable and the predicted 
value of that variable. We stratify the sample 
based on these two scores and then within each 
stratum, we use approximate Bayesian 
Bootstrap or Tukey's gh distribution to impute 
the missing values conditional on the observed 
values. We illustrate proposed method using 
actual and simulated data sets. 
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1. Introduction 
 

Multiple imputation is becoming an 
increasingly popular approach for analyzing 
incomplete data. In this approach the missing set 
of values are replaced by more than one 
plausible set of values to yield several 
completed data sets. Each completed data is 

analyzed and the inferential statistics such as 
estimates, standard errors, test-statisitics etc are 
combined to form a single inference. It is fairly 
well established that the imputations have to be 
draws from a predictive distribution of the 
missing values and should condition on as many 
variables as possible (Little and Raghunathan 
(1997), Schafer et al (2000)). This is a tall order 
given that the data set may contain tens and 
hundreds of variables of varying type with 
complex structural and stochastic inter-
relationships. Developing a model (joint 
distribution of the variables with missing values 
conditional on observed values and unknown 
parameters and then to obtain draws from the 
corresponding predictive distribution is difficult, 
if not impossible.  

An approach particularly suited to such 
complex situation is a sequential regression 
approach. This approach involves Gibbs 
sampling style iterative sampling from a 
sequence of conditional regression models 
where the missing values in any one variable is 
drawn from the predictive distribution 
corresponding to the regression model and uses 
all other variables (including interaction terms ) 
as predictors. This approach was first used in 
the Survey of Consumer Finances by Kennickell 
(1991) to impute missing values in continuous 
variables using a sequence of normal linear 
regression models. This approach was 
generalized to a variety of types of variables and 
incorporates complexities such as bounds on the 
imputations and the skip patterns (Raghunathan 
et al (2001)).  This general approach has been 
implemented in stand-alone and as add on to 
commercial packages (SRCWARE 
(Standalone), IVEWARE (SAS), Raghunathan 
et al (1997), MICE (R-package) first described 
by Burren at al. (1999) and ICE (STATA) by  
Royston (2004).    The sequential regression 
approach implemented in these packages use a 
sequence of parametric models such as normal 
linear model for continuous variables, logistic 
for binary, Poisson for count etc and some 



facilitate incorporation of structure 
dependencies and constraints. This approach 
seems to work well provided parametric 
assumptions are approximately satisfied.  

Nevertheless, variables collected in many 
practical situations rarely satisfy the underlying 
parametric assumptions and imputing them 
using parametric model may introduce bias. 
Attempts to transform a continuous variable to 
achieve an approximate normality may be not 
fruitful Rubin (1987) and He and Raghunathan 
(2006)). Regrouping, or imputing multilevel 
variable as continuous and applying rounding 
afterwards,  may be a plausible solutions, but if 
for the future analysis the number of categories  
has to preserved, then another approach has to 
be found. Furthermore, imputation of missing 
values can be very sensitive to violation of 
underlying model specification. Consider as an 
example, data from Sacramento Area Latino 
Study of Aging (SALSA). It's an ongoing cohort 
study of 1,789 Latinos aged 60 and older in 
1998-99 residing in rural and urban areas of the 
Sacramento Valley. Aging researches were 
interested in neuropsychological characteristics 
and prevalence of dementia in aging Latino 
population. The neuropsychological test battery 
includes Informant Questionnaire of cognitive 
Decline in Elderly (IQCODE). Histogram of 
observed values of IQCODE score is shown on 
the (Figure 1a).  It's observed for 64% of 1786 
subjects. It's very hard to transform this variable 
to achieve normality of the corresponding 
residuals. Figure 1b shows Kernel Density 
estimates of observed, imputed and completed 
values, when data are imputed assuming   
normal distribution for IQCODE. There is a 
remarkable difference in shape of the 
distribution of observed and imputed values that 
may signal a poor quality of the imputation. 

In this paper we extend sequential regression 
approach by making it less dependent on the 
parametric framework, and propose the following 
iterative procedure.  If the variable has binary or 
approximately normal distribution it's imputed 
using a parametric model. For the variables with 
distributions that do not fit in the parametric model 
assumptions we use the following procedure:   

• At a given iteration, we construct two 
summary scores: propensity score for 
missingness based on a logistic regression 
model and the predicted values for all 

subjects using a regression model. All other 
variables, imputed or observed, are used as 
predictors in both models. This combines 
the ideas of propensity score and predictive 
mean matching.  

• The subjects with observed and missing 
values are grouped into strata based on these 
two scores. For example, create quintiles or 
quartiles of propensity scores and then 
further subdivide each propensity score class 
into quintiles are quartiles of predicted 
values.  

•  Within each matched strata impute the 
missing set of values employing either 1) 
Approximate Bayesian Bootstrap (Rubin 
and Schenker (1986), Rubin (1987)) , or 2) 
or Tukey's gh distribution (He and 
Raghunathan (2006)). 
 
The rest of paper is organized into 4 

sections. Details of the two-step algorithm are 
presented in section 2 and imputation the 
IQCODE variable is revisited in section 3. 
Section 4 focuses on simulation study based on 
the National Health Interview Survey (NHIS) 
data. Possible development and discussion can 
be found in section 5. 

 
 
2.Description of the Method. 
   

Suppose, that the data set has p variables, 
, 1, 2,...,vY v p= . Let vR  denote a binary response 

indicator with 0 for missing and 1 for observed 
value of . Let vY vY−  denote the collection of all p-1 
variables except . With slight abuse of notation, 
partition the vector or matrix of observations on the 
n subjects as and 

vY

, ,( ,com v obs v mis vY Y Y= , )

, )−, ,( ,com v obs v mis vY Y Y− −= .  Suppose at iteration t, 
( )

,
t

com vY −  is the completed data on all subjects except 

for variable v and is the completed data on all 
subjects for variable v.  
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,

t
com vY

We construct two efficient summaries of the 
covariates ( )

,
t

com vY −  through two regression prediction:  
1. Propensity of missingness, 

, estimated using a 
logistic regression model

( ) ( )
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 . It's is an efficient 



summary of that can be used to balance 
the respondents and nonrespondents 
(Rosenbauum and Rubin (1983)). The 
predictors may include interaction terms to 
achieve balance between respondents and 
nonrespondents. We stratify into the K 
equal size strata. 

( )
,

t
com vY −

( )   t
ve

2. Predicted value based on a regression of 
on  within each class. We create J 

equal size strata and thus forming match 
classes. The prediction may be based on either 
the parametric model or semi-parametric 
model (for example, generalized additive 
model).   
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We consider two possible options for imputing 
missing values within each cell. The first approach 
is to use Approximate Bayesian Bootstrap method 
(Rubin and Schenker  (1986)). Suppose r and m are 
the observed and missing observations, 
respectively. The basic approach is to draw a 
sample of size r with replacement from the observed 
set and from this sample draw a sample of size m as 
the imputed values. Repeat this step for all the cells 
and independently replicate the process to obtain 
multiple imputations.   
 
The second approach uses Tukey’s gh distribution 
in each cell as described in He and Raghunathan 
(2006). This distribution is based on a 
transformation of standard normal distribution to 
accommodate for skewness and elongation of the 
tails. The g-h method expresses random variable Y 
as a monotonic function of a standard Gaussian 
random variable Z: 

2 / 21( )
gZ

hZ
gh

eY Z e
g

μ σ −
=  + ,  

where μ is location parameter, σ is a scale 
parameter, g - reflects the skewness, and h governs 
elongation (heaviness) of tails.  Varying parameters 
allows us to accommodate a wide spectrum of 
deviation from normality, and make gh family a 
flexible tool to model observed distribution 
parametrically.  

Hoaglin (1985) developed simple methods 
to estimate parameters of gh distributions through 
empirical quintiles of observed variable Y.  
Specifically, let  and  bepy pz   percentiles of the 
variable being imputed and standard normal 

distributions, respectively.  We would like to fit the 
model ( )p gh py Y z= . 
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 The essential steps are to draw a bootstrap 
sample of size r from the r observed set of 
observations. Use the bootstrap sample to estimate 
the parameters ( , , , )g hμ σ . Draw m independent 
standard normal random variables and then apply 
the transformation to yield imputed values.  
 

3. Example revisited. 
 

Revisiting the IQCODE example, we stratified 
IQCODE variable based on its propensity score of 
being missing and its predicted value into 9 strata. 
We imputed all other variables in the SALSA data 
set following the SRMI approach(Figure 1b) and 
imputed IQCODE using the proposed sequential 
approach use both ABB(Figure 1c) and GH (Figure 
1d) methods. Kernel density estimates based on five 
imputations for imputed and true values of 
IQCODE are shown below. There is a remarkable 
improvement in the matching between marginal 
distribution of observed and imputed values 
 
 

4. Simulation study 
 
   We conducted a simulation study to assess 
repeated sampling properties of multiple imputation 
inferences using the proposed approach. The 
simulation study consisted of the following steps: 

1. Creation of population: A pseudo population 
of 200,000 records was constructed from the 
National Health Interview Survey for 1997 
to 2003. The observations were the fully 
observed values of eight variables (age, 
gender, weight, height, years of education, 
income to poverty ratio, self-reported 
hypertension and diabetes).  



2. Sample: Draw 250 independent simple 
random samples each of size n=1000. We 
will call these before-deletion samples. 

3. Delete some values of age, years of 
education, income to poverty ratio, self-
reported hypertension and diabetes using a 
known missing data mechanism. No missing 
values were imposed on gender, weight and 
height. Self-reported diabetes and 
hypertension are binary variables with 2% 
and 4% observations reset to missing, 
correspondingly. Percentages of 
observations set to missing across 250 
random samples are shown at Table1.  
Histograms of observed values for age, 
education and income to poverty ratio are 
also shown .We will call the resulting 250 
replicate data sets with values reset to 
missing as "after-deletion" samples. 

 
We imputed each of the 250 after-deletion samples 
following 3 different methods: SRMI, ABB and 
GH. The number of imputations was fixed at 5 for 
all three methods. For both ABB and GH 
imputations were based on  (16 strata). 4, 4K J= =
 The results were assessed in terms of bias, mean 
square error and the confidence coverage of several 
parameters of interest, means, proportions and the 
regression coefficients. The regression model 
involved the number of chronic conditions 
(Hypertension+Diabetes+Obesity) as outcome and 
demographic variables and poverty income ratio as 
predictors, 
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The results are summarized in Tables 2 

(Marginal means and proportions) and Table 3 (for 
regression coefficients). Both semi-parametric (GH) 
and non parametric (ABB) approaches produce 
good coverage rates across all variables. ABB 
imputation estimates are slightly biased and have 
low MSE for all imputed variables. GH imputation 
estimates are almost unbiased, however, its 
performance appears to be affected by the shape of 
the distribution of observed values. First, for 
education GH estimates have a smaller bias and 
MSE when compared to SRMI , CC and ABB. 
Second, for age (standardized) that has continuous 

distribution, GH and ABB estimates have similar 
properties with both being biased. Third, for income 
to poverty ratio where ABB and CC have very 
similar estimates GH yields estimates with larger 
bias and relatively high MSE. Table 3 shows that all 
the regression estimates have similar properties with 
slightly better performance of ABB estimates. 

  
5. Discussion 

 
      Nonparametric approaches offer flexibility of 
handling nonstandard distributions and sequential 
regression approach handles complex data structure. 
By combining features of both approaches, we 
proposed two modifications that allowed us to relax 
parametric assumption and impute missing data as 
random draws from 1) unspecified posterior 
predictive distribution in the case of ABB, and 2) 
posterior predictive distribution of the missing 
values under flexible gh model.  Both methods can 
be implemented using standard software packages 
as it involves iterations of two steps: 1) 
Stratifications via regression models and 2) 
imputation step involving random sampling. This 
approach shows promise of being more robust and 
less susceptible to model misspecification.  
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Figure 1: Distributions of  the Observed and Imputed Data for IQCODE: Histograms and Kernel Density 
Estimates (KDE) 
  

Figure 1a. 
Histogram: Observed IQCODE 

Figure 1b. 
KDE of observed, imputed and completed values 

assuming normal distribution 

  
Figure 1c 

Stratified ABBapproach 
Figure 1d. 

Stratified GH approach 

  

 

 



 
Table 1: Distribution and percent missing on three variables used in the simulation study 

Income to poverty ratio 
(10% missing) 

Education 
(21% missing) 

Age 
(23% missing) 

 
 
 

Table 2: Bias, Meansquare error and confidence coverage for marginal means and proportions. 
 

 Bias  MSE  Coverage 

Variable ABB GH SRMI   CC  ABB GH SRMI CC  ABB GH SRMI CC 

              

-1.3 -0.9 3.1 -4.7  5.7 5.2 13.2 23.8  88 95 61 0 

0.4 0.8 -3.7 0.9  4.6 5.9 16.3 3.7  100 97 47 99 

 0.9 0.0 0.6 3.7   4.1 2.3 2.6 16.3  98 100 100 10 
 

-0.0 0.4 0.2 0.2  0.4 0.5 0.4 0.5  100 99 100 100 

              

0.1 -1.1 -0.0 -0.2  1.7 2.7 1.7 1.5  100 98 100 100 

0.0 1.4 0.2 0.2  2.9 5.2 2.6 2.6  100 98 99 100 

Education 
        Less than HS 
        HS 
        College degree 
 
 
Age 
Income to poverty ratio 
         <1 
         >=1,<5 

 

         >=5 
-0.2 -0.3 -0.1 0.0  2.3 2.7 2.0 2.0  100 100 100 100 



Table 3: Simulation results for Bias, MSE, and coverage in estimation of Beta- coefficients from the 
proportional odds model 

Predictor Estimate ABB GH SRMI CC 

Age Bias  (10-4)  -10  14 7 20 

 MSE (10-6) 17 19 16 30 

 Coverage (%) 100 71 80 80 

      

Sex Bias (10-3) 9 5 4 142 

 MSE(10-2)  2 2 2 6 

 Coverage (%) 100 94 96 89 

Education 
      <HS 

 
Bias 

 
0.07 

 
-0.03 

 
-0.05 

 
-0.03 

 MSE 0.08 0.08 0.06 0.12 

 Coverage (%) 90 94 96 93 

        HS Bias -0.02 -0.04 -0.03 -0.07 

 MSE 0.03 0.04 0.03 0.07 

 Coverage (%) 100 86 89 85 

      

Income to poverty ratio Bias (10-4) 6 -78 -17 -300 

 MSE (10-4) 4  5 4 20 

 Coverage (%) 100 45 59 50 

 


