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Topic 1: Nash Equilibria In Pure Actions

A game is a triple pI, pAiqiPI , puiqiPIq, where:

• I “ t1, 2, . . . , nu is a finite set of players;

• for every i P I the set Ai is the set of actions of players i;

• for every i P I the function ui :
Ś

iPI

Ai Ñ R is player i’s utility function.

For the moment, the functions ui represent ordinal preferences over
Ś

iPI

Ai.

Note that we are allowing arbitrary externalities.

Given a game pI, pAiqiPI , puiqiPIq a Nash equilibrium of this game is an n-tuple of actions

pa˚
i qiPI such that for every player i P I and for every action ai P Ai:

uipa
˚
q ě uipai, a

˚
´iq,

where pai, a
˚
´iq is the list of actions that is identical to a˚ except that we have replaced a˚

i by

ai.

Interpretation: A Nash equilibrium represents a rest point of a learning process in which

each player chooses the optimal action assuming that all other players choose the same actions

as in the previous period.

Agenda for Topic 1:

1. Nash equilibria are fixed points of the best reply correspondence.

2. Finding Nash equilibria by determining fixed points of the best reply correspondence.

3. Are Nash equilibria Pareto efficient?
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4. When do Nash equilibria exist?

5. When are Nash equilibria unique?

6. How do Nash equilibria change when the game changes?

1. Nash equilibria are fixed points of the best reply correspondence.

For every player i P I define a best reply correspondence BRi :
Ś

iPI Ai ↠ Ai by setting for

every a P
Ś

iPI

Ai:

BRipaq “ tai P Ai|uipai, a´iq ě uipa
1
i, a´iq for every a1

i P Aiu .

The best reply correspondence BR :
Ś

iPI Ai ↠
Ś

iPI Ai is defined by setting for every

a P
Ś

iPI

Ai:

BRpaq “
ą

iPI

BRipaq.

By definition: a˚ is a Nash equilibrium if and only if a˚ P BRpa˚q, i.e. if and only if a˚ is a

fixed point of BR.

2. Finding Nash equilibria by determining the best reply correspondence.

Example 1: I “ t1, 2u, Ai “ R`, and uipa1, a2q “ ai maxt10 ´ a1 ´ a2, 0u ´ ciai, where for

each i “ 1, 2 ci is a strictly positive constant. We assume ci ă 10 for i “ 1, 2.

Let’s determine player i’s best reply correspondence. Let j ‰ i. Obviously:
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• If aj ě 10 ´ ci, then BRipaq “ t0u.

Suppose aj ă 10 ´ ci. Then the first order condition for player i’s maximization problem is:

10 ´ 2ai ´ aj ´ ci “ 0 ô ai “
10 ´ aj ´ ci

2
,

and this is obviously all the unique maximizer.

• If aj ă 10 ´ ci, then BRipaq “

!

10´aj´ci
2

)

.

Let’s look for fixed points of BR.

When is there a fixed point such that a1 “ 0? The best reply of player 2 to a1 “ 0 is:

a2 “ 10´c2
2

. Player 1’s best reply is a1 “ 0 if:

10 ´ c2
2

ě 10 ´ c1 ô c1 ě
10 ` c2

2
.

Therefore, if c1 ě 10`c2
2

, then there is a Nash equilibrium where a1 “ 0 and a2 “ 10´c2
2

.

When is there a fixed point such that a2 “ 0? Similar reasoning as above leads to the

conclusion that, if c2 ě 10`c1
2

, then there is a Nash equilibrium where a2 “ 0 and a1 “ 10´c1
2

.

When is there a fixed point such that a1 ą 0 and a2 ą 0? Both players have to satisfy the

first order condition:

a1 “
10 ´ a2 ´ c1

2

a2 “
10 ´ a1 ´ c2

2
.

Subtracting yields:

a1 ´ a2 “ c2 ´ c1.

Substituting into the first order condition for a1 yields:

a1 “
10 ´ a1 ` pc2 ´ c1q ´ c1

2
ô a1 “

10 ` c2 ´ 2c1
3

.
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Analogously we get for a2:

a2 “
10 ` c1 ´ 2c2

3
.

Such a Nash equilibrium exists if both ai are positive, i.e. if:

c1 ă
10 ` c2

2
and c2 ă

10 ` c1
2

.

3. Are Nash equilibria Pareto efficient?

An action profile a P A is Pareto efficient if there is no other action profile a1 P A such that:

uipa
1q ě uipaq for all i P I, and uipa

1q ą uipaq for at least one i P I.

Consider the previous example. In an interior Nash equilibrium, we have:

Bu1

Ba1
“ 0 and

Bu2

Ba2
“ 0.

But notice that we also have:

Bu1

Ba2
“ ´a1 ă 0 and

Bu2

Ba1
“ ´a2 ă 0.

Therefore, when we lower a1 and a2 by a little bit, both players’ utility will go up, and therefore

the Nash equilibrium is not Pareto efficient.

Here is an illustration. Suppose c1 “ c2 “ 6. Then the unique Nash equilibrium is:

a1 “ a2 “ 4{3, and therefore, each player’s utility is: uipa1, a2q “ p4{3qp10´8{3q´6p4{3q “ 16{9.

But, if players chose: a1
1 “ a1

2 “ 1, then their utilities would be: uipa1, a2q “ 1 ¨ 8 ´ 6 ¨ 1 “ 2 ą

16{9.

Intuitively, the reason why Nash equilibria are not Pareto efficient is that players don’t take

externalities into account when they make their choices.

The most famous game with a Nash equilibrium that is not Pareto efficient is the Prisoner’s

Dilemma:
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Figure 1: Nash equilibria in Example 1 as a function of the parameters c1 and c2
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C D

C 3,3 0,4

D 4,0 1,1

The following example is known as “Pigou’s Example,” after Arthur Pigou. There are 10

drivers who commute every day from city A to city B. They can choose one of two routes: r1

or r2. The time it takes to travel on route 1 is equal to 10 units of time. The units of time that

it takes to travel on route 2 is equal to the number of drivers who use it: n2. Drivers seek to

minimize their travel time. This game has the following Nash equilibrium: all drivers use route

2. But if, say, 5 drivers used route 1 and 5 drivers used route 2, the second set of drivers would

only need 5 units of time. This example predates the Prisoners’ Dilemma.

4. When do Nash equilibria exist?

The most famous game with no Nash equilibrium (in pure actions) is “Matching Pennies:”

H T

H 1,-1 -1,1

T -1,1 1,-1

When does BR :
Ś

iPI Ai ↠
Ś

iPI Ai have a fixed point? By Kakutani’s Fixed Point

Theorem it will have a fixed point if for every player i P I the set Ai is a non-empty, compact,

convex subset of some finite dimensional Euclidean space, and BRi is non-empty and convex-

valued and upper hemi-continuous. The following result provides assumptions that guarantee

this:

Proposition 1. If for every player i P I:

1. the set Ai is a non-empty, compact, and convex subset of Rmi for some mi P N;

2. the function ui is continuous in a;

3. the function ui is quasi-concave in ai;
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then at least one Nash equilibrium exists.

Here is an alternative result that does not assume that the action sets are convex, nor that

the utility functions are quasi-concave:

Proposition 2. If for every player i P I:

1. the set Ai is a non-empty and compact subset of R;

2. the function ui is continuous in a;

3. the function ui has increasing differences, i.e. if: i P I, ai, a
1
i P Ai, ai ě a1

i, for every j P I

with j ‰ i: aj, a
1
j P Aj and aj ě a1

j then:

uipai, a´iq ´ uipa
1
i, a´iq ě uipai, a

1
´iq ´ uipa

1
i, a

1
´iq,

then at least one Nash equilibrium exists.

This result is a consequence of the Tarski fixed point theorem.

5. When are Nash equilibria unique?

Of course, in general Nash equilibria need not be unique. Consider this example:

L R

T 1,1 0,0

B 0,0 2,2

This game has two Nash equilibria: pT, Lq and pB,Rq. (I am happy to defend the claim

that pT, Lq is a perfectly reasonable Nash equilibrium.)

Some results on the uniqueness of Nash equilibria use concepts that we shall only introduce

later.

One could derive uniqueness results using the contraction mapping fixed point theorem

(Banach fixed point theorem). But I don’t know of interesting assumptions on the primitives
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of a game that imply that the best replies are unique, and that the best reply function is a

contraction mapping.

There are other uniqueness results in the literature, but they are not used very often.

A classic result is in: J. B. Rosen, Existence and Uniqueness of Equilibrium Points for

Concave N-Person Games, Econometrica, 33 (1965), 520-534.

A related result is Theorem 2.6 in: James W. Friedman, Game Theory With Applications

to Economics, Oxford University Press, 1986. This result is based on D. Gale and H. Nikaido,

The Jacobian Matrix and Global Univalence of Mappings, Mathematische Annalen 159 (1965),

81-93.

Future versions of these notes will hopefully include simple versions of these results.

6. How Do Nash Equilibria Change When The Game Changes?

Consider the following two player game:

L C

T 1,0 1,1

B 0,-2 0,-1

This game has a unique Nash equilibrium: pT,Cq. Both players receive utility 1 in this

Nash equilibrium.

Now suppose that player 2 had an additional strategy, R, and that the game were:

L C R

T 1,0 1,1 0,2

B 0,-2 0,-1 1,0

This game has a unique Nash equilibrium: pB,Rq. Player 1 receives utility 1 in this Nash

equilibrium, and player 2 receives utility 0. Thus, we have given player 2 an additional strategy,

but as a consequence player 2’s utility dropped. Having more actions need not be to a player’s

advantage.
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It is also not always to a player’s advantage if we increase that player’s payoff. Consider

the following two player game:

L R

T 0,1 1,2

B 1,-1 0,0

This game has a unique Nash equilibrium: pT,Rq. Player 2’s utility is 2 in this Nash

equilibrium.

Now suppose we increased player 2’s utility for pT, Lq from 1 to 3, and also her utility for

pB,Lq from -1 to 1. Then we obtain the game:

L R

T 0,3 1,2

B 1,1 0,0

This game has a unique Nash equilibrium: pB,Lq. Player 2’s utility in this new Nash

equilibrium is 1. Thus it is lower than it was before.

The one statement that we can make regarding the comparative statics of Nash equilibria

is that under certain conditions the Nash equilibrium correspondence is upper hemicontinuous.

Suppose each player’s utility function is a function of some parameter x P R: ui : AˆR Ñ R.

Proposition 3. If for every player i P I:

1. the set Ai is a non-empty and compact subset of Rmi for some mi P N;

2. the function ui is continuous in a and x:

Then the correspondence E that assigns to every x P R the set Epxq of Nash equilibria of the

game with parameter x is upper hemicontinuous.
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Appendix for Topic 1

Proof of Proposition 1

We mentioned in Section 1 of Topic 1 that Nash equilibria are fixed points of the best reply

correspondence BR. Therefore, Nash equilibria exist if and only if this correspondence has at

least one fixed point. Kakutani’s fixed point theorem gives sufficient conditions under which a

correspondence has at least one fixed point.

Kakutani’s Fixed Point Theorem: Let X be a non-empty, compact and convex subset of Rn

for some n P N and suppose that f : X ↠ X is a correspondence that maps every x P X into

a non-empty, compact and convex subset fpxq of X. Suppose also that the graph of X, that

is the set tpx, x1q P X2|x1 P fpxqu is a closed subset of X2. Then f has at least one fixed point

x˚ P X, that is, there is at least one x˚ P X such that:

x˚
P fpx˚

q.

The domain and co-domain of the best reply correspondence BR is
Ś

iPI Ai. Proposition

1 assumes that for every player i P I the set Ai is a non-empty, compact, and convex subset

of Rm
i for some mi P N. But this immediately implies that

Ś

iPI Ai is a non-empty, compact,

and convex subset of Rn where n “
ř

iPI mi. Thus, the assumptions of Kakutani’s fixed point

theorem for the domain and co-domain of the correspondence under consideration are satisfied.

Next, we have to show that for every a P
Ś

iPI Ai the set BRpaq is a non-empty, compact,

and convex subset of
Ś

iPI Ai. This is the case if and only if for every player i the set BRipaq is

a non-empty, compact, and convex subset of
Ś

iPI Ai. The non-emptiness, that is, the existence

of an optimal action of player i given any profile a´i of other player’s action, follows from the

Weierstrass theorem according to which any continuous function on a compact domain attains

a maximum. To show that the set of maximizers is compact we note that it is bounded, because

the set Ai is bounded. We postpone the proof that it is closed until the last step of this proof.

That last step implies the closeness of the set of maximizers for fixed a´i if, in the notation of

that proof, we consider the constant sequence aν´i “ a´i for every ν P N.
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We also need to show that the set of maximizers is convex. This follows from the quasi-

concavity of each player’s utility function in their own action ai. Recall that quasi-concavity

of an arbitrary function f : X Ñ R means that for any constant k P R the set of arguments x

of f such that the value fpxq is equal to k or larger than k, that is the set tx P X|fpxq ě ku,

is convex. Now fix any a´i, and let a˚
i be any action that maximizes uipai, a´iq. We noted in

the previous paragraph that at least one such ai exists. Denote the utility that corresponds

to a˚
i by u˚

i , that is, u˚
i “ uipa

˚
i , a´iq. The set of best responses BRipa´iq is then the set

tai|uipai, a´iq ě u˚
i u. (Of course, the ě sign will be for all elements of this set an “ sign,

because otherwise u˚
i would not be the largest achievable utility.) But this set is a convex set

according to the definition of quasi-concavity, if we apply this definition to the constant k “ u˚
i .

The final condition of Kakutani’s Fixed Point Theorem is that the set tpx, x1q P X2|x1 P

fpxqu is a closed subset of X2. This set is often referred to as the “graph” of the correspondence

f . To verify that BR satisfies this condition, it is sufficient to verify that every correspondence

BRi has a closed graph. We shall verify that the limit of every convergent sequence of points

in the graph of BRi is also in the graph of BRi. Let ν P N be the index of our sequence. What

we have to show is this. If for every ν P N:

aν´i P A´i and aνi P BRipa
ν
´iq,

and if the sequences
`

aν´i

˘

νPN
and paνi qνPN converge to a8

´i and a8
i respectively, then the limit

is in the graph of BRi, which means:

a8
´i P A´i and a8

i P BRi

`

a8
´i

˘

.

Now a8
´i P A´i because A´i is by assumption compact, hence closed. To prove that a8

i P

BRi

`

a8
´i

˘

, note that aνi P BRipa
ν
´iq for every ν P N means:

ui

`

aνi , a
ν
´i

˘

ě ui

`

ai, a
ν
´i

˘

for all ai P Ai

for all ν P N. Because ui is continuous, the sequences on the left and on the right hand sides

of these inequalities exist, and we have:

lim
νÑ8

ui

`

aνi , a
ν
´i

˘

ě lim
νÑ8

ui

`

ai, a
ν
´i

˘

for all ai P Ai.
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Again by the continuity of ui this means:

ui

`

a8
i , a

8
´i

˘

ě ui

`

ai, a
8
´i

˘

for all ai P Ai,

i.e.

a8
i P BRi

`

a8
´i

˘

.

This completes the proof.

Sketch of the Proof of Proposition 2

I shall only make some remarks on the ideas on which the proof of Proposition 2 is based.

I shall not give the complete proof.

Because Nash equilibria are fixed points of the best reply correspondence, it is useful to ask

what the assumptions of Proposition 2 imply for these correspondences. A simple observation

is:

Claim 1: For every player i, and for every a´i P A´i the set BRipa´iq is non-empty and

closed.

This follows from the same argument that we used in the previous section of this Appendix.

Next, define for every i and every a´i P A´i:

āipa´iq “ maxBRipa´iq.

Note that Claim 1 implies that this is well-defined.

Claim 2: For any player i and any action profiles a´i, â´i P A´i such that aj ě âj for all

j ‰ i we have:

āipa´iq ě āipâ´iq.

This claim says that the upper bound of a player’s best response set is increasing in the

other players’ actions.

Proof of Claim 2: The proof is indirect. Suppose under the assumptions of Claim 2 we had:

āipa´iq ă āipâ´iq.
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Because āipâ´iq is a best response to â´i we have:

uipāipâ´iq, â´iq ´ uipāipa´iq, â´iq ě 0.

By assumption 3 of Proposition 2 we have:

uipāipâ´iq, a´iq ´ uipāipa´iq, a´iq ě uipāipâ´iq, â´iq ´ uipāipa´iq, â´iq,

and therefore:

uipāipâ´iq, a´iq ´ uipāipa´iq, a´iq ě 0,

which contradicts the fact that by construction āipa´iq is the largest best response to a´i.

Q.E.D.

Instead of looking for a fixed point of the correspondence BRi, we can now look for a fixed

point of the function āi. The only property of the function āi that we have found so far is that

it is increasing. Is this enough to obtain a fixed point?

Let us simplify the setting a little bit, and let us consider an abstract, single-dimensional

setting. Let us show that monotonicity may be enough to obtain the existence of a fixed point.

Claim 3: Let f : r0, 1s Ñ r0, 1s be a monotonically increasing function, that is: x ě y ñ

fpxq ě fpyq. Then f has at least one fixed point, that is, fpxq “ x for at least one x P r0, 1s.

Note that we have not assumed in Claim 3 that f is continuous. When f is assumed to be

continuous, the existence of a fixed point follows by Brouwer’s fixed point theorem even if f is

not monotone. I found the following proof of Claim 3 on Stackexchange.

Proof of Claim 3: If fp0q “ 0, then x “ 0 is a fixed point. So, let’s focus in the remainder

on the case: fp0q ą 0. Similarly, if fp1q “ 1, then x “ 1 is a fixed point. So, let’s focus in the

remainder on the case: fp1q ă 1.

Define ℓ1 “ 1 and h1 “ 1. We have just assumed that fpℓ1q ą ℓ1, and fph1q ă 1. We shall

now define a recursive algorithm that generates a sequence of numbers ℓn and hn for n P N

with n ě 2. For n ě 2, let an “
ℓn´1`hn´1

2
. If fpanq “ an, stop the algorithm, because you have

found a fixed point: x “ an. But otherwise, if fpan´1q ą an´1 set ℓn “ an´1 and hn “ hn´1,

and if fpan´1q ă an´1 set ℓn “ ℓn´1 and hn “ an´1. If this algorithm stops in finite time, we



15

have found a fixed point. So, let’s focus on the case that the algorithm does not stop in finite

time.

Observe that for every n P N we have: fpℓnq ą ℓn and fphnq ă hn. Also observe that

the sequence pℓnqnPN is non-decreasing, and the sequence phnqnPN is non-increasing. The two

sequences therefore both converge. Let their respective limits be ℓ˚ and h˚. Because the

distance hn ´ ℓn halves in each step, we must have: ℓ˚ “ h˚. We now claim that fpℓ˚q “ ℓ˚,

that is, x “ ℓ˚ is a fixed point of f . By proving this we shall complete the proof of Claim 2.

Suppose fpℓ˚q ą ℓ˚. Then, for sufficiently large n, we have: hn ă fpℓ˚q. Also, by construc-

tion, fphnq ă hn. Thus, for sufficiently large n, we have: fphnq ă fpℓ˚q. But, by construction,

hn ě ℓ˚. Thus, fphnq ă fpℓ˚q contradicts the assumption that f is monotonically increasing.

Thus, fpℓ˚q ą ℓ˚ leads to a contradiction. Similarly, fpℓ˚q ă fpℓ˚q leads to a contradiction.

Therefore, fpℓ˚q “ ℓ˚.

Q.E.D.

Tarski’s fixed point theorem is a multi-dimensional generalization of Claim 3. It is this

generalization that we omit here.
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Topic 2: Nash Equilibria In Mixed Actions

We shall now introduce the possibility that players choose their actions randomly. We call

this “randomization.” We refer to a probability distribution over actions as a “mixed action.”

We begin, by briefly considering mixed actions in a setting with just one decision maker.

1. Randomization in One Person Decision Problems

• Consider a decision maker who has to choose one action a from a finite set of actions A.

• Suppose each action a P A is risky, and leads to a probability distribution over possible

outcomes.

• Suppose the decision maker satisfies the von Neumann Morgenstern axioms, and evaluates

actions by calculating the corresponding expected utility.

• Let the expected utility of action a P A be denoted by Upaq.

• A rational choice for the decision maker is then any action a˚ such that Upa˚q ě Upaq for

all a P A.

• Might this decision maker do even better by choosing the action randomly?

Let us denote by ∆pAq the set of all probability distributions over A. Thus, an element α

of ∆pAq is a function α : A Ñ r0, 1s such that:

ÿ

aPA

αpaq “ 1.

The elements of ∆pAq are called “mixed actions.” What is the decision maker’s expected utility

if choosing probability distribution α? By the “law of iterated expectations” it is:

Upαq “
ÿ

aPA

αpaqUpaq.
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Note that this can never be more than Upa˚q. This is because each term Upaq that appears

in the sum on the right hand side is no more than Upa˚q. Moreover, obviously, the expected

utility from choosing α is equal to Upa˚q if and only if α assigns probability 1 to a˚, or, if there

are multiple actions in A that are optimal, if and only if α assigns probability 1 only to actions

in A that are optimal. This, fairly obvious, observation can be written as follows:

Claim: Upα˚q ě Upαq for all α P ∆pAq if and only if:

ta P A|αpaq ą 0u Ď ta P A|Upaq ě Upa1
q for all a1

P A.u

The set on the left hand side is known as the “support” of α˚. We have thus found that

α˚ is optimal if and only if its support is a subset of the set of all actions in A that maximize

expected utility in A.

There is thus never any strict benefit to randomization. Moreover, if it is optimally to

choose a random action, then a player could obtain exactly the same expected utility by not

randomizing, and instead picking deterministically one of the actions to which the optimal

randomization assigns positive probability. It is therefore redundant to introduce randomization

in a single agent setting where the agent is assumed to follow the von Neumann Morgenstern

axioms.

2. Nash Equilibria in Mixed Actions

Now let us return to the setting of game theory. Let us recall our definition of a game. To

make it easy to define probability distributions over actions, I shall now assume that the set of

actions is finite.

A game is a triple pI, pAiqiPI , puiqiPIq, where:

• I “ t1, 2, . . . , nu is a finite set of players;

• for every i P I the finite set Ai is the set of actions of players i;

• for every i P I the function ui :
Ś

iPI

Ai Ñ R is player i’s von Neumann Morgenstern utility

function.
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A mixed action of player i is a probability distribution αi over Ai. The set of all mixed

actions is denoted by ∆pAiq.

We do not distinguish between an action ai P Ai and the mixed action αi that puts proba-

bility 1 on ai.

Let us denote by α a list of mixed actions pα1, α2, . . . , αnq. We shall write pα´iq for a list of

mixed actions of all players other than i. We shall write pαi, α´iq for the list of mixed actions

of all players that we obtain if we complete the list α´i by inserting mixed action αi for player

i.

It is important to note how we calculate expected utilities. If α is a list of mixed actions,

then the expected utility of player i is:

Uipαq “
ÿ

pa1,a2,...,anqPA

ui pa1, a2, . . . , anq ¨ α1pa1q ¨ α2pa2q ¨ . . . ¨ αnpanq.

Note that, on the right hand side, we multiply the probabilities of the different actions. This

means that we are assuming that different players’ randomizations are stochastically indepen-

dent.

A Nash equilibrium in mixed actions of a game is an n-tuple of mixed actions α˚ such that

for every player i P I and for every mixed action αi P ∆pAiq:

Uipα
˚
q ě Uipαi, α

˚
´iq.

Because we identify pure actions ai with the mixed action αi that puts probability 1 on ai,

we can say that every Nash equilibrium in pure actions is also a Nash equilibrium in mixed

actions.

Let’s consider an example. Recall “Matching Pennies:”

H T

H 1,-1 -1,1

T -1,1 1,-1
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We saw earlier that this game has no Nash equilibrium in pure actions. But it has a Nash

equilibrium in mixed actions:

αipHq “ αipT q “ 1{2 for i “ 1, 2.

Let us verify that this is a Nash equilibrium. For each player, the expected utility from playing

H is 0, and also the expected utility from playing T is zero. The Claim from the previous

section implies that each player i maximizes expected utility by playing H, or playing T , or

playing any probability distribution over H and T . Thus, in particular, it is optimal to choose

H and T with probability 1{2 each.

We invoked the Claim from the previous section when discussing Matching Pennies. In fact,

we can use the Claim from the previous section to infer the following general result:

Proposition 1. α˚ is a Nash equilibrium if and only if for every player i:

tai P Ai|α
˚
i paiq ą 0u Ď tai P Ai|Uipai, α

˚
´iq ě Upa1

i, α
˚
´iq for all a1

i P Ai.u

Note that this implies that in a Nash equilibrium in mixed actions each player is indifferent

between all pure actions to which the player’s mixed action assigns positive probability.

But: note that for a list of mixed actions to be a Nash equilibrium each player has to play

the particular mixed action assigned to them. They must not switch to one of the other mixed

actions that are just as good. Consider Matching Pennies. If player 1 choosesH with probability

2{3 and T with probability 1{3, whereas player 2 chooses both actions with probability 1{2, we no

longer have a Nash equilibrium, even though player 1’s expected utility has not change. The

reason is that player 2 is no longer indifferent between H and T , but strictly prefers T , and

therefore player 2’s best reply is to choose T with probability 1. Thus, player 1 has to choose

each of the two actions with probability 1{2 not because that is in his own interest, but because

that is needed to keep player 2 indifferent between H and T .

I’ll give one more example of a Nash equilibrium in mixed actions in this section. Recall

from the previous Topic the coordination game:

L R

T 1,1 0,0

B 0,0 2,2
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This game has two Nash equilibria in pure actions: pT, Lq and pB,Rq. Once we allow mixed

actions, there is another Nash equilibrium: player 1 chooses T with probability 2{3, and B

with probability 1{3. Player 2 chooses L with probability 2{3, and R with probability 1{3. Each

player has expected utility 2{3, less than in either of the two Nash equilibria in pure actions.

Note that each player chooses the “less attractive“ action (T for player 1, L for player 2) with

higher probability than the “more attractive” action. The reason players choose these mixtures

is not their own interest, but this is needed to keep the other player indifferent between her two

actions.

3. Existence of Nash Equilibria in Mixed Actions

Unlike in Topic 1, we will state only one result on the existence of Nash equilibria in mixed

actions (and no result on the uniqueness of such equilibria).

Proposition 2. Every game in which each player’s action set Ai is non-empty and finite has at

least one Nash equilibrium in mixed actions.

This proof follows directly from the first of the two existence results that we stated in Topic

1. To see this, identify the mixed action set ∆pAiq of each player with their action set Ai

in Proposition 1 of Topic 1. Obviously, ∆pAiq is non-empty, compact, and convex. Next, we

identify the expected utility function Ui introduced in the previous section with the utility

function ui of player i in Proposition 1. This function is obviously continuous. Moreover, note

that it is linear in a player’s own mixed action. Therefore, it is quasi-concave.

4. How do Nash Equilibria in Mixed Actions Change When the Game Changes?

Let’s consider one example to illustrate how Nash equilibria in mixed actions change when

payoffs change. Consider the following game:
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L R

T 1,1 0,0

B 0,0 1+a,1+a

and assume a ě 0. In addition to the two pure action Nash equilibria pT, Lq and pB,Rq,

this game has a Nash equilibrium in mixed actions. In this equilibrium firm 1 chooses T with

probability p where p satisfies:

p ¨ 1 “ p1 ´ pq ¨ p1 ` aq ô p “
1 ` a

2 ` a
.

Firm 2 chooses L with the same probability. Note that this probability increases as a increases.

Thus, as B or R apparently become more attractive, they are chosen in equilibrium with lower

probabilities. This is because the probability with which B or R is chosen is pinned down by

the requirement that the other player is indifferent between her/his two strategies.

5. Further Examples

Example 1

L C R

T 0,3 0,0 3,0

M 0,0 2,2 0,0

B 3,0 0,0 0,3

Let’s write ppT q, ppMq, ppBq for player 1’s mixed action and qpLq, qpCq, qpRq for player 2’s

mixed action.

Is there a Nash equilibrium in pure strategies? You may check that the only such equilibrium

is: ppMq “ qpCq “ 1.

Is there a Nash equilibrium in which player 1 chooses only two out of her three strategies

with positive probability? If player 1 chooses T and M with positive probability, then player

2 will never choose R. For player 1 to play T and M with positive probability, she needs to
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be indifferent between T and M , and, if player 2 never chooses R, this only happens if player

2 chooses L with probability 1. But then the best response of player 1 is B, not T or M

Therefore, there is no such Nash equilibrium.

Is there a Nash equilibrium in which player 1 chooses M and B, both with positive prob-

ability, but not T? Then player 2 will never choose L with positive probability. For player

1 to be indifferent between M and B, we then need player 2 to choose R with probability 1.

But then the best response of player 1 is T , not M or B. Therefore, there is no such Nash

equilibrium.

Is there a Nash equilibrium in which player 1 chooses T and B, both with positive proba-

bility? Then player 2 will not choose C with positive probability. To make player 1 indifferent

between M , player 2 has to chooses L and T with probability 0.5: qpLq “ qpRq “ 0.5> To

make player 2 indifferent between L and R, player 1 has to choose T and B with probability

0.5: ppT q “ ppBq “ 0.5. This is indeed a Nash equilibrium. No player can gain by deviating to

the action that they play with probability 0.

Is there a Nash equilibrium in which player 1 chooses T , M and B with positive probability?

To make player 1 indifferent between T , M and B, we have to have: 3qpRq “ 2qpCq “ 3qpLq.

Combining this with the equation: qpLq ` qpCq ` qpRq “ 1, we get: qpLq “ 2{7, qpCq “ 3{7,

qpRq “ 2{7. Because now player 2 now chooses all actions with positive probability, a symmetric

argument implies that: ppT q “ 2{7, ppMq “ 3{7, ppBq “ 2{7. Because both players are

indifferent between all their actions, we have indeed found a third Nash equilibrium.

Example 2: A Price Setting Game

Two firms i “ 1, 2 sell identical products. Each firm has a stock of q̄ units. Each firm

chooses the price pi ě 0 at which it wants to offer its stock. Demand is given by:

dppq “

$

’

&

’

%

1 if 0 ď p ď 1;

0 if p ą 1.
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Firm i’s sales are sipp1, p2q “ 0 if pi ą 1. Otherwise, the sales are given by:

sipp1, p2q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

q̄ if pi ă pj;

1{2 if pi “ pj;

1 ´ q̄ if pi ą pj.

where j ‰ i. Firms seek to maximize revenues: pisipp1, p2q. Thus we assume that production

costs are zero.

We shall assume:

q̄ ă 1 ă 2q̄,

so that each firm individually does not have enough capacity to serve all customers, but together

both firms have enough capacity to serve all customers.

We begin with the following observation:

Claim 1: This game has no Nash equilibrium in pure strategies.

Proof: Suppose both firms chose the same price: p1 “ p2 “ p. If p ą 1, then each firm

can gain by deviating and choosing a price below 1. If 0 ă p ď 1, then each firm can gain by

deviating and choosing a price just below p, that is, pi “ p ´ ε where ε ą 0 and very small.

Finally, if p “ 0 each firm can gain by raising its price above zero but below 1.

Now suppose the firms did not choose the same price. Without loss of generality: p1 ă p2.

If p2 ď 1, then firm 1 can gain by raising p1 to a higher price that is still less than p2. If p2 ą 1

and p1 ą 0, then firm 2 can gain by lowering its price below 1.

Q.E.D.

We next study Nash equilibria in mixed strategies. We focus on symmetric mixed strategy

Nash equilibria, that is, mixed strategy Nash equilibria in which both firms choose the same

mixed strategy. A mixed strategy is now a probability distribution F on R`. We shall focus on

equilibria in which F has a support that is equal to, or a subset of, r0, 1s. We shall also focus

on equilibria where F has a density f . Let f be such that

fppq ą 0 if and only if p P rp, p̄s
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where 0 ď p ă p̄ ď 1.

To find equilibrium distributions F we shall appeal to the characterization of mixed strategy

Nash equilibria that we proved earlier, although earlier we only proved it for the case that the

strategy sets are finite whereas in this example they are infinite. This is a gap in the proof

that we shall not try to fill. We shall thus pretend we had shown that necessary and sufficient

conditions for a symmetric Nash equilibrium were:

1. firms are indifferent between all prices in rp, p̄s.

2. firms do not strictly prefer prices outside of rp, p̄s.

We shall now seek to find distributions for which this is true. We begin by showing:

Claim 2a: We must have p̄ “ 1.

Proof: If a firm chooses p̄ it knows it will sell 1 ´ q̄. But, if p̄ ă 1, then each firm would

strictly prefer charing price 1 over charing price p̄. The second of the necessary and sufficient

conditions would be violated.

Q.E.D.

Claim 2b: We must have: F ppq “
q̄p´p1´q̄q

p2q̄´1qp
for all p P rp, 1s.

Proof: The expected profit from setting price p P rp, 1s is:

F ppqp1 ´ q̄qp ` p1 ´ F ppqqq̄p.

The first of the necessary and sufficient conditions says that this has to equal for all p the

expected profit from setting price p “ 1. This profit is: 1´ q̄. Solving for F ppq yields the claim.

Q.E.D.

Claim 2c: We must have: p “
1´q̄
q̄
.

Proof: We can determine p̄ because we must have: F ppq “ 0, and because we already have

a formula for F ppq. If we plug in p̄ and solve for p̄, we get the formula in the claim.

Q.E.D.

We can now summarize what we have found in:
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Claim 3: There is a unique symmetric mixed strategy Nash equilibrium. It satisfies:

F ppq “
q̄p ´ p1 ´ q̄q

p2q̄ ´ 1qp

for all p P

”

1´q̄
q̄
, 1

ı

.

Proof: Among the necessary and sufficient conditions that we need to check the only one

that we have not yet verified is that no firm has an incentive to choose a price below p. But

choosing such a price would yield the same quantity as choosing p, but at a lower price, and

would therefore lower sales.

Q.E.D.

The following graph shows the density of the equilibrium distribution for different values of

q̄.

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Densities of Mixed Strategy Nash Equilibria in the Price−Setting Game

p

f(
p)

q = 0.7q = 0.8q = 0.9q = 0.99

Note that as q̄ Ñ 1 for every p we have that F ppq converges to 1. Thus, the distribution of

prices converges to the point mass at price zero.
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Topic 3: Rationalizability

This topic is about an alternative approach to predicting how players play a game, using

the concept of “rationalizability.” Whereas Nash equilibrium is best interpreted as a “stable

convention” for playing a game, rationalizability seeks to describe the behavior of a player who

is rational, whose beliefs attach probability 1 to the true game and also probability 1 to the

event that the other players are also rational, and indeed the game, and the rationality of all

players, are common probability 1 beliefs, in the sense that every player has beliefs that attach

probability 1 to the true game and the rationality of all players, and every player believes

with probability 1 that all other players’ beliefs attach probability 1 to the true game and the

rationality of all players, etc.

1. Rationality

Let’s start by thinking about what rationality in a game might mean. We shall adopt

a Bayesian definition of rationally. A player is rational when the player has a belief about

the other players’ actions (that is, a probability measure on A´i), and chooses an action that

maximizes his or her expected utility given this belief. It is convenient for this section, in fact,

to attribute the property of rationality not to players, but to their actions.

Because we are considering probability measures on the action sets, let’s restrict attention

to games where all action sets are finite, as we did in the previous Topic. This allows us to

bypass any measure-theoretic issues.

Definition 1. An action ai of player i is “rational” if there exists a probability measure µi on

A´i such that ai satisfies:

ÿ

a´iPA´i

uipai, a´iqµipa´iq ě
ÿ

a´iPA´i

uipa
1
i, a´iqµipa´iq for all a1

i P Ai.

Here, µi represents player i’s beliefs about the other players’ behavior. Note that our

definition of rationality allows player i to believe whatever he/she wants about other players’

behavior. Therefore, there will often be many “rational” actions of player i.
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Consider again the Prisoner’s Dilemma:

C D

C 3,3 0,4

D 4,0 1,1

Note that action C of player 1 is not rational. This is because player 1’s action D yields

higher payoffs regardless of what player 2 does. We say that action D “strictly dominates”

action C. Clearly, a strictly dominated action cannot be rational. Thus, there cannot be any

belief of player 1 such that C maximizes expected utility when player 1 holds that belief. What

about the converse: Is every action that is not strictly dominated rational?

The answer to this is “yes,” but only if we are very careful about how we define “strict

dominance.” Consider the game below, where I only show player 1’s utility.

L R

T 3 0

M 0 3

B 1 1

Let us find the rational actions of player 1. Let player 1’s beliefs be that µ is the probability

of L and that 1´µ is the probability of R, where µ P r0, 1s. Consider first the choice of player 1

assuming that player 1 only considers T and M . The expected utility from T is then 3µ and the

expected utility from M is: 3p1 ´ µq. Note that maxt3µ, 3p1 ´ µqu is minimized when µ “ 0.5.

In that case, both actions give expected utility 1.5. If µ ‰ 0.5, either T or M gives expected

utility higher than 1.5. Note that this implies that B is never optimal. In other words, B is

not rational. T and M , however, are both rational.

Observe that B is not strictly dominated by any pure action. But it is strictly dominated

by the mixed action that places probability 0.5 on T and M . This mixed action guarantees

expected utility 1.5, regardless of what player 2 does. What this example therefore illustrates

is that, when talking about strict dominance, we not only have to consider strict dominance by

pure actions, but also by mixed actions. We have the following definition:
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Definition 2. A mixed action αi of player i strictly dominates a pure action ai of player i if:

Uipαi, a´iq ą uipai, a´iq for all a´i P A´i.

With this definition, we have:

Proposition 1. An action ai of player i is rational if and only if it is not strictly dominated by

a mixed action.

The proof of Proposition 1 is worth studying. It uses the separating hyperplane theorem. I

provide it in the appendix to this topic.

The idea of Proposition 1 is that it is often much easier to figure out which actions are

strictly dominated than to figure out which actions are rational.

2. Rationalizability

Players who are rational don’t play strictly dominated actions. If every player believes with

probability 1 that the other players are rational, then their beliefs cannot attach any positive

probability to the strictly dominated actions of the other player. They must choose an action

that is rational in the reduced game that one obtains when one just drops the strictly dominated

actions of the other player. By Proposition 1, they have to choose in this reduced game a action

that is not strictly dominated.

Iterating this argument we obtain that, if the game and rationality are commonly believed

with probability 1, then players can only choose actions that survive iterated elimination of

strictly dominated actions.

Definition 3. An action ai of player i is “rationalizable” if it survives the process of iterated

elimination of strictly dominated actions.

This is the solution concept that we introduce in this Topic. It is appropriate when players

know the game, and believe with probability 1 that the other players are rational, and in fact

these statements are common probability 1 belief.
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Let us consider an example:

L C R

T 0,1 2,3 3,1

M 1,3 0,1 4,2

B 0,0 1,0 3,3

For player 1 B is strictly dominated by a mixed action that places positive probability

on both T and M , but that places more probability on T than on M . After we eliminate

B for player 1, R for player 2 is strictly dominated by a action that places strictly positive

probability on both L and C, but more probability on L than on C. In the remaining game,

no action is strictly dominated. Thus, T and M are rationalizable for player 1, and L and C

are rationalizable for player 2.

A few remarks:

• In the process that we have described we eliminate in each step all strictly dominated ac-

tions. You might alternatively try out eliminating in each step only one strictly dominated

action of some player. These two processes of elimination lead to the same conclusion,

as one can show. Indeed any process in which you eliminate at each stage only strictly

dominated actions leads to the same conclusion, as long as you don’t stop when there are

still some strictly dominated actions.

• Do rationalizable actions exist? For the class of games in which all action sets are finite,

which is the class that we are considering here, the answer is trivial: Yes, of course they

exist. This is because it is not possible that at some stage you eliminate all actions of a

player. That does not make sense.

• The problem with rationalizability is typically that there are lots of rationalizable actions.

The concept often does not have much predictive power. (This claim deserves to be

considered in much more detail. Unfortunately, we cannot do that here.)

How do rationalizability and Nash equilibrium relate to each other?

Proposition 2. Suppose α˚ “ pα˚
1 , α

˚
2 , . . . , α

˚
nq is a Nash equilibrium, let i P I, and suppose

ai P Ai satisfies: α
˚
i paiq ą 0. Then ai is rationalizable.



30

Proof. Because ai is in the support of α˚
i , it is a best response to α˚

´i. This means it is a best

response to a belief about the other players’ choices, and therefore it survives the first step of

iterated elimination of strictly dominated actions. Indeed, all actions that are in the support of

any players’ equilibrium actions survives the first step. We obtain a reduced game, and in this

reduced game α˚ is still a Nash equilibrium. Iterating the argument, we find that actions that

are in the support of a mixed action Nash equilibrium survive all steps of iterated elimination

of strictly dominated actions. This is what Proposition 2 claims.

I state the next result in a slightly informal language.

Proposition 3. Suppose for every player i the set A˚
i is the set of rationalizable actions, and

consider the reduced game in which players’ action sets Ai are replaced by A˚
i , but their utility

functions are not changed. The set of Nash equilibria of this reduced game is the same as the

set of Nash equilibria of the original game.

Proof. I first show that every Nash equilibrium of the original game is also a Nash equilibrium

of the reduced game. By Proposition 3 every strategy available in the original game is also

available in the reduced game. Thus, in particular, the Nash equilibrium strategies are still

available. Moreover, because in the original game no deviation was profitable, and the reduced

game has fewer strategies than the original game, no deviation is profitable in the reduced

game, and we have a Nash equilibrium of the reduced game.

Now consider a Nash equilibrium of the reduced game. I want to show that it is also a Nash

equilibrium of the original game. For this I have to show that it is not profitable to deviate

to a strategy that is available in the original game but not in the reduced game. But because

such strategies were eliminated during the process of iterated elimination of strictly dominated

strategies, they are strictly dominated by a strategy in the reduced game. (This claim needs

a proof, but it is a very simple proof, and therefore I omit it.) And thus, if a deviation in

the original game were profitable, there would also be a profitable deviation in the reduced

game, contradicting the assumption that we are considering a Nash equilibrium of the reduced

game.
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3. Other Concepts of Rationalizability and Dominance

An alternative to the concept of strict dominance is the concept of weak dominance:

Definition 4. A mixed action αi of player i weakly dominates a pure action ai of player i if:

Uipαi, a´iq ě uipai, a´iq for all a´i P A´i

and

Uipαi, a´iq ą uipai, a´iq for at least one a´i P A´i.

We might ask whether this concept has a similar characterization in terms of rationality as

strict dominance has, according to Proposition 1. This is indeed the case, as we show now.

Definition 5. An action ai of player i is “cautiously rational” if there exists a probability measure

µi on A´i which has full support, i.e. µipa´iq ą 0 for every a´i P A´i, and such that ai satisfies:

ÿ

a´iPA´i

uipai, a´iqµipa´iq ě
ÿ

a´iPA´i

uipa
1
i, a´iqµipa´iq for all a1

i P Ai.

Proposition 4. An action ai of player i is cautiously rational if and only if it is not weakly

dominated by a mixed action.

We omit the proof of Proposition 3. The proof is also an application of a separating hyper-

plane theorem.

We might also consider the iterated deletion of weakly dominated actions. This procedure

is known to be problematic. The following example shows that the order in which weakly

dominated actions are eliminated might matter for the conclusion:

L R

T 2,2 1,2

B 2,1 0,0
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If we eliminate B first, then L and R remain for player 2. If we eliminate R first, then T and B

remain for player 1. Or we could eliminate R and B at the same time. In each case we arrive at

different predictions about which actions players might choose and about which utilities they

might get. A deeper problem with the iterated deletion of weakly dominated actions is that it

is difficult to derive the concept from primitive assumptions about what players believe about

each other, what they believe about others’ beliefs, etc.

Iterated deletion of weakly dominated actions might eliminate some Nash equilibria. In

the previous example, pT,Rq is a Nash equilibrium, but it might be eliminated by iterated

elimination of weakly dominated actions, depending on the order in which weakly dominated

actions are eliminated. Another example is this:

L R

T 1,1 0,0

B 0,0 0,0

pB,Rq is a Nash equilibrium, but iterated elimination of weakly dominated actions will always

eliminate it.

Another concept of rationality requires actions to be best responses to beliefs that are

product measures, reflecting the independence of other players’ actions. In games with more

than two players, this may be more restrictive than the concept of rationality that we introduced

in Definition 1. This concept of rationality then has no characterization in terms of dominance.

When the term “rationalizability”was first introduced, it referred to the iterated elimination of

actions that are not best responses to product measure beliefs. Today, the meaning seems to

shift, and rationalizability is simply identified with actions that survive iterated elimination of

strictly dominated actions.

The following definitions are also important:

Definition 6. An action ai of player i is called strictly dominant if for all a1
i P Ai with a1

i ‰ ai:

uipai, a´iq ą uipa
1
i, a´iq for all a´i P A´i.
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Definition 7. An action ai of player i is called weakly dominant if for all a1
i P Ai with a1

i ‰ ai:

uipai, a´iq ě uipa
1
i, a´iq for all a´i P A´i.

and

uipai, a´iq ą uipa
1
i, a´iq for at least one a´i P A´i.

These concepts have the following characterizations:

Proposition 5. An action ai is strictly dominant if and only if it is the only rational action of

player i.

Proposition 6. An action ai is weakly dominant if and only if it is the only cautiously rational

action of player i.

The proof of these propositions is short and simple, and, if you want, you can try to prove

them by yourself. I omit the proofs here.

4. Rationalizability and Best Responses

Whereas up to this point we have assumed that all action sets are finite, we now also consider

games with infinite action sets. We shall only use the concepts of strict dominance, and iterated

deletion of strictly dominated actions, and we shall only consider the case that the dominating

actions are pure actions. Thus, we can avoid all measure theoretic issues that arise when action

sets are infinite.

Recall from Proposition 1 that a strategy that is a best response is not strictly dominated.

Consider now games in which the action sets Ai are compact subsets of R and the utility

functions ui are continuous. In such games we can define for each player i the largest best

response of player i, āi, and the smallest best response of player i, ai.

āi “ max
ď

aPA

BRipaq and ai “ min
ď

aPA

BRipaq.

The following result uses the same assumptions as Proposition 2 in Topic 1.
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Proposition 7. If for every player i P I:

1. the set Ai is a non-empty and compact subset of R;

2. the function ui is continuous in a;

3. the function ui has increasing differences, i.e. if: i P I, ai, a
1
i P Ai, ai ą a1

i, for every j P I

with j ‰ i: aj, a
1
j P Aj and aj ě a1

j then:

uipai, a´iq ´ uipa
1
i, a´iq ě uipai, a

1
´iq ´ uipa

1
i, a

1
´iq,

then for every player i every action ai ą āi is strictly dominated by āi, and every action ai ă ai

is strictly dominated by ai.

Proof. First, we show that āi is a best response to the vector of maximal actions of all other

players: pmaxAjqj‰i. The proof is indirect: suppose there were some action ai ă āi such that:

ui

´

āi, pmaxAjqj‰i

¯

´ ui

´

ai, pmaxAjqj‰i

¯

ă 0.

The strictly increasing differences assumption means that then ai yields higher utility not just

when all other players choose their largest actions, but also when they choose any other actions.

This is because the strictly increasing differences assumption implies for all a´i P A´i:

ui pāi, a´iq ´ ui pai, a´iq ď ui

´

āi, pmaxAjqj‰i

¯

´ ui

´

ai, pmaxAjqj‰i

¯

,

and by assumption the right hand side of that inequality is negative. But then āi is not a best

response, which contradicts the assumption that it is the largest best response.

A similar argument shows that ai is a best response to the vector of minimal actions of all

other players: pminAjqj‰i.

Consider now any action ai ą āi. We now prove the assertion of the Proposition, that is,

we prove that āi strictly dominates ai. Because ai is not a best response, we have:

ui

´

āi, pmaxAjqj‰i

¯

´ ui

´

ai, pmaxAjqj‰i

¯

ą 0.

The assumption of strictly increasing differences then implies that for all a´i P A´i:

ui pāi, a´iq ´ ui pai, a´iq ą 0.
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But this says that āi strictly dominates ai.

A similar argument shows that ai strictly dominates any ai ă ai.

We are going to apply this result to study rationalizability in a Cournot duopoly. Let us

assume that there are only two firms: i “ 1, 2, that the firms’ action sets are Ai “ r0, 10s, and

that inverse demand is given by: p “ 10 ´ pa1 ` a2q. We assume costs are zero, and therefore

each firm’s profit is:

uipa1, a2q “ p10 ´ a1 ´ a2qai.

Recall that this game has strictly increasing differences if we revert the ordering of the real

numbers for one of the two firms, say firm 2. This implies that we can apply our result to this

game.

Each firm i’s best response function can be found by maximizing the (quadratic) profit

function. The result is:

BRipaq “
10 ´ aj

2
.

Therefore, each firm’s smallest best response is 0, and each firm’s largest best response is 5. All

actions larger than 5 are strictly dominated.

Now consider the smaller game in which each firm’s action set is r0, 5s. In this game, each

firm’s smallest best response is 2.5, and each firm’s largest best response is 5. Thus, all actions

below 2.5 are strictly dominated.

Now consider the even smaller game in which each firm’s action set is: r2.5, 5s. Each

firm’s smallest best response in this game is 2.5, and each firm’s largest best response is: 3.75.

Therefore, all actions above 3.75 are strictly dominated.

Note that, as we continue this process, we alternate between adjusting the upper bound,

and adjusting the lower bound, of the remaining actions. Let’s keep track of the upper bounds.

The upper bound after the first round of elimination is 5. We then adjust the lower bound, to
10´5
2

, and then adjust the upper bound to
10´ 10´5

2

2
. In general, in each odd step n, the upper

bound is given by:

ān “
10 ´

10´ān´2

2

2
.
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This simplifies to:

ān “ 2.5 `
1

4
ān´2.

This difference equation has the fixed point:

ā˚
“ 2.5 `

1

4
ā˚

ô ā˚
“

10

3
.

Our initial value a1 “ 5 is larger than the fixed point. The coefficient in front of the lagged

term in the difference equation is in absolute value less than 1. Therefore, the solution to the

difference equation converges to the fixed point. Therefore, as the number of iterations tends

to infinity, the upper bound of the surviving actions tends to 10
3
.

Let’s consider the sequence of lower bounds. It starts with a2 “ 2.5, and it continues

according to the same difference equation as the upper bound:

an “ 2.5 `
1

4
an´2.

By an argument analogous to the argument we used in the previous paragraph, the sequence

of lower bounds also converges to 10
3
.

We have concluded that, if we apply iterated deletion of strictly dominated actions to this

Cournot example, as the number of steps tends to infinity, for each firm the only surviving

quantity is 10
3
. Note that this is also the Cournot equilibrium quantity.

What we have seen in this example generalizes to a large class of Cournot duopoly games.
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Appendix for Topic 3

Proof of Proposition 1

Step 1: We prove the “only if” part, that is, we assume that a˚
i is a best reply to a belief

µi P ∆pA´iq, and infer that a˚
i is not strictly dominated. The proof is indirect. Suppose a˚

i were

strictly dominated by αi P ∆pAiq. Then, obviously, αi yields strictly higher expected utility

given the belief µi than a˚
i :

ÿ

a´iPA´i

Uipαi, a´iqµipa´iq ą
ÿ

a´iPA´i

uipa
˚
i , a´iqµipa´iq. (1)

We thus have that αi is a better response to µi than a˚
i , which is almost what we want to

obtain, but not quite. To obtain the desired contradiction, we want to find a pure action that

is a better response to µi than a˚
i . This can be done as follows. We re-write the left hand side

of (1) as follows:

ÿ

a´iPA´i

Uipαi, a´iqµipa´iq “
ÿ

a´iPA´i

ÿ

aiPAi

αipaiquipαi, a´iqµipa´iq

“
ÿ

aiPAi

ÿ

a´iPA´i

αipaiquipαi, a´iqµipa´iq

“
ÿ

aiPAi

αipaiq

˜

ÿ

a´iPA´i

uipai, a´iqµipa´iq

¸

. (2)

Combining (1) and (2) we have:

ÿ

aiPAi

αipaiq

˜

ÿ

a´iPA´i

uipai, a´iqµipa´iq

¸

ą
ÿ

a´iPA´i

uipa
˚
i , a´iqµipa´iq. (3)

The left hand side of (3) is a convex combination of the expressions in large brackets in that

term. This convex combination can be larger than the right hand side of (3) only if one of the

expressions in large brackets is larger than the right hand side of (3), i.e., for some ai P Ai:

ÿ

a´iPA´i

uipai, a´iqµipa´iq ą
ÿ

a´iPA´i

uipa
˚
i , a´iqµipa´iq. (4)
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and thus ai is a better response to µi than a˚
i , which contradicts the assumption a˚

i is a best

response to µi among all pure actions.

Step 2:1 We prove the “if” part, that is, we assume that a˚
i is not strictly dominated,

and we show that there is a belief µi P ∆pA´iq to which a˚
i is a best response. The proof is

constructive. We define two subsets, X and Y , of the set R|A´i|, that is, the Euclidean space

with dimension equal to the number of elements of A´i. We shall think of the elements of these

sets as payoff vectors. Each component indicates a payoff that player i receives when the other

players choose some particular a´i P A´i.

Now pick any one-to-one mapping f : A´i ÝÑ t1, 2, . . . , |A´i|u. For any action ai of player

i, we write uipai, xa´iyq P R|A´i| for the vector of payoffs that player i receives when playing ai,

and when the other players play their various action combinations a´i. Specifically, the k-th

entry of uipai, xa´iyq is the payoff uipai, f
´1pkqq where f´1 is the inverse of f . Intuitively, f

defines an order in which we enumerate the elements of A´i, and uipai, xa´iyq lists the payoffs

of player i when he plays ai and the other players play a´i in the order defined by f .

The set X is:

X “ tx P R|A´i||x ą uipa
˚
i , xa´iyqu. (5)

Here, “ą” is to be interpreted as: “strictly greater in every component.” Therefore, the set X is

the set of payoff vectors that are strictly greater in every component than uipa
˚
i , xa´iyq, that is

the payoff vector that corresponds to the undominated action a˚
i .

The set Y is:

Y “ coty P R|A´i||Dai P Ai : y “ uipai, xa´iyqu. (6)

Here, “co” stands for “convex hull.” The payoff vectors in Y are the payoff vectors that player

i can achieve by choosing some mixed action. The weight that the convex combination that

defines an element of y places on each element of tx P R|A´i||Dai P Ai : x “ uipai, xa´iyqu

corresponds to the probability which the mixed action assigns to each pure action ai P Ai.

It is obvious that both sets are nonempty and convex sets. Moreover, their intersection is

empty. If X and Y overlapped, then every common element would correspond to the payoffs

arising from a mixed action of player i that strictly dominates a˚
i . Because by assumption no

such mixed action exists, X and Y cannot have any elements in common.

1An example and a graph that illustrate Step 2 follow after the end of the proof.
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In the previous paragraph we have checked all the assumptions of the separating hyperplane

theorem: we have two nonempty and convex sets that have no elements in common. The

separating hyperplane theorem (Theorem 1.68 in Sundaram [4]) then says that there exist

some row vector i P R|A´i| which is not equal to zero in every component, and some δ P R, such

that:

i ¨ x ě δ @x P X (7)

and

i ¨ y ď δ @y P Y. (8)

Here “¨” stands for the scalar product of two vectors. We treat all vectors in X and Y as column

vectors. Therefore, the above scalar products are well-defined.

We now make two observations. The first is:

δ “ i ¨ uipa
˚
i , xa´iyq. (9)

To show this note that by definition uipa
˚
i , xa´iyq P Y , and therefore, by (8), i ¨uipa

˚
i , xa´iyq ď δ.

Next, for every n P N define xn “ uipa
˚
i , xa´iyq ` εn ¨ ι, where ε P p0, 1q is some constant and

ι is the column vector in R|A´i| in which all entries are “1”. Observe that for every n P N

we have xn P X, so that by (7) we have: i ¨ xn ě δ for every n. On the other hand, we

have: limnÑ8 xn “ uipa
˚
i , xa´iyq. By the continuity of the scalar product of vectors therefore:

i ¨uipa
˚
i , xa´iyq ě δ. This, combined with our earlier observation i ¨uipa

˚
i , xa´iyq ď δ implies (9).

Our second observation is:

i ě 0 (10)

where we interpret “ě” to mean “greater or equal in every component,” but not identical, and

0 stands for the vector consisting of zeros only. That i is not equal to 0 is part of the assertion

of the separating hyperplane theorem. We shall prove indirectly that no component of i can be

negative. Assume that i has a negative component. Without loss of generality, assume that it

is the first. Now we consider the vector x “ uipa
˚
i , xa´iyq ` p1, ε, ε, . . . , εq where ε ą 0 is some

number. Clearly, the vector x that we define like this is contained in X. Moreover,

i ¨ x “ i ¨ uipa
˚
i , xa´iyq ` i ¨ p1, ε, ε, . . . , εq “ δ ` i ¨ p1, ε, ε, . . . , εq (11)
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where for the second equality we have used (9). We now want to evaluate i ¨ p1, ε, ε, . . . , εq.

Unfortunately, we need some additional notation: we shall use for the k -th component of the

vector i the symbol: ik. Here, k P t1, 2, . . . , |A´i|u. We then obtain:

i ¨ p1, ε, ε, . . . , εq “ i1 ` ε

|A´i|
ÿ

k“2

ik (12)

Now observe that by the contrapositive assumption of our indirect proof i1 ă 0. Therefore, for

small enough ε the right hand side of (12) is negative. Using this fact, we obtain from (11):

i ¨ x ă δ (13)

which contradicts x P X and (7). This completes our indirect proof of (10).

Now we denote by }i} the Euclidean norm of i. Because i ‰ 0, if we define µi by:

µi “
1

}i}
i, (14)

then the Euclidean norm of µi is 1, and thus µi P ∆pA´iq, that is, µi is a belief of player i. We

complete the proof by showing that a˚
i is a best response to µi. (8) and (9) together imply:

i ¨ y ď i ¨ uipa
˚
i , xa´iyq @y P Y. (15)

Dividing this inequality by }i} we get:

µi ¨ y ď µi ¨ uipa
˚
i , xa´iyq @y P Y. (16)

Now by definition of Y for every ai: uipai, xa´iyq P Y . Therefore:

µi ¨ uipai, xa´iyq ď µi ¨ uipa
˚
i , xa´iyq @ai P Ai. (17)

This is what we wanted to prove: a˚
i is a best response inAi to µi. Q.E.D.

We illustrate Step 2 of the proof of Proposition 1 with the following game in which player

1 chooses rows and player 2 chooses columns. Only the payoffs of player 1 are shown.
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L R

T 2 2

MA 3 -2

MB 0 -1

MC -1 0

B -2 3

Example 1

Player 1’s action T is not strictly dominated. We illustrate in Figure 1 the construction of

beliefs to which action T is a best reply. The sets X and Y to which Step 2 of the proof of

Proposition 1 refers are shown in the figure.

Y

X

-3 -2 -1 1 2 3

-3
-2

-1
1

2
3

ui(ai, L)

ui(ai, R)

Figure 2

The hyperplane (straight line) separating X and Y is the dashed line in Figure 1. Figure 1

also shows the orthogonal vector for this hyperplane.
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Topic 4: Multi-Stage Games

1. General Definition of Multi-Stage Games

Definition 8. A multi-stage game is a list
´

I, pAiqiPI , pAt
iqiPI,tPt1,2,...,T u

, puiqiPI

¯

, where:

1. I “ t1, 2, . . . , nu is a finite set of players;

2. T P N is the number of stages;

and for every i P I:

3. Ai is the set of actions potentially available to player i at some stage of the game;

4. A1
i Ď Ai is the non-empty set of actions available to player i in stage t “ 1;

5. for every t “ 2, ..., T :

At
i : H

t´1 ↠ Ai,

is a non-empty valued correspondence that describes the set of actions available to player

i in stage t;

6. ui : H
T Ñ R is player i’s utility function.

Here, for every t “ 1, 2, . . . , T , we denote by H t the set of histories that may occur up to

stage t:

H1
“

n
ą

i“1

A1
i and, for t ě 2 : H t

“ tpht´1, pat1, a
t
2, . . . , a

t
nqq|ht´1

P H t´1 and ati P At
iph

t´1
q for all i.u
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2. Examples of Multi-Stage Games

Example 1: The players are two single-product firms: i “ 1, 2. There are two stages. In

the first stage each firm chooses whether to produce product X or product Y . In the second

stage, each firm chooses a price pi at which it offers its product. Firms have no cost, and

therefore seek to maximize revenues.

There is a continuum of consumers. Consumers value one unit of product X at 1 Dollars.

Consumers value one unit of product Y at v Dollars, where v is different for different consumers.

Specifically, v is uniformly distributed on r0, 2s with density 1
2
. Consumers buy from whatever

firm offers the larger surplus: value - price. If consumers are indifferent between two firms, they

pick one randomly. If consumers are indifferent between buying and not buying, they buy.

To avoid some trivial case distinctions, let us assume that a firm i that produces product

X cannot charge more than 1 Dollar: pi P r0, 1s, and a firm i that produces product Y cannot

charge more than 2 Dollars: pi P r0, 2s.

If both firms offer product X, then consumers will buy from the firm with the lower price

only. The firms’ profit functions are:

iippi, pjq “

$

’

’

’

&

’

’

’

%

0 if pi ą pj

1
2
pi if pi “ pj

pi if pi ă pj

where i ‰ j.

If firm i offers product X at price pi whereas firm j offers product Y at price pj, then a

consumer will buy from firm i if: 1 ´ pi ą v ´ pj ô v ă 1 ` ppj ´ piq. If pi ď pj ´ 1, then this

means that all consumers buy from firm i. Otherwise, the mass of consumers buying from firm

i is: 1
2
p1 ` ppj ´ piqq. This means that firm i’s profit function is:

iippi, pjq “

$

&

%

1
2
p1 ` ppj ´ piqqpi if pi ą pj ´ 1

pi if pi ď pj ´ 1
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Similarly, firm j’s profit function is:

ijppi, pjq “

$

&

%

0 if pj ą pi ` 1

1
2
p1 ` ppi ´ pjqqpj if pj ď pi ` 1

If both firms offer product Y , then consumers will buy from the firm with the lower price

only. Firms’ profit functions are:

iippi, pjq “

$

’

’

’

&

’

’

’

%

0 if pi ą pj

1
4
p2 ´ piqpi if pi “ pj

1
2
p2 ´ piqpi if pi ă pj

where i ‰ j.

Example 2: Three voters vote over three candidates: A, B, and C. There are three stages.

In the first stage, voter 1 picks one of the three candidates. In the second stage, voter 2 picks

one of the three candidates. In the third stage, voter 3 chooses among the two candidates

picked by voters 1 and 2. Of course, if voters 1 and 2 picked the same candidate, voter 3 does

not have any choice.

Voters’ utilities are:

u1pAq “ 2 and u1pBq “ 1 and u1pCq “ 0.

u2pCq “ 2 and u2pAq “ 1 and u2pBq “ 0.

u3pBq “ 2 and u3pCq “ 1 and u3pAq “ 0.

Observe that in this example in each stage only one of the three players has a choice. One

can fit this into the framework of general multi-stage games by assuming that all except one

player have in each stage just one choice.

Games in which in each stage only one of the three players has a choice are called games of

perfect information.

Games of perfect information can be represented by a game tree. In Figure 1 we show

Example 2’s game tree.
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3. Backward Induction

We are interested in predicting how players will choose in multi-stage games. Building on

the idea of Nash equilibrium, we shall develop an equilibrium concept for multi-stage games

that we shall later call “subgame-perfect equilibrium.” Rather than giving the full definition of

this solution concept, we shall begin by describing the algorithm that is used in multi-stage

games with a finite number of stages to find subgame-perfect equilibria. This algorithm is called

“backward induction.”

Backward induction

While T ą 1:

Step 1: For every history hT´1 P HT´1 find a Nash equilibrium

a˚
phT´1

q “ pa˚
1phT´1

q, a˚
2phT´1

q, . . . , a˚
nphT´1

qq

of the game with player set I, strategy setsAT
i pht´1q and utility functions: vipa1, a2, . . . , anq “

uiph
T´1, pa1, a2, . . . , anqq.

Step 2: Then consider the new multi-stage game with T ´1 stages, where action correspondences

are the same as in the first T ´ 1 stages of the T -stage game, and where we define utility

in this new game by:

uiph
T´1

q “ uiph
T´1, a˚

phT´1
qq.

Step 3: Set T Ð pT ´ 1q. Go back to Step 1.

When T “ 1:

Step 4: Find a Nash equilibrium a˚ “ pa˚
1 , a

˚
2 , . . . , a

˚
nq of the game with player set I, strategy sets

A1
i , and utility functions: uipa1, a2, . . . , anq.
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Backward Induction finds for each player, for every stage, for every possible history of the

game up to that stage, an action.

Let us introduce some new terminology and notation:

Definition 9. A (pure) strategy si of player i in a multi–stage game consists of:

1. an action s1i P A1
i for the first stage;

2. a function: sti : H
t´1 Ñ Ai for stages t ě 2 such that:

stiph
t´1q P At

iph
t´1q for all ht´1 P H t´1.

Let Si denote the set of strategies of player i.

Backward Induction identifies for each player a strategy of that player

Definition 10. Every strategy combination that Backward Induction finds is a subgame-perfect

equilibrium.

Note that we are considering an equilibrium notion: for every possible contingency, some

stable convention on how to act in that contingency has developed that all players understand.

In fact, Backward Induction is an algorithm for finding a subset of all Nash equilibria. Due to

lack of time, we shall not discuss solution concepts related to rationalizability for multistage

games. We shall discuss the interpretation of subgame-perfect equilibria in more detail in later

sections.

More notes on the algorithm:

• Note that we focus on pure actions only. We shall disregard mixed actions for this entire

topic.

• If at some stage, after some history, we don’t find any Nash equilibrium, then there is no

subgame-perfect equilibrium (in pure strategies).

• If at some stage, after some history, we find multiple Nash equilibria, then we choose one,

and continue with the algorithm. We then have to repeat the algorithm for every Nash

equilibrium that we could have picked.
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4. Backward Induction in the Examples

Example 1: In the second stage, if both firms offer the same product, the only Nash

equilibrium is: p1 “ p2 “ 0. This is the Bertrand equilibrium.

If firm i offers product X and firm j offers product Y , then firm i’s best response will always

satisfy:

pi ě pj ´ 1

Therefore, we can maximize 1
2
p1 ` ppj ´ piqqpi using the first order condition, and obtain:

pi “
1 ` pj

2
.

Firm i cannot charge a price above 1. Its best response is therefore given by:

pi “

$

&

%

1`pj
2

if pj ď 1

1 if pj ą 1.

Firm j’s best response will always satisfy:

pj ď pi ` 1,

and therefore, we can maximize 1
2
p1 ` ppi ´ pjqqpj using the first order condition, and obtain:

pj “
1 ` pi
2

.

This implies that there is a unique Nash equilibrium:

pi “ pj “ 1.

All consumers with v ă 1 buy from firm 1. All consumers with v ą 1 buy from firm 2. Both

firms have profit 0.5.

We move now to the first stage. If firms anticipate the second stage equilibrium, the first

stage has the following form:
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X Y

X 0,0 0.5,0.5

Y 0.5,0.5 0,0

There are two Nash equilibria. One firm produces X, and the other firm produces Y . Firms

avoid price competition through product differentiation.

Example 2: We can use the graphical representation of the game shown in Figure 1. In

Figure 2 we have, starting at the end of the game tree, marked the optimal choices in red.

Note that voter 2 is indifferent at her second decision node between all three alternatives,

because voter 1 offered B, and B is voter 3’s most preferred alternative. Therefore, regardless

of what voter 2 does, B will be the outcome.

If voter 1 chooses A, then voter 2 can put her most preferred outcome C into the mix, and

make sure that C will be chosen.

If voter 1 chooses C, which is voter 2’s preferred outcome, then voter 2 can either immedi-

ately choose C, or she can add a candidate to the mix of which she is sure that voter 3 will not

choose it.

Thus voter 1 knows that, if she picks A or C, then voter 2 secures her most preferred

outcome C. By contrast, if she picks B, then this will be the outcome, because it is voter 3’s

preferred outcome. Because voter 1 prefers B to C, she picks B.

The voter who moves third thus gets her most preferred outcome. One might ask whether

this is true only for the particular preferences proposed here, or whether it is true more generally.
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5. Subgame-Perfect Equilibria

In Definition 3 we defined“subgame-perfect equilibria” to be the strategy combinations that

are identified by Backward Induction. That is, however, not the “real” definition of subgame-

perfect equilibrium as the concept is defined in game theory. In this section we shall introduce

the “real” definition of subgame-perfect equilibrium, and show that it is equivalent to Definition

3.

Recall the concept of a strategy from Definition 2. Suppose we have a list of strategies, one

for each player: ps1, s2, . . . , snq. Then we can determine for each stage what is going to happen

if players follow these strategies:

Stage 1: a1 “ ps11, s
1
2, . . . , s

1
nq.

Stage 2: a2 “ ps21pa1q, s22pa
1q, . . . , s2npa1qq.

Stage 3: a3 “ ps31pa1, a2q, s32pa
1, a2q, . . . , s3npa1, a2qq.

. . .

Stage T: aT “ psT1 pa1, a2, . . . , aT´1q, sT2 pa1, a2, . . . , aT´1q, . . . , sTn pa1, a2, . . . , aT´1qq.

We call pa1, a2, . . . , aT q the outcome path implied by ps1, s2, . . . , snq. Note that for every

strategy combination there is a unique implied outcome path, but the same outcome path may

be implied by different strategies. For example, if a1 is the same for two strategy combinations,

then for a2 it only matters which actions players’ strategies prescribe following action profile

a1. All other prescriptions of the second period strategies don’t matter for the outcome path.

We can assign utility directly to strategy combinations as follows:

ps1, s2, . . . , snq Ñ pa1, a2, . . . , aT q Ñ
`

u1pa
1, a2, . . . , aT q, u2pa1, a2, . . . , aT q, . . . , unpa1, a2, . . . , aT q

˘

.

Abusing notation a little bit, we can write for player i’s utility from the outcome path implied

by ps1, s2, . . . , snq: uips1, s2, . . . , snq for i “ 1, 2, . . . , n.
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But now we have a static game: the strategy sets are S1, S2, . . . , Sn, and the utility functions

are the ones we just constructed. We call this static game the “normal form” of the multi-stage

game with which we started:

Definition 11. The normal form of a multi-stage game is the game that has the strategy sets

S1, S2, . . . , Sn as defined in Definition 9, and that has the utility functions which assign to every

strategy combination the utility from the outcome path that the strategy combination implies.

Without proof we state:

Proposition 8. The strategy combinations found by Backward Induction are Nash equilibria of

the normal form of the multi-stage game.

We can strengthen this result a lot by considering the “subgames” of a multi-stage game.

Consider any initial history ht´1 of a multi-stage game. The remaining game is essentially a

game by itself. We can define it as follows:

Definition 12. The subgame following history ht´1 of a given multi-stage game is itself a multi-

stage game, and is defined as follows:

1. Î “ I;

2. T̂ “ T ´ pt ´ 1q;

and for every i P I:

3. Âi “ Ai;

4. Â1
i “ At

iph
t´1q;

5. for every t̂ “ 2, ..., T̂ : Ât̂
i : Ĥ

t̂´1 ↠ Ai is given by:

Ât̂
ipĥ

t̂´1
q “ At´1`t̂

i pht´1, ĥt̂´1
q for all ĥt̂´1

P Ĥ t̂´1

6. ûi : Ĥ
T̂ Ñ R satisfies:

ûipĥ
T̂

q “ uiph
t´1, ĥT̂

q for all ĥT̂
P Ĥ T̂ .
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From any given strategy si for the original game we can derive an induced strategy ŝi for

the subgame by setting:

ŝ1i “ stiph
t´1

q,

and, for every t̂ “ 2, . . . , T̂ and every ĥt̂ P Ĥ t̂:

ŝt̂ipĥ
t̂´1

q “ st´1`t̂
i pht´1, ĥt̂´1

q.

Proposition 8 implies:

Proposition 9. The strategy combinations found by Backward Induction induce Nash equilibria

of the normal form of every subgame of the multi-stage game.

Now we can give the “true” definition of subgame-perfect equilibria:

Definition 13. A strategy combination ps1, s2, . . . , snq for a multi-stage game is a subgame-perfect

equilibrium of the multi-stage game if it is a Nash equilibrium of the normal-form of the multi-

stage game, and if it induces for every subgame of the multi-stage game a Nash equilibrium of

that subgame.

Propositions 8 and 9 imply that the strategy combinations found by Backward Induction

are a subset of the set of subgame-perfect equilibria. But, in fact, the following, stronger claim

is true:

Proposition 10. The set of strategy combinations found by Backward Induction equals the set

of subgame-perfect equilibria of the multi-stage game.

The formal proof of this result requires so much notation that it is not worthwhile to provide

it here. I explain informally one interesting part of this proof. To show that every strategy

combination found by Backward Induction is a Nash equilibrium of the game itself and all of

its subgames, we have to show that in the game itself and in any subgame no player can gain by

deviating from a strategy combination identified by Backward Induction. Let the first period

of a subgame be period t. The definition of Backward Induction implies that no player has
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an incentive to deviate in period t, if the player does not alter their behavior in subsequent

periods. We have to show that this implies that also more complicated deviations, in period

t and in subsequent periods, are not beneficial. This is known as the “one-shot deviation

principle.” It says: “If any one-shot deviation is not worthwhile, then the same is true for all

more complicated deviations.” The reason this is true is as follows: Consider any complicated,

multi-period deviation from some strategy si. Then, if no single-period deviation is beneficial,

we can adjust the deviation so that behavior in the last period T is the same as in strategy

si, and the deviation must still be profitable. But then we can also adjust deviation so that

behavior in the period T ´ 1 is the same as in strategy si, and the deviation must still be

profitable. By induction, we infer that a one period deviation must be profitable. But this

contradicts the assumption that no one-shot deviation is profitable.

6. Conceptual Aspects of the Subgame-Perfect Equilibrium Concept

Consider the following two player game, known as “ultimatum bargaining.” Two players

negotiate over the division of 10 Dollars. Player 1 can either propose that she herself gets 1

Dollars, or 5 Dollars, or 9 Dollars, in each case leaving the rest for player 2. Then player 2

can accept or reject player 1’s proposal. If player 2 accepts the proposal, then players’ utilities

equals the money they get according to player 1’s proposal. Otherwise, their utilities are zero.

This is a game of perfect information. It is shown in Figure 3, with the two players’ utilities

listed at the end of the game tree.

I then show in Figure 4 the normal form of this game. If you investigate Figure 4, you

will find that there are seven Nash equilibria: (9,1) and (YYY), (9,1) and (YNY), (9,1) and

(NYY), (9,1) and (NNY), (5,5) and (YYN), (5,5) and (NYN), and (1,9) and (YNN). In each

equilibrium, player 1’s proposal is accepted. Moreover all proposals where player 1 demands for

more money than he gets in the equilibrium are rejected. Proposals where player 1 demands

less than he gets in the equilibrium may be accepted or rejected.
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1

(1,9) (5,5) (9,1)

2 2 2

Y N Y N Y N

1

9

0

0

5

5

0

0

9

1

0

0

Figure 3

YYY YYN YNY YNN NYY NYN NNY NNN

(1,9) 1,9 1,9 1,9 1,9 0,0 0,0 0,0 0,0

(5,5) 5,5 5,5 0,0 0,0 5,5 5,5 0,0 0,0

(9,1) 9,1 0,0 9,1 0,0 9,1 0,0 9,1 0,0

Figure 4

The only subgame-perfect equilibrium is (9,1) and (YYY). The reason is that in the sub-

games in which player 2 moves, she chooses between accepting a proposal that gives her positive

utility, and rejecting the proposal, which gives her zero utility. Player 2’s only rational choice,

and thus the only Nash equilibrium, is to say“yes.” Therefore, in a subgame-perfect equilibrium

player 2 has to choose (Y,Y,Y). But if player 2 accepts all offers, player 1 maximizes his own

utility by proposing the offer that is most favorable to him, i.e. (9,1).
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The other Nash equilibria involve “non-credible threats.” In those equilibria, player 2 threat-

ens to reject some offers. This is not a credible threat because, if player 2 has to carry out

the threat, it will not be in his interest. Every offer gives him a positive utility. Rejecting the

offer gives him zero utility. The reason the threat is part of a Nash equilibrium is that player 1

anticipates the threat, and therefore does not make the offer that player 2 threatens to reject.

Therefore, player 2 never has to prove that he will actually carry out his threat. Subgame-

perfect equilibrium rules out Nash equilibria that are sustained by threats (more generally:

plans) that are not credible, in the sense that they are not optimal if the situation arises in

which they need to be carried out.

That non-credible threats are ruled out is certainly desirable. But the concept of subgame-

perfect equilibrium also has drawbacks. Consider the example in Figure 5. Players 1 and 2 take

turns to “Stop” (S) or “Continue” (C) the game. The player who stops gets slightly more than

the player who continues, but the longer they continue the larger the sum of players’ utilities

gets. The unique subgame-perfect equilibrium is that each player always stops.

1

2

1

2

1

S C

S C

S C

S C

S C

6
4

5
6

7
5

6
7

8

6

7

8

Figure 5
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But suppose player 1 continued in his first move, contrary to the subgame-perfect equilib-

rium. Then player 2 might think that player 1 will perhaps also continue at his second node.

Then player 2 might wish to continue at her first node, only to stop at her second node. This

would give her utility 7, whereas stopping immediately would only give her utility 6. Why does

subgame-perfect equilibrium predict that player 2 will stop? It is because, implicitly, subgame-

perfect equilibrium assumes that any deviation from the equilibrium is a one-off error that will

not be repeated. This seems a problematic assumption in practice. If a player deviates from

the equilibrium convention once, it may seem likely that the same player will deviate from the

equilibrium convention again later.

7. More Examples of Subgame-Perfect Equilibria

Suppose in stage 1 players play the game below on the left, and in stage 2 they play the

game below on the right. The players’ utilities are the sum of their utilities from stage 1 and

stage 2.

C D

C 3,3 0,4

D 4,0 1,1

A B

A 3,3 0,0

B 0,0 1,1

Stage 1 Stage 2

Figure 6

Let us find the subgame-perfect equilibria in pure strategies of this game. Each of the four

possible outcomes of stage 1 leads to a subgame in stage 2. Each of the four subgames in stage

2 are identical to the game on the right in Figure 6. The game on the right in Figure 6 has two

Nash equilibria in pure strategies: pA,Aq and pB,Bq. There are thus 24 “ 16 possible ways

of assigning a Nash equilibrium to each of the stage 2 subgames. To find all subgame-perfect

equilibria, we have to examine for each of these 16 possibilities the Nash equilibria of the first

stage game.

This task looks too tedious, and therefore we shall focus on some examples. Suppose in stage

2 the same Nash equilibrium is played, regardless of the first stage outcome. Then the first
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stage has only one Nash equilibrium: pD,Dq. Note that the first stage game is the Prisoner’s

Dilemma. Now let’s ask whether we can construct a subgame-perfect equilibrium in which

players choose pC,Cq in the first stage. Suppose that following pC,Cq players play pA,Aq in

stage 2, and otherwise they play pB,Bq in stage 2. Then a player may be tempted to deviate

to D in stage 1, which increases their utility by 1. However, they anticipate that in the second

stage they will lose a utility of 2, because instead of playing pA,Aq in the second stage players

will play pB,Bq. Thus, the deviation is not worthwhile, and we have found a subgame-perfect

equilibrium where pC,Cq is played in the first stage.

We won’t study other subgame-perfect equilibria of the game in Figure 6.

Consider the game in Figure 7. Player 1 can give player 2 1, 2 or 3 Dollars. Player 2 can

reward player 1 by giving him the same amount that player 2 gets. It is costless for player 2 to

give player 1 money. Players’ utility equals the amount of money that they receive.

1

A B C

2 2 2

L R L R L R

0

1

1

1

0

2

2

2

0

3

3

3

Figure 7

Player 2 is indifferent at every of his decision nodes. However, her equilibrium strategy
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has to pick one particular choice for each decision node. Therefore, there are 23 “ 8 possible

solutions to the second stage. If we want to find the set of all subgame-perfect equilibria, we

have to find for each of these player 1’s best choice. I give just two examples of subgame-perfect

equilibria of the game in Figure 7. Player 2 might never return any money to player 1. Then

player 1‘ is indifferent between all choices, and can choose any of them in a subgame-perfect

equilibrium. Another subgame-perfect equilibrium is that player 2 rewards player 1 only if

player 1 chooses 3 Dollars. Then player 1 has a strict preference to give 3 Dollars.

The examples in this section illustrate how multiplicity of equilibria in the second stage may

“create” multiplicity of equilibria in the first stage.

8. Games with Infinitely Many Stages

Sometimes we are interested in games in which the time horizon T is infinity (T “ 8) rather

than finite. In this section we shall briefly consider two such examples. The first example is

derived from the Prisoner’s Dilemma which we encountered in Topic 1:

C D

C 3,3 0,4

D 4,0 1,1

Figure 8

Suppose the two players play this game in each of periods t “ 1, 2, . . ., where there is no

final period. Suppose also that at the end of each period each player observes whether the

other player cooperated or defected. Let each player’s payoff be the sum of discounted payoffs

in each period, where payoff in period t is discounted with discount factor δt´1
i , where δi P p0, 1q

is player i’s discount factor. For simplicity, let’s assume δ1 “ δ2 “ δ.

The concepts of strategies, normal form, and subgames that we defined earlier can be

adapted straightforwardly to games with infinitely many stages. I omit the details. We can

also adapt the concept of subgame-perfect equilibrium, but obviously we cannot use Backward

Induction to find subgame-perfect equilibria, because there is no final period with which we
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could start. The problem of finding subgame-perfect equilibria thus becomes more complicated.

One helpful fact is that the one-shot deviation principle remains valid. I shall now give two

examples of subgame-perfect equilibria of the infinitely repeated Prisoners’ Dilemma, and use

the one-shot deviation principle to verify that they are subgame-perfect equilibria.

One equilibrium is that both players defect in every period, regardless of what happened in

previous periods. Thus, players repeat in every period the Nash equilibrium of the static game.

Let’s verify that no one-shot deviation is beneficial. If a player deviates in any given period,

but sticks to the equilibrium in all future periods, the player gets payoff 0 rather than 1 in

the given period, and the same payoff as if he did not deviate in all future periods. Therefore,

the player loses utility. The deviation is not beneficial. Therefore, by the one-shot deviation

principle, this is a subgame-perfect equilibrium.

There are, however, more subgame-perfect equilibria. Consider these strategies: every player

cooperates as long as both players cooperated in all previous periods. Otherwise, they defect.

The corresponding outcome path is that both players cooperate in all periods. Can a player

gain by deviating after any initial history? If the player is supposed to cooperate, then she will

obtain:

3 ` δ3 ` δ23 ` . . . “
3

1 ´ δ
.

If she deviates in the current period and defects, but sticks to the equilibrium strategy in all

future periods, she gets:

4 ` δ1 ` δ21 ` . . . “ 4 `
δ

1 ´ δ
.

The deviation is not profitable if:

3

1 ´ δ
ě 4 `

δ

1 ´ δ
ô

δ ě
1

3
.

Therefore, this is a subgame-perfect equilibrium as long as players are sufficiently patient.

The theory of repeated games is a large subfield of game theory. One set of results in this

theory gives conditions under which repeated games in which players have sufficiently large

discount factors have subgame-perfect equilibria in which payoffs are Pareto efficient. These

results actually show that the efficient equilibria co-exist with a large number of equilibria.
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The results (almost) say that every outcome is possible subgame-perfect equilibrium outcome.

Results along these lines are known as “folk theorems,” because they were folk-wisdom among

game theory folk before they were proven.

Now we consider a second example of a multi-stage game with infinitely many stages. It

is known as the “alternating offer” bargaining game due to Ariel Rubinstein. Two players

negotiate over the division of a dollar. In the first stage, player 1 proposes a division px, 1´xq,

where x P r0, 1s is what player 1 gets. Then player 2 says “yes” or “no.” If player 2 says “yes”

the game ends, and players get what was proposed. Otherwise, we enter the second period. In

this period, player 2 proposes a division px, 1 ´ xq, and player 1 says “yes” or “no.” If player 1

says “yes” the game ends, and players get what was proposed. Otherwise, we enter the third

period. In this period, player 1 proposes. Etc. players alternate between being the proposer

and the responder. An agreement achieved in period t gives player 1 payoff δt´1x and player 2

payoff δt´1p1 ´ xq. Here, δ P p0, 1q. There is no final period.

Let’s construct a subgame-perfect equilibrium in which player 1’s proposal is the same,

regardless of what has happened before, and is equal to px˚, 1 ´ x˚q, and player 2’s proposal is

py˚, 1 ´ y˚q whenever it is her turn to propose, regardless of what happened before. Let’s also

assume that player 2 accepts any proposal that gives her at least utility 1 ´ x˚ and player 1

accepts any proposal that gives her at least utility y˚. For which values of x˚ and y˚ is this

a subgame-perfect equilibrium? Two conditions must be satisfied: firstly, player 2 must be

indifferent between accepting 1´ x˚ and rejecting 1´ x˚ so as to get 1´ y˚ in the next period:

1 ´ x˚
“ δ2p1 ´ y˚

q.

Secondly, player 1 must be indifferent between accepting y˚ now, and rejecting y˚ to get x˚ one

period later:

y˚
“ δ1x

˚.

The solution to these two equations is:

x˚
“

1 ´ δ2
1 ´ δ1δ2

and y˚
“ δ1

1 ´ δ2
1 ´ δ1δ2

.

It is more insightful to write this as follows:

x˚
“

1 ´ δ2
1 ´ δ1δ2

and 1 ´ y˚
“

1 ´ δ1
1 ´ δ1δ2

.
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This equation shows for each player what they get if they are the proposer.

For these values of x˚ and y˚ the strategies that we proposed form a subgame-perfect

equilibrium. Players will agree immediately in period 1. Indeed, these strategies are the

unique subgame-perfect equilibrium of the game. The proof that these strategies are the unique

subgame-perfect equilibrium is a little more involved. The proof that they are subgame-perfect

equilibria is simple. We only need to check one-shot deviations. By construction, no player, as

a responder, will want to deviate. All that remains to be checked is whether a proposer can

gain by making a proposal that is rejected. But this is not the case because in the next period

this player will be granted a share in the Dollar that makes them indifferent between accepting

and becoming proposer again in the next period and making the same proposal again. Thus, a

player who does not make their equilibrium proposal will delay the agreement, but will not get

a better outcome.

It is immediate from the formulas above that each player gets more as a proposer if their

discount factor increases, and one can also calculate that they get more as a responder when

their discount factor increases. This means that more patient players get better bargaining

outcomes. There is also an intrinsic advantage to being the proposer. One way of seeing this is

to focus on the case when δ1 “ δ2 “ δ. Then the proposer gets:

1 ´ δ

1 ´ δ2
“

1

1 ` δ
,

which is obviously more than 0.5.

An interesting variation on this game is obtained when we assume that, whenever a player is

the responder, the player also has the option to end the negotiations, and choose some “outside

option.” Suppose a player i who chooses their outside option obtains utility zi, and suppose

that zi is less than what players receive as proposers:

z1 ă x˚ and z2 ă 1 ´ y˚.

Then the subgame-perfect equilibrium that we constructed remains a subgame-perfect equilib-

rium, with players never choosing their outside option. The intuitive meaning of this observation

is that outside options in bargaining don’t improve bargaining power unless the threat of taking

them is credible.
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Appendix for Topic 4

Games with Infinitely Many Stages And Their Subgame-Perfect Equilibria

In this part of the Appendix for Topic 4 we shall generalize the theory of multistage games

from games with a finite number of stages to games with an infinite number of stages. We shall

then formally prove the one shot deviation principle.

Definition 14. A multi-stage game is a list
´

I, pAiqiPI , pAt
iqiPI,tPN , puiqiPI

¯

, where:

1. I “ t1, 2, . . . , nu is a finite set of players;

and for every i P I:

2. Ai is the set of actions potentially available to player i at some stage of the game;

3. A1
i Ď Ai is the set of actions available to player i in stage t “ 1;

4. for every t P N with t ě 2:

At
i : H

t´1 ↠ Ai,

is a non-empty valued correspondence that describes the set of actions available to player

i in stage t;

5. ui : H
8 Ñ R is player i’s utility function.

Here, for every t P N, we denote by H t the set of histories that may occur up to stage t:

H1
“

n
ą

i“1

A1
i and, for t ě 2 : H t

“ tpht´1, pat1, a
t
2, . . . , a

t
nqq|ht´1

P H t´1 and ati P At
iph

t´1
q for all iu,

and we denote by H8 the set of infinite histories:

H8
“ tpa1, a2, a3, . . .q|pa1, a2, . . . , atq P H t for all t P Nu.
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Definition 15. A (pure) strategy si of player i in a multi-stage game consists of:

1. an action s1i P A1
i for the first stage;

2. for every t P N with t ě 2 a function: sti : H
t´1 Ñ Ai such that:

stiph
t´1

q P At
iph

t´1
q for all ht´1

P H t´1.

Let Si denote the set of strategies of player i.

Definition 16. The history h P H8 implied by a list of strategies ps1, s2, . . . , snq is the infinite

sequence h “ pa1, a2, . . .q such that:

1. a1 “ ps11, s
1
2, . . . , s

1
nq,

and, for every t P N with t ě 2:

2. at “ pst1pa
1, a2, . . . , at´1q, st2pa

1, a2, . . . , at´1q, . . . , stnpa1, a2, . . . , at´1qq.

For every player i P I the utility implied by a list of strategies ps1, s2, . . . , snq is given by:

uips1, s2, . . . , snq “ uiphq where h is the history implied by strategies ps1, s2, . . . , snq.

Definition 17. The normal form of a multi-stage game is the game that has the strategy sets

S1, S2, . . . , Sn from Definition 15 and the utility functions u1, u2, . . . , un from Definition 16.

Definition 18. For every t ě 2 and for every history ht´1 P H t´1 the subgame following history

ht´1 of a given multi-stage game is itself a multi-stage game, and is defined as follows:

1. Î “ I;

and for every i P I:

2. Âi “ Ai;

3. Â1
i “ At

iph
t´1q;
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4. for every t̂ P N with t̂ ě 2: Ât̂
i : Ĥ

t̂´1 ↠ Ai is given by:

Ât̂
ipĥ

t̂´1
q “ At´1`t̂

i pht´1, ĥt̂´1
q for all ĥt̂´1

P Ĥ t̂´1;

5. ûi : Ĥ
8 Ñ R satisfies:

ûipĥq “ uiph
t´1, ĥq for all ĥ P Ĥ8.

Here, for every t P N, we denote by Ĥ t the set of histories that may occur up to stage t:

Ĥ1
“

n
ą

i“1

Â1
i and, for t ě 2 : H t

“ tpht´1, pat1, a
t
2, . . . , a

t
nqq|ht´1

P Ĥ t´1 and ati P Ât
iph

t´1
q for all iu,

and we denote by Ĥ8 the set of infinite histories:

Ĥ8
“ tpa1, a2, a3, . . .q|pa1, a2, . . . , atq P Ĥ t for all t P Nu.

Definition 19. For any t P N, ht´1 P H t´1, i P I, and si P Si, the induced strategy of player i, ŝi,

for the subgame following history ht´1 is given by:

ŝ1i “ stiph
t´1

q,

and, for every t P N with t ě 2 and every ĥt´1 P Ĥ t´1:

ŝt̂ipĥ
t̂´1

q “ st´1`t̂
i pht´1, ĥt̂´1

q.

Definition 20. A strategy combination ps1, s2, . . . , snq for a multi-stage game is a subgame-perfect

equilibrium of the multi-stage game if it is a Nash equilibrium of the normal-form of the multi-

stage game, and if for every subgame following some history ht´1 the induced strategies form a

Nash equilibrium of that subgame.
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The One-Shot Deviation Principle

This result simplifies the task of finding subgame-perfect equilibria. It applies only to a

special class of games, however. These games are called multi-stage games that are continuous

at infinity. This class is defined as follows.

Definition 21. A mutli-stage game is continuous at infinity if there is a sequence pεtqtPN of

positive real numbers such that lim
tÑ8

εt “ 0 and for every t P N with t ě 2 and every history

ht´1 P H t´1 and every player i P I the following is true: if si and s1
i are two different strategies

of player i in the subgame following history ht´1, and if s´i is a list of strategies for all other

players for the same subgame, then

|ûipsi, s´iq ´ ûips
1
i, s´iq| ď εt.

Here, ûi is player i’s utility function in the subgame following history ht´1.

Infinitely repeated games in which players have finite strategy sets and maximize the dis-

counted present value of per period payoffs are examples of multi-stage games that are contin-

uous at infinity. Here is an example of a game that is not continuous at infinity: Suppose there

is just one player. In every period, the player can choose A or B. The player receives payoff

1 only if she chooses A infinitely many times. Otherwise she receives payoff 0. In this game,

after every subgame, payoffs 0 and 1 still remain feasible, and therefore the difference to which

the above definition refers, equals 1 in every period.

Proposition 11. The One-Shot Deviation Principle If a multi-stage game is continuous at in-

finity, then strategies ps1, s2, . . . , snq constitute a subgame-perfect equilibrium of this game if

and only if for every player i P I:

1. uipsi, s´iq ě uips̃i, s´iq for every strategy s̃i such that s̃ti “ sti for all t ě 2;

and for every t ě 2 and every history ht´1 P H t´1,

2. ûipŝi, ŝ´iq ě ûips̃i, ŝ´iq for every strategy s̃i of player i in the subgame that follows history

ht´1 that satisfies s̃ti “ ŝti for all t ě 2.
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The example of a game that is not continuous at infinity that we gave earlier illustrates

that this result is not true if a game is not continuous at infinity. Consider the following

strategy of the single player in that game: choose B in every period, regardless of history. With

this strategy the player’s utility equals 0. No single period deviation does not raise the payoff.

Nonetheless, this strategy is not optimal: only strategies in which the player chooses A infinitely

many times are optimal. Therefore, this strategy is not a subgame-perfect equilibrium of the

single player game.

Proof. We first argue that, if no one shot deviation increases utility for any player, then no

deviation over a finite number of stages increases utility for any player. This holds for the game

itself, and also for all of its subgames. Because the proof for subgames is identical to the proof

of the game itself, except that the notation needs to be adjusted, we only prove the claim for the

game itself. Formally, we claim that uipsi, s´iq ě uips̃i, s´iq not only for all strategies s̃i such

that s̃ti “ sti for all t ě 2, but also for all s̃i such that s̃ti “ sti for all t ě τ for some τ P N. We

prove this by induction over τ . Because the claim is true by assumption for τ “ 1, it remains

to show that, if the claim is true for some τ P N, it is also true for τ ` 1. Let pa1, a2, a3, . . .q be

the history implied by psi, s´iq, and let pã1, ã2, ã3, . . .q be the history implied by ps̃i, s´iq where

s̃i is allowed to differ from si in the first τ ` 1 periods. Because no deviation of length τ can

increase utility, we have:

uipa
1, a2, a3, . . .q ě uipã

1, ã2, ã3, . . . , ãτ , āτ`1, āτ`2, . . .q

where āτ`1, āτ`2, . . . stands for the history that follows pã1, ã2, ã3, . . . , ãτ q if from period τ ` 1

players play according to psi, s´iq. Because, in the subgame that follows history pã1, ã2, ã3, . . . , ãτ q

no single period deviations can raise utility, we have:

uipã
1, ã2, ã3, . . . , ãτ , āτ`1, āτ`2, . . .q ě uipã

1, ã2, ã3, . . . , ãτ , ãτ`1, ãτ`2, ãτ`3, . . .q

Combining the two inequalities that we have shown we get:

uipa
1, a2, a3, . . .q ě uipã

1, ã2, ã3, . . . , ãτ , ãτ`1, ¯̄aτ`2, ¯̄aτ`3, . . .q

which is what we had to show.

We now extend the argument to deviations in infinitely many periods. Again we focus for

simplicity on the game itself, but the argument also applies to all subgames. Let s̃i be any
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arbitrary deviation by player i. For any τ P N we have: a deviation in the first τ periods does

not lead to any payoff increase. Moreover, the subsequent deviations raise payoff by at most

ετ . Therefore, we have concluded that any deviation by player i cam raise payoff by at most

ετ . This is true for all τ P N. This implies that no deviation by player i can be profitable at

all. This is because if it raised utility by δ ą 0 then we would have a contradiction: Because

lim
τÑ8

ετ “ 0, there is τ large enough such that ετ ă δ, and the possibility of an increase in utility

by δ would contradict what we have shown, namely that no deviation can increase utility by

more than ετ .

The one-shot deviation principle, when applied to games with a finite time horizon, is

the justification for the argument that strategy combinations found by backward induction

constitute a subgame-perfect Nash equilibrium. The backward induction algorithm ensures by

definition that no one shot deviations are profitable. The one-shot deviation principle then

implies that multi-period deviations are not profitable either. It is for this reason that the

strategies found by backward induction form a Nash equilibrium in the game itself and in all

of its subgames.

We used the one shot deviation principle for infinite horizon games in Section 8 of Topic 4,

when considering examples of infinitely repeated games, and when considering the alternating

offer bargaining game.

Existence of Subgame-Perfect Equilibria

We begin by considering games of perfect information, that is, games such that after any

history ht there is at most one player who has an action set At
i that has more than one element.

The existence of subgame-perfect equilibria in pure strategies is obvious in games of perfect

information in which the action sets are finite and the time horizon is finite. Backward induction

will find such an equilibrium. To see how this result can be extended consider the following

simple game of perfect information: There are just two stages. In the first stage, only player

1 moves. In the second stage, only player 2 moves. Each player’s action set is the interval

Ai “ r0, 1s. Player 2’s set of available actions equals r0, 1s regardless of player 1’s action.

Each player has a utility function ui : r0, 1s2 Ñ R that is continuous. We shall prove that a
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subgame-perfect equilibrium in pure strategies exist.

Consider player 2’s best responses. By the compactness of player 2’s action set and the

continuity of player 2’s utility function for every action a1 of player 1 there exists at least one

optimal choice for player 2. There might be multiple best responses. For any a1 P r0, 1s denote

by BR2pa1q the set of player 2’s best responses. A difficulty is that a continuous section from

player 2’s best response correspondence need not exist. Therefore, player 1’s anticipated utility

need not be continuous. This seems to pose a difficulty for the existence of an optimal choice

for player 1.

However, this is only an apparent, not a real difficulty. Consider the graph of BR2, that is

the set:

tpa1, a2q|a2 P BR1
pa1qu.

By arguments that we have encountered before this is a compact set. Therefore, a maximum

of u1 on this set exists. Denote this maximum by pa1˚, a2˚q. Now consider the following

strategies: Player 1 chooses a1˚. If player 1 chooses a1˚ then player 2 chooses a2˚. Otherwise,

player 2 chooses some arbitrary best response to a1. These strategies form by by construction

a subgame-perfect equilibrium in pure strategies.

This argument can be generalized significantly to obtain the following result:

Proposition 12. Suppose that

1. for every player i the set Ai is a compact subset of some finite dimensional Euclidean

space;

2. for every player i and every period t the correspondence At
i is continuous;

3. for every t ě 2 and for every history ht´1 P H t´1 there is at most one player i for whom

the set At
i has more than 1 element;

4. for every player i the utility function ui is continuous on H8 in the product topology,

then at least one subgame-perfect equilibrium exists.

The continuity assumption in the last bullet point implies continuity at infinity.
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Now let’s consider games in which some players move simultaneously. To obtain existence

results we need to allow for the possibility that players randomize. To make this technically

simple we shall assume that the sets Ai of potential actions of player i are all finite. Then we

can define:

Definition 22. A behavior strategy σi of player i in a multi–stage game consists of:

1. a probability distribution α1
i P ∆ pA1

i q for the first stage;

2. a function: σt
i : H

t´1 Ñ ∆ pAiq for stages t ě 2 such that:

supppσt
iph

t´1qq Ď At
iph

t´1q for all ht´1 P H t´1.

Let Si denote the set of behavior strategies of player i.

We use here the term “behavior strategy” instead of “mixed strategy” because for dynamic

games there are actually two concepts of randomized strategies. One is the one described in

the definition above. The other one will be discussed later inTopic 6, and it is referred to as

“mixed strategies.”

In Definition 22 the symbol “∆p.q” stands for the set of all probability distributions over

the set in brackets. The symbol “suppp.q” stands for the support of the probability distribution

in brackets. Formally, the support is the smallest closed set that has probability measure 1.

When the probability distribution is defined over a finite set, the support is simply the set of

all elements of the set that have strictly positive probability.

Proposition 13. If all action sets Ai are finite, and if the game is continuous at infinity, then

at least one subgame-perfect equilibrium in behavior strategies exists.

Proof. Suppose first that the time horizon is finite. Then backwards induction finds all subgame-

perfect equilibria. Every subgame that begins in the last stage of the game has at least one Nash

equilibrium in mixed strategies, by Nash’s existence theorem. If we pick one such equilibrium

for every last stage subgame, then we can move on to the second to the last stage, and assume

that players correctly anticipate the outcome of the last stage. Then Nash’s existence theorem

shows that an equilibrium of the second to last stage exists for every history. Therefore, by the



71

one-shot deviation principle, we have obtained a subgame-perfect equilibrium for each subgame

that begins in the second to last period. Iterating this argument, we obtain a subgame-perfect

equilibrium for the whole game.

To extend the proof to the case that the time horizon is infinite, one constructs an appro-

priate limit of subgame-perfect equilibria of truncated versions of the infinite horizon game. I

omit the details.

Markov Perfect Equilibria

We introduce in this section a further refinement of the concept of subgame-perfect equilib-

rium: Markov perfect equilibrium. Markov-perfect equilibria are subgame-perfect equilibria in

which in each period t each player’s strategy depends only on some state variable, but not on

the entire history of the game. The state variable is meant to summarize which aspects of the

history are relevant for the future of the game.

The set of Markov perfect equilibria may be a small subset only of the set of all subgame

perfect equilibria. Consider the infinitely repeated Prisoners’ Dilemma. The sets of available

strategies as well as the players’ utilities are in all subgames essentially the same. The history of

the game is irrelevant for which strategies are available and what players’ utilities are. Markov

perfect equilibria are therefore those that involve history-independent strategies. But this means

that the infinitely repeated Prisoners’ Dilemma has a unique Markov-Perfect equilibrium: all

players will always defect.

A state variable on which a player at stage t conditions their decision can be viewed as a

partition of the histories up to time t, i.e. as a partition of the set H t´1.

Definition 23. A partition Ht´1 of H t´1 is a set of subsets of H t´1 such that:

1. if A and B are two elements of Ht´1 then either A “ B or A X B “ H;

2. the union of all elements of Ht´1 is H t´1.

For any ht´1 P H t´1 we denote by Ht´1pht´1q the element of Ht´1 that contains ht´1.
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Definition 24. If Ht´1 and Ĥt´1 are both partitions of H t´1, then we say thatHt´1 is finer than Ĥt´1

(or, equivalently, Ĥt´1 is coarser than Ht´1) if Ht´1 ‰ Ĥt´1 and if for any history ht´1 P H t´1

we have:

Ht´1
pht´1

q Ď Ĥt´1
pht´1

q.

The requirement of Markov perfection will be formalized as the requirement that a player’s

strategy assigns the same action to two histories whenever the two histories belong to the same

element of some particular partition Ht´1.

Definition 25. A strategy si of player i is measurable with respect to a partition Ht´1 if:

Ht´1
pht´1

q “ Ht´1
ph̃t´1

q ñ stiph
t´1

q “ stiph̃
t´1

q.

The measurability requirement is more restrictive for coarser partitions than for finer par-

titions. Maskin and Tirole (Markov Perfect Equilibrium, I. Observable Actions, Journal of

Economic Theory 100 (2001), 191-219) defined a Markov Perfect equilibrium to be a subgame-

perfect equilibrium in which each all players’ strategies for any period t are measurable with

respect to the coarsest partition for which the requirement “makes sense.” I shall give a slightly

simplified version of their definition.

Definition 26. A partition Ht´1 is consistent if whenever Ht´1pht´1q “ Ht´1ph̃t´1q for every

player i:

1. the set of strategies of player i in the subgame following ht´1 is the same as the set of

strategies of player i in the subgame following h̃t´1;

2. there exist a number α and a positive number β such that:

uipsq “ α ` βũipsq for all strategy combinations in the subgame that follows ht´1.

Here, ui is the utility function of player i in the subgame that follows ht´1 and ũi is the utility

function of player i in the subgame that follows h̃t´1.

The second condition in this definition refers to increasing affine transformations rather than

arbitrary increasing transformations because I want to present a definition that also makes sense



73

when randomization is allowed. In this case the utility functions are interpreted as Bernoulli

utility functions, and preferences over lotteries don’t change if the utility function is subjected

to an increasing affine transformation, but other increasing transformations will change the

preferences over lotteries.

Definition 27. A subgame-perfect equilibrium of a multi-stage game is called a Markov Perfect

Equilibrium if for every t P N and every player i player i’s strategy for period t is measurable

with respect to the coarsest consistent partition of H t´1.

Note that coarsest consistent partitions always exist.

There are several ways in which this definition could be modified so that the concept of

Markov Perfect Equilibrium becomes even more restrictive:

• one might allow the transformation in item 2. of the definition of consistency to depend

on s´i;

• one might allow in the definition of consistency that strategy sets are identical only up to

relabeling;

• one might allow that histories of different length belong to the same element of a partition.

Some of these issues are pursued in Maskin and Tirole (2001), but we shall not discuss them

here.

In some games, such as infinitely repeated games, the concept of Markov perfect equilibrium

can serve as a refinement of the concept of subgame perfect equilibrium. In the infinitely

repeated Prisoners Dilemma, for example, there are often many subgame-perfect equilibria,

but only one Markov perfect equilibrium: defect always.

In some other games all subgame-perfect equilibria are also Markov-perfect equilibria. An

example is Rubinstein’s alternating offer bargaining game.

Why might players play Markov-perfect equilibria? It has been suggested that these are

appealing because they involve simple strategies. But note that simplicity may come at a

cost. If the players other than i condition on aspects of history that should not matter in

a Markov-perfect equilibrium, then for player i the payoff cost of not conditioning on those
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aspects of history may be very high. The literature has considered other ways of defining

simplicity of strategies. Perhaps the most prominent alternative is to consider only strategies

that can be implemented by finite automata, and to measure the complexity of the strategy by

some measure of the complexity of the finite automaton, such as the number of states of the

automaton, or also the complexity of the transition function of the finite automaton.
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Topic 5: Static Games of Incomplete Information

We now return to the static setting, and we introduce a new class of games, games of

incomplete information. We mean by this games in which at least some players don’t know

all components of the game, that is, the player set, the strategy sets, or the utility functions.

In fact, we shall focus on incomplete information about the utility functions. The other forms

of incomplete information can be dealt with in a very similar way, and are less frequently

considered.

I emphasized earlier that the concept of Nash equilibrium does not really rely on the as-

sumption that players know the game. However, when interpreted as a stable convention, it

does assume that all players learn to play the game in a context that is stable, that is, the

same game is played repeatedly, and that all players recognize each instance when they play

this same game. Incomplete information can be interpreted as an environment in which the

game changes, and players cannot completely distinguish one game from another.2

A special case of incomplete information is the case of asymmetric information, that is, the

case, in which players are incompletely informed, and different players have different knowl-

edge. This is the case of greatest interest. Our examples will not just be games of incomplete

information, but they will be games of asymmetric information.

The framework for analyzing games of incomplete information that we shall introduce is

due to John Harsanyi. John Harsanyi essentially invented the theory of games with incomplete

information. This invention made it possible to create game theoretic models that formalize

the classic themes of the economics of information, such as adverse selection, or signaling.

The economics of information predates game theory. This branch of economics emphasizes

that many market phenomena and many institutions can be interpreted as adaptations of the

economy to asymmetric information. The development of the theory of games with incomplete

information made it possible to examine this argument, which remains one of the central themes

of economics, in a unified framework.

2This interpretation of incomplete information is a little vague. But these notes are not the right place to

discuss this interpretation in more detail.
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1. Games and Type Spaces

Let I “ t1, 2, . . . , nu be the set of players, and for every i P I let Ai be the set of actions of

players i. We want to introduce incomplete information about the utility functions ui : A Ñ R

where A “
Ś

iPI

Ai. We want to allow for the possibility that players don’t know other players’

utility functions, but also that players don’t know their own utility function. A simple way

of modeling this mathematically is to assume that there is some parameter θ that enters the

utility functions, and that players are incompletely, and potentially asymmetrically, informed

about θ. Let us denote by Θ the set of possible values of θ. We assume that Θ is a subset of

some finite dimensional Euclidean space Rm. Players’ utility functions are then:

ui : A ˆ Θ Ñ R

pa, θq ÞÑ uipa, θq

Players will have beliefs about θ which take the form of probability distributions over Θ.

But they will also have beliefs about other players’ beliefs, and beliefs about other players’

beliefs about other players’ beliefs, etc. In order to allow uncertainty not only about Θ, but

also uncertainty about other players’ beliefs, etc., we have to introduce a model in which has

different potential types with different beliefs. We therefore introduce the notion of a type space.

Definition 28. A type space T consists of:

• for every player i a set Ti of possible types of player i;

• for every player i a mapping βi : Ti Ñ ∆pΘ ˆ T´iq, where T´i “
Ś

j‰i

Tj, and where

∆pΘ ˆ T´iq is the set of all probability measures on Θ ˆ T´i.

The types of player i correspond to the different beliefs that player imay have. The mapping

βi describes player i’s beliefs. These are i’s beliefs about θ and i’s beliefs other players’ types.

If we also assume informally that player i “knows” the mapping βj, then i’s beliefs about other

players’ types in particular describe what i believes about other players’ beliefs about θ. Indeed,

we can construct for each type of each player an infinite hierarchy of beliefs, beliefs about beliefs,

beliefs about beliefs about beliefs, etc. We could have tried to explicitly model such infinite
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hierarchies of beliefs. But it is much easier to work with type spaces than to describe infinite

hierarchies of beliefs explicitly. In the Appendix for this topic we describe in more detail how

infinite hierarchies of beliefs can be derived from a type space.

2. Simplifying the Framework

For analyzing incomplete information games the set Θ that we introduced in the previous

section is, in fact, redundant. Once we know ui, we can determine each player’s utility directly as

a function of the types of the other players. We therefore define games of incomplete information

dropping the set Θ from the definition:

Definition 29. A game of incomplete information is a list pI, pAiqiPI , pTiqiPI , puiqiPI , pβiqiPIq,

where:

• I “ t1, 2, . . . , nu is a finite set of players;

and for every i P I:

• the set Ai is the set of actions of players i;

• the set Ti is the set of types of players i;

• the function ui : A ˆ T Ñ R is player i’s utility function;

• the function βi : Ti Ñ ∆pT´iq describes player i’s beliefs.

3. Special Cases

We say that a game of incomplete information has private values if each player’s utility only

depends on that player’s type:

uipa, pti, t´iqq “ uipa, pti, t
1
´iqq,
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for all i P I, a P A, ti P Ti and t´i, t
1
´i P T´i.

We say that a game of incomplete information has a common prior if there is a probability

measure µ on T such that for every player i P I and every type ti P Ti the belief βiptiq is the

conditional distribution of t´i under µ where we condition on player i’s type being ti.

We say that a game of incomplete information has independent types if there is a common

prior µ, and moreover, for every player i there is a probability measure µi on Ti such that µ is

the product of the measures µi. Note that if types are independent, then all types of player i

have the same beliefs about other players’ types.

4. Bayesian Nash Equilibria

A strategy of player i is a complete contingent plan, where player i pretends not to know

which type she is, and therefore which beliefs she will hold. Even if she knows those beliefs,

she has to figure out what she would do had she other beliefs because the other players don’t

know her beliefs.

Definition 30. A strategy of player i in a game of incomplete information is a mapping

σi : Ti Ñ Ai.

Note that we again focus on pure strategies and ignore, for simplicity, mixed strategies.

A Bayesian Nash equilibrium is now a list of strategies such that each strategy is a best

response to all the other strategies.

Definition 31. A Bayesian Nash equilibrium of a game of incomplete information is a list of

strategies pσ˚
1 , σ

˚
2 , . . . , σ

˚
nq such that for each player i and for each type ti P Ti:

Eβiptiq

”

ui

´

σ˚
i ptiq,

`

σ˚
j ptjq

˘

j‰i
, t´i

¯ı

ě Eβiptiq

”

ui

´

ai,
`

σ˚
j ptjq

˘

j‰i
, t´i

¯ı

for all ai P Ai.

Note that we require that for each player i, for each type ti of that player, the action that

player i plans to take when being that player is optimal. We could instead have written a model
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in which there is an ex ante probability distribution over player i’s types, and we could have

phrased the optimality condition ex ante, thus requiring that player i’s strategy yields maximal

expected utility when player i does not yet know her type. But the ex ante perspective, and the

perspective of the definition provided above, are equivalent, up to some mathematical details

which are unimportant. For example, they are exactly equivalent if each player has only finitely

many types, and if each type has positive ex ante probability.

5. Examples

Example 1: Cournot Competition With Incomplete Information

We return to the linear Cournot game. The set of players consists of two firms: I “ t1, 2u.

Each firm chooses the quantity that it wishes to produce: Ai “ R`. Inverse demand is given

by: p “ 10 ´ a1 ´ a2. We allow price to be negative. Let us assume that c1 “ 0, but c2 may be

0 or it may be 2. We introduce the type space: T1 “ t0u, and T2 “ t0, 2u. The common prior is

that each value of t2 has probability
1
2
. Firm i’s profits are: uipa1, a2q “ aip10´ a1 ´ a2q ´ ciai.

A strategy for firm 1 is a quantity a1, but a strategy for firm 2 assigns a quantity a02 to

type t2 “ 0, and quantity a22 to type t2 “ 2. Each of these quantities has to maximize expected

profits for the type who chooses the quantity.

a1 P argmax

„

1

2
p10 ´ a1 ´ a02qa1 `

1

2
p10 ´ a1 ´ a22qa1

ȷ

a02 P argmax
“

p10 ´ a1 ´ a02qa
0
2

‰

a22 P argmax
“

p10 ´ a1 ´ a22qa
2
2 ´ 2a22

‰

You can check that first order conditions are necessary and sufficient for solutions to these
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maximization problems. Therefore, we obtain:

a1 “
10 ´

a02`a22
2

2

a02 “
10 ´ a1

2

a22 “
8 ´ a1

2

The unique solution to these equations is:

a1 “
22

6
, a02 “

19

6
, and a22 “

13

6
.

This is the unique Bayesian Nash equilibrium of this game.

Note that firm 1 with marginal cost 0 produces more than firm 2 with marginal cost 0.

Intuitively, firm 2 knows that firm 1 thinks that firm 2 may have marginal cost 2. Therefore,

firm 1 behaves more aggressively, that is, produces more. This has the consequence that firm

2 has to produce less, even if its true marginal cost are the same as those of firm 1.

Example 2: A First Price Auction With Private Values and Independent Types:

n bidders bid in an auction for a painting. Each bidder i submits a bid bi ě 0. Bids are

submitted simultaneously. The bidder with the highest bid wins. If several bidders have made

the highest bid, the winner is randomly chosen from the set of bidders who made the highest

bid. The winner’s utility is ti ´ bi, where ti is the type of bidder i. It represents the value of

the painting to bidder i. The losers’ utility is 0. The types ti are independent and identically

distributed. They follow the uniform distribution on the interval r0, 1s.

We want to find a Bayesian Nash equilibrium of this game. For simplicity, we focus on

strategies where all bidders have the same strategy, and each bidder i’s bid bi is a linear and

increasing function of ti: bi “ cti with c ą 0. For which value(s) of c is this a Bayesian Nash

equilibrium?

Consider bidder i with value ti and suppose bidder i believes all other players follow a

strategy bj “ ctj. Bidder i will not want to bid above bi “ c, because no other bidder places
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a higher bid. Any bid equal to c or higher wins with probability 1, and therefore a bid higher

than c just incurs higher cost, without increasing the probability of winning.

When bidder i places bid bi ď c, bidder i wins if all other bidders’ place a bid below bi,

which happens when their values satisfy: tj ă
bi
c
. All other bidders’ types are below bi

c
with

probability
ˆ

bi
c

˙n´1

.

This follows from the assumption that values are i.i.d and uniformly distributed.

When bidder i wins, her utility is ti ´ bi. When she loses, her utility is 0. Therefore, if she

places bid bi her expected utility is:

ˆ

bi
c

˙n´1

pti ´ biq.

Let us find the derivative of this expression with respect to bi. It is:

pn ´ 1q

ˆ

bi
c

˙n´2
1

c
pti ´ biq ´

ˆ

bi
c

˙n´1

.

This simplifies to:
1

c

ˆ

bi
c

˙n´2

rpn ´ 1qti ´ nbis .

Let us set the term in square brackets equal to zero:

pn ´ 1qti ´ nbi “ 0 ô

bi “
n ´ 1

n
ti.

Bidder i’s utility increases as long as bi ă n´1
n
ti, and it decreases when bi ą n´1

n
ti. Taking

into account that bidder i does not want to bid above c, we obtain as bidder i’s best response:

bi “ min

"

n ´ 1

n
ti, c

*

.
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We have a Bayesian Nash equilibrium in which all bidders choose bi “ cti if this best response

is the same as bi “ cti. This is the case if:

c “
n ´ 1

n
.

Thus, within the class of Bayesian Nash equilibria that we have considered, there is a unique

such equilibrium. All bidders choose:

bi “
n ´ 1

n
ti.

Note that as n increases, the bids increase, and as n Ñ 8 the bids approach the type of each

bidder, ti.

Example 3: A First Price Auction With Common Values and Independent Types

n bidders bid in an auction for a painting. Each bidder i submits a bid bi ě 0. Bids are

submitted simultaneously. The bidder with the highest bid wins. If several bidders have made

the highest bid, the winner is randomly chosen from the set of bidders who made the highest

bid. The winner’s utility is v ´ bi, where v is the “true” value of the painting. It is the same for

all bidders, unlike in the previous example. The losers’ utility is 0.

Each bidder i observes a signal ti. These signals are independently distributed and follow

the uniform distribution on the interval r0, 1s. The true value of the painting is equal to the

average of the private signals:

vi “
t1 ` t2 ` ... ` tn

n
.

To find a Bayesian Nash equilibrium of this game we focus again on equilibria where all

bidders have the same strategy, and each bidder i’s bid bi is a linear and increasing function

of their signal ti: bi “ cti with c ą 0. We shall investigate for which value(s) of c this is a

Bayesian Nash equilibrium. Consider bidder i who has observed signal ti and who believes all

other players follow the strategy bj “ ctj. As in the previous example, bidder i will only want

to consider bids that satisfy: bi ď c.
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When bidder i places bid bi, bidder i wins if all other bidders place a bid below bi, which hap-

pens when their signals satisfy: tj ă
bi
c
. This happens with the probability that we calculated

before:
ˆ

bi
c

˙n´1

.

What is bidder i’s expected utility, if she wins? Here, it is crucial that we calculate the

expected value of the painting correctly. We have to calculate this expected value conditional

on bidder i winning. But winning means that all other bidders’ signals are below bi
c
. Therefore,

each other bidder’s conditional expected type is: bi
2c
. Therefore, the conditional expected value

of the painting is:
1

n
ti `

n ´ 1

n

bi
2c

.

Notice that bi
c
is less than 1, so that the second term on the right hand side is less than n´1

n
1
2
,

which is the unconditional expected value of the contribution of other bidders’ signals to the

true value. In a sense, winning is “bad news.” It means the other bidders have received worse

signals than the winner has. This is called the “winner’s curse.” When calculating conditional

expected utility we have to anticipate the winner’s curse.

Now we can write down the expected utility of bidder i if she makes bid bi. It is:
ˆ

bi
c

˙n´1 ˆ

1

n
ti `

n ´ 1

n

bi
2c

´ bi

˙

.

When reading this example, it is crucial that you make sure that you understand this formula.

From here onwards, the analysis of the example is algebra that is similar to, but more complex

than, the algebra in the previous example.

Let us differentiate the expected utility of bidder i with respect to bi. We get:

pn ´ 1q

ˆ

bi
c

˙n´2
1

c

ˆ

1

n
ti `

n ´ 1

n

bi
2c

´ bi

˙

`

ˆ

bi
c

˙n´1 ˆ

n ´ 1

n

1

2c
´ 1

˙

.

After a few steps of algebra which I leave out this simplifies to:

1

c

ˆ

bi
c

˙n´2 „

n ´ 1

n
ti ` pn ´ 1q

bi
2c

´ nbi

ȷ

.
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Let us inspect this expression. If bi ą 0, but very close to zero, this expression is positive.

What happens as we increase bi? If the derivative increases, then clearly the highest possible bid

is optimal. But this means that the optimal bid is independent of ti, and therefore, we certainly

don’t have an equilibrium in which the equilibrium bid is a linear function of ti. Therefore, we

shall focus on the case that the derivative decreases as bi increases, so that the expected utility

is concave. This is the case if:

n ´ 1

2c
´ n ă 0 ô

c ą
1

2

n ´ 1

n

Let us focus on the case that this inequality is satisfied.

Now we can find the optimal bid by setting the first derivative of expected utility with

respect to bi equal to zero. This yields:

bi “
n ´ 1

n

1

n ´ n´1
2c

ti.

Remembering that a bid above c is not sensible, we can write the optimal bid then as:

bi “ min

"

n ´ 1

n

1

n ´ n´1
2c

ti, c

*

.

This is firm i’s best response if its type is ti and the other bidders have linear bidding strategies

bj “ ctj where c is larger than 1
2
n´1
n
.

As in the previous example we obtain an equilibrium if we solve the following equation for

c:

c “
n ´ 1

n

1

n ´ n´1
2c

A few steps of algebra give as the solution:

c “
1

2

n ` 2

n

n ´ 1

n
.

We have thus found our equilibrium. Notice that c is indeed larger than 1
2
n´1
n
.
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We want to investigate what happens as n becomes larger. Here are some examples:

n “ 2 ñ c “ 0.5

n “ 3 ñ c « 0.5556

n “ 4 ñ c “ 0.5625

n “ 5 ñ c “ 0.56

n “ 6 ñ c « 0.5556

One can check that, as n increases further, c falls, and converges back to 0.5. This reflects that an

increase in n has two effects: it increases competition, thus making higher bids more attractive,

but it also makes the winner’s curse worse, thereby making lower bids more attractive.
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Appendix for Topic 5

Type Spaces and Hierarchies of Beliefs

We begin by recalling the first definition of a type space that we offered in a main text. In

fact, this definition is independent of the notion of a game. We can consider a group of agents

i P I all of whom form beliefs, beliefs about beliefs, etc. about some uncertain θ P Θ. In he

first section of this appendix we will therefore develop the language of type spaces and infinite

hierarchies of beliefs without any explicit reference to games.

Definition 32. A type space T consists of:

• for every player i a set Ti of possible types of player i;

• for every player i a mapping βi : Ti Ñ ∆pΘ ˆ T´iq, where T´i “
Ś

j‰i

Tj, and where

∆pΘ ˆ T´iq is the set of all probability measures on Θ ˆ T´i.

Let us spell out how we can determine for each type in a type space what the type believes

about θ, but also what the type believes about others’ beliefs, and what the type believes about

others’ beliefs about others’ beliefs, etc.

We begin observing that for every type ti we can determine type ti’s first order belief, that is,

type ti’s belief about θ. We denote the first order belief by bi,1. It is an element of Bi,1 “ ∆pΘq.

It is given by:3

bi,1pθq “ βiptiq ptpθ, t´iq|t´i P T´iuq for all θ P Θ.

Denote by b̂i,1 the function that assigns to each type ti that type’s first order belief. The range

of b̂i,1 is thus contained in Bi,1. Define b̂´i,1 to be the function that assigns to every vector of

3Formally, the following equation specifies for every singleton set tθu the probability that bi,1 assigns to this

set, i.e. bi,1ptθuq. To simplify the notation, I write bi,1pθq instead of bi,1ptθuq. Also note that, to fully specify

the probability measure bi,1, we would have to define bi,1 not just for singletons, but for all measurable sets.

For simplicity, I skip this step here. It should be not too difficult to extend the equation for singletons to an

analogous equation for all measurable sets.
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types of agents other than i, t´i, the vector of these agents’ first order beliefs. The range of

b̂´i,1 is thus a subset of B´i,1 “
Ś

j‰i Bj,1.

Type ti’s second order belief is type ti’s belief about θ and about the other agents’ first

order beliefs. We denote the second order belief by bi,2. It is an element of ∆pΘ ˆ B´i,1q. It is

given by:

bi,2pθ, b´i,1q “ βiptiq
´!

pθ, t´iq|b̂´i,1pt´iq “ b´i,1

)¯

for all pθ, b´i,1q P Θ ˆ B´i,1.

Denote by Bi,12 the set of all sequences pbi,1, bi,2q of first and second order beliefs such that

the marginal distribution of bi,2 on Θ is bi,1. Denote by b̂i,12 the function that assigns to teach

type ti the sequence of that type’s first and second order belief. Note that the range of b̂i,12 is

contained in Bi,12. Denote by b̂´i,2 the function that assigns to every vector of types of agents

other than i, t´i, the vector of these agents’ first and second order beliefs. The range of b̂´i,2 is

thus contained in B´i,12 “
Ś

j‰i Bj,12.

Type ti’s third order belief is type ti’s belief about θ and about the other agents’ first and

second order beliefs. We denote the third order belief by bi,3. It is an element of ∆pΘˆB´i,12q.

It is given by:

bi,3pθ, b´i,1, b´i,2q “ βiptiq
´!

pθ, t´iq|b̂´i,12pt´iq “ pb´i,1, b´i,2q

)¯

for all pθ, b´i,1, b´i,2q P Θ ˆ B´i,12.

We denote by Bi,123 the set of all sequences pbi,1, bi,2, bi,3q such that the marginal distribution

of bi,2 on Θ is bi,1, and the marginal distribution of bi,3 on Θ ˆ Bi,1 is bi,2. We denote by b̂i,123

the function that assigns to teach type ti the sequence of that type’s first, second, and third

order belief. Note that the range of b̂i,123 is Bi,123. Denote by b̂´i,123 the function that assigns

to every vector of types of agents other than i, t´i, the vector of these agents’ first, second, and

third order beliefs. The range of b̂´i,123 is thus contained in B´i,123 “
Ś

j‰i Bj,123.

We can continue this construction ad infinitum. Suppose we had defined first, second, ...,

n-th order beliefs. Type ti’s pn ` 1q-th order belief is type ti’s belief about θ, and about the

other agents’ first, second, ..., n-th order beliefs. It is denoted by bi,n`1. It is an element of
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∆pΘ ˆ B´i,12...nq. It is given by:

bi,n`1pθ; b´i,1, b´i,2, . . . , b´i,nq “ βiptiq
´!

pθ, t´iq|b̂´i,12¨¨¨npt´iq “ pb´i,1, b´i,2, . . . , b´i,nq

)¯

for all pθ; b´i,1, b´i,2, . . . , b´i,nq P Θ ˆ B´i,12...n.

We obtain for each type ti of a player i an infinite sequence (“hierarchy”) of beliefs. Denote

by Bi the set of all sequences pbi,1, bi,2, bi,3 . . .q such that for every n P N the marginal distribution

of bi,n`1 on ΘˆB12¨¨¨pn´1q is bi,n. The infinite hierarchy of beliefs is an element of Bi. We denote

the function that assigns to every type of player i the infinite hierarchy of player i’s beliefs by

b̂i:

b̂i : Ti Ñ Bi.

Type spaces thus give us a simple way of specifying infinite hierarchies of beliefs. Instead

of going through the cumbersome process of writing down an infinite hierarchy of beliefs, we

instead write down a type space.

One might ask whether every infinite hierarchy of beliefs that is potentially of interest can

be reproduced in some type space. The answer to this question is “yes.” Indeed, one can prove

something a little stronger: There is one type space in which for every agent i the range of

the function b̂i is exactly the set of all infinite hierarchies of beliefs Bi. Thus, for every infinite

hierarchy of beliefs taken from Bi we can find some type ti with that infinite hierarchy of beliefs.

This type space is called the “universal type space.” To define the universal type space we can

in fact label each type ti with the infinite hierarchy of beliefs that correspond to ti. Because

the type space is universal this means that for every i P I:

Ti “ Bi.

The existence of a universal type space is then proven by showing that for all i P I there exists

a mapping:

βi : Ti Ñ ∆pΘ ˆ T´iq
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such that for every type ti P Ti we have:

b̂iptiq “ ti.

This proof is due to Jean-François Mertens and Shmuel Zamir, Formulation of Bayesian Analysis

for Games with Incomplete Information, International Journal of Game Theory 14 (1985), 1-

29. A simpler version of the argument is contained in Adam Brandenburger and Eddie Dekel,

Hierarchies of Beliefs and Common Knowledge, Journal of Economic Theory 59 (1993), 189-198.

Partitional Models of Beliefs

Let Ω be the set of all states of the world. There is a mapping θ̂ : Ω Ñ Θ that determines

for each state of the world ω the corresponding true value of the parameter θ. Each player i

has a subjective probability measure on Ω: πi P ∆pΩq. For each agent i there is also a partition

Pi of Ω. The interpretation is this: if the state ω P Ω occurs, then agent i is informed of the

element of Pi that contains ω. Let’s denote that element by Pipωq. Agent i’s beliefs about the

state of the world are then updated so that they equal the prior πi conditioned on Pipωq.

This model is in fact equivalent to the type space model introduced in the previous section.

The set of types Ti of agent i is the same as the set of elements of type i’s partition Pi. Every

type ti ’s beliefs about θ and the other agents’ types t´i is given by:

βiptiqpθ, t´iq “

πi

´!

ω P ti|θ̂pωq “ θ and ω P tj for all j ‰ i
)¯

πiptiq

Thus we can construct from every partitional model of beliefs a type space model of beliefs.

We can also transform every type space model of beliefs into an equivalent partitional model

of beliefs. This is easy to show, but we skip the proof here.

The Impossibility of Agreeing to Disagree

A special class of partitional model of beliefs are those that are derived from a common

prior. In this case the prior πi is the same for all i. We shall write π for this prior. We shall
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now demonstrate that the assumption of a common prior has strong implications for infinite

hierarchies of beliefs. Assuming a common prior is not at all without loss of generality.

For simplicity let’s assume that Ω is finite, that n “ 2, and that πpωq ą 0 for all ω P Ω. The

two agents’ partitions are P1 and P2. Let us write P1 ^ P2 for the finest common coarsening of

P1 and P2 (also called the “meet” of P1 and P2). For every ω P Ω let’s denote by pP1 ^ P2qpωq

the element of P1 ^ P2 that includes ω.

Now consider any “event” E where E Ď Ω. This event can for example include all states

in which the parameter θ takes on some particular value. Or it might include all states in

which some agent’s first order belief is given by some particular probability measure, or, more

generally, has some given features. We can determine for every state ω P Ω and every i P I

which probability agent i attaches to E in ω. This probability is given by:

qipE,ωq “
πpE X Pipωqq

πpPipωqq
.

Now let us define the concept of “common knowledge” of an event E. By this we mean

informally that every agent knows that E has occurred, and every agent knows that every

agent knows that E has occurred, etc. For simplicity, we shall identify ”knowledge that E has

occurred” with “attaching probability 1 to E.” The formal definition of common knowledge is

as follows:

Definition 33. Event E is common knowledge at ω if:

pP1 ^ P2qpωq Ď E.

To see that this formal definition reflects the informal definition, let us construct agents’

infinite hierarchy of beliefs regarding E in a state ω at which E is common knowledge. Let us

denote the element of P1 ^P2 that includes ω by P. Consider any agent i, and any state ω P P.
Because P1 ^ P2 is a coarsening of Pi we have Pipωq Ď P. By assumption we have: P Ď E.

Therefore, qipE,ωq “ 1, that is, agent i believes with probability 1 that E has occurred.

Let KiE denote the set of all ω P Ω such that agent i believes with probability 1 that E

has occurred. We have shown in the previous paragraph that P Ď KiE. Therefore, we can also
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conclude that P Ď K1E XK2E XE. Repeating the argument int the previous paragraph, with

the event K1EXK2EXE now taking the role of the event E in the previous paragraph, we can

now conclude that every agent i believes with probability 1 that K1E XK2E XE has occurred,

that is, every agent i believes with probability 1 that “E has occurred and both agents believe

with probability 1 that E has occurred.”

Iterating the argument, we find that at every state ω P P the event E is common knowledge

in the informal sense of the word that we described earlier. Thus, the formal definition implies

the informal definition.

Now let E Ď Ω be some event, and let q1, q2 P r0, 1s be two probabilities. Define:

EpE, q1, q2q “ tω P Ω|q1pE,ωq “ q1 and q2pE,ωq “ q2u.

Thus, EpE, q1, q2q is the event that agent 1’s belief attaches probability q1 to E and agent 2’s

belief attaches probability q2 to E.

Proposition 14. Suppose at some state ω P Ω we have that EpE, q1, q2q is common knowledge.

Then q1 “ q2.

This is Aumann’s famous theorem on the impossibility of agreeing to disagree (Robert

Aumann, Agreeing to Disagree, Annals of Statistics 4 (1976), 1236-1239). It says that if the

probabilities two agents attach to some event are common knowledge among the two agents

then these probabilities have to be the same. It cannot be that any disagreement about the

probability of some event is common knowledge among us. This is a consequence of the common

prior assumption. It is trivial that the theorem would be false if agents had subjective priors.

Proof. Define P “ pP1 ^ P2qpωq. Note that P must be the union of some finite number of

elements of P1. Let us enumerate these elements of P1 as P 1
1 , P

2
1 , . . . , P

k
1 . For every ω P P we

have:

q1pE,ωq “ q1.

Therefore, for every j “ 1, 2, . . . , k we have:

πpE X P j
1 q

πpP j
1 q

“ q1.
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We can re-write this as:

πpE X P j
1 q “ q1πpP j

1 q.

Let us sum over all j:
k

ÿ

j“1

πpE X P j
1 q “

k
ÿ

j“1

`

q1πpP j
1 q

˘

.

This is the same as:

πpE X Pq “ q1πpPq.

Using a similar argument we get:

πpE X Pq “ q2πpPq.

But this implies:

q1 “ q2.

The Impossibility of Speculative Trade

We will consider two risk-neutral individuals who are betting on the outcome of a coin toss.

The coin toss can come up either Head or Tails. If Head comes up, then agent 2 has to pay

a Dollar to agent 1. If Tails comes up, then agent 1 has to pay a Dollar to agent 2. The coin

may or may not be fair, that is, the probability that Head comes up may be more than 0.5

or less than 0.5. The reason why the agents might engage in a bet is that each of them has

private information about the bias of the coin. We shall describe this using a partitional model

of beliefs.

We assume again that Ω is finite, that ther e is a common prior i, and that πpω ą 0 for all

ω P Ω. A function θ̂ assigns to every state ω P Ω the probability θ̂pωq P r0, 1s with which the

coin lands on Head. Thus, θ̂pωq describes the true bias of the coin. The two agents’ information

partitions are P1 and P2. These information partitions describe private knowledge about the

true bias of the coin. The agents’ bets may be based on this private knowledge.
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Now consider the following event:

E1 “

#

ω P Ω|

ř

ω̃PP1pωq
pπpωqθ̂pωqq

ř

ω̃PP1pωq
πpωq

ě 0.5

+

.

This is the event that agent 1 is willing to accept the bet. Similarly, define the event that agent

2 is willing to bet as:

E2 “

#

ω P Ω|

ř

ω̃PP2pωq
pπpωqθ̂pωqq

ř

ω̃PP2pωq
πpωq

ď 0.5

+

.

With these definitions, E1 X E2 is the event that both agents are willing to accept the bet.

We might anticipate that, if the two agents bet with each other, the fact that they bet

with each other becomes common knowledge. If each agent is only willing to bet if the bet is

advantageous to the agent, then this means that when agents bet the event E1 XE2 is common

knowledge.

Proposition 15. Suppose that at some state ω P Ω the event E1 X E2 is common knowledge.

Then:
ř

ω̃PP1pωq
pπpωqθ̂pωqq

ř

ω̃PP1pωq
πpωq

“

ř

ω̃PP2pωq
pπpωqθ̂pωqq

ř

ω̃PP2pωq
πpωq

“ 0.5.

This proposition says that if both agents are willing to bet, then neither agent actually

expects to gain a strict advantage from the bet. If, for example, betting were a little costly,

then neither agent would bet.

Proof. Define P “ pP1 ^ P2qpωq. Note that P must be the union of some finite number of

elements of P1. Let us enumerate these elements of P1 as P
1
1 , P

2
1 , . . . , P

k
1 . For every P j

1 we have

to have:
ř

ω̃PP j
1
pπpωqθ̂pωqq

πpP j
1 q

ě 0.5.

That is, conditional on each set P j
1 the expected value of θ has to be at least 0.5. The conditional

expected value of θ conditional on P is the weighted average of the conditional expected value
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of θ conditional on each of the sets P j
1 , as the following equation makes transparent.

ř

ω̃PPpπpωqθ̂pωqq

πpPq
“

ř

ω̃PP 1
1
pπpωqθ̂pωqq

πpPq
`

ř

ω̃PP 2
1
pπpωqθ̂pωqq

πpPq
` . . . `

ř

ω̃PPk
1

pπpωqθ̂pωqq

πpPq

“
πpP 1

1 q

πpPq

ř

ω̃PP 1
1
pπpωqθ̂pωqq

πpP 1
1 q

`
πpP 2

1 q

πpPq

ř

ω̃PP 2
1
pπpωqθ̂pωqq

πpP 2
1 q

` . . . `
πpP k

1 q

πpPq

ř

ω̃PPk
1

pπpωqθ̂pωqq

πpP k
1 q

Because each of the conditional expected values in this weighted sum is at least 0.5, we can

conclude that also the weighted sum is at least 0.5:

ř

ω̃PPpπpωqθ̂pωqq

πpPq
ě 0.5,

By an analogous argument, referring to agent 2’s information partition, we can conclude:

ř

ω̃PPpπpωqθ̂pωqq

πpPq
ď 0.5,

and hence:
ř

ω̃PPpπpωqθ̂pωqq

πpPq
“ 0.5.

But because the conditional expected value on the left hand side of this equation equals the

weighted sum of conditional expected values, conditioning on information sets of player 1, we

obtain:
ř

ω̃PP j
1
pπpωqθ̂pωqq

πpP j
1 q

“ 0.5.

for every j. Similarly, if we use P j
2 as a generic symbol for the information sets of player 2 that

make up P, we get:
ř

ω̃PP j
2
pπpωqθ̂pωqq

πpP j
2 q

“ 0.5.

Thus, we have found in particular, for the information sets to which ω belongs:

ř

ω̃PP1pωq
pπpωqθ̂pωqq

ř

ω̃PP1pωq
πpωq

“

ř

ω̃PP2pωq
pπpωqθ̂pωqq

ř

ω̃PP2pωq
πpωq

“ 0.5.
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This result is a special version of a more general result by Paul Milgrom and Nancy Stokey

(“Information, Trade and Common Knowledge”, Journal of Economic Theory 26 (1982), 17-

27.) The conclusion of this result is often referred to as the “impossibility of speculative trade.”

Here, the potential trade is “speculative” because if the true θ were commonly known, then it

could not be the case that both agents strictly benefit from trading. All possible trade is based

on “insider knowledge” about the bias of the coin. In this sense agents “speculate.” But if there

is a common prior, both agents are risk neutral, and the willingness to trade becomes common

knowledge, then neither party can expect to strictly gain from trade.

The Electronic Mail Game

Two players, i “ 1, 2 play with probability 1 ´ π game Ga:

A B

A M,M 1,-L

B -L,1 0,0

and with probability π game Gb:

A B

A 0,0 1,-L

B -L,1 M,M

where L ą M ą 1 and π ă 0.5.

In the literature this game is called the “Coordinated Attack Problem.” Initially only player

1 knows which game is the true game. Then the following sequence of events unfolds. If the

game is Gb player 1’s computer automatically sends an email to player 2. With probability

ε ą 0 player 1’s message gets lost. With probability 1´ ε ą 0 player 1’s message reaches player

2. If player 2 receives an email from player 1, her computer automatically sends a confirmation

to player 1. With probability ε ą 0 player 2’s message gets lost. With probability 1 ´ ε ą 0

player 2’s message reaches player 1. If player 1 receives an email from player 2, his computer

automatically sends a confirmation to player 2. With probability ε ą 0 player 1’s message gets
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lost. With probability 1´ ε ą 0 player 1’s message reaches player 2. . . . Etc. If the game is Ga

no messages are sent by anyone.

We can model this using the partitional model of beliefs. The state space is:

Ω “ tp0, 0q, p1, 0q, p1, 1q, p2, 1q, p2, 2q, p3, 2q, . . .u

“ tpq1, q2q P N2
0|0 ď q1 ´ q2 ď 1u.

The information partitions are:

P1pp0, 0qq “ tp0, 0qu

and, if q1 ě 1 : P1ppq1, q2qq “ tpq1, q1 ´ 1q, pq1, q1qu

P2ppq1, q2qq “ tpq2, q2q, pq2 ` 1, q2qu

The prior distribution is given by:

πpp0, 0qq “ 1 ´ π.

and, if q1 ě 1 : πppq1, q2qq “ πp1 ´ εq
q1`q2´1ε.

Now consider a state pq1, q2q where q1, q2 are both “very large:” In such a state player 1

knows that the game is Gb. Player 1 knows that player 2 knows that the game is Gb. Player 1

knows that player 2 knows that player 1 knows that player 2 knows that the game is Gb. . . .

Player 1 knows that player 2 knows that player 1 knows that player 2 knows .... that player

2 knows that the game is Gb. And also player 2 knows that the game is Gb. Player 2 knows

that player 1 knows that player 2 knows that the game is Gb. . . . Player 2 knows that player 1

knows that player 2 knows that player 1 knows .... that player 2 knows that the game is Gb.

Thus the game Gb is “almost common knowledge.”

Now notice that when Gb is common knowledge, there are two pure strategy Nash equilibria:

pA,Aq and pB,Bq. The following result shows that even in states where Gb is “almost common

knowledge” the game has only one Nash equilibrium: both players choose A.

Proposition 16. There is a unique Bayesian Nash equilibrium. In this Bayesian Nash equilib-

rium both players choose A at all information sets.
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Proof. When q1 “ 0, player 1 chooses A, because he knows A to be strictly dominant.

When q2 “ 0, player 2 attaches probability 1´π
1´π`πε

to the event that the game is Ga and

player 1 chooses A. The belief that is most favorable to choosing B is that player 2 believes that

player 1 chooses B when the game is Gb. The probability that the game is Gb is
πε

1´π`πε
. Notice

that this latter probability is strictly smaller than 0.5. If player 2 believed with probability

0.5 the game is Ga and player 1 chooses A and with probability 0.5 the game is Gb and player

2 chooses B, then player 2’s expected payoff from choosing A is: pM ` 1q{2, and player 2’s

expected payoff from choosing B is p´L ` Mq{2. Obviously the latter is less than the former.

Because the actual probability of Gb is less than 0.5, player 2’s best response is unambiguously

to choose A.

We continue with an inductive argument. Suppose we had proved the claim for all pq1, q2q ď

pq, qq, where q ě 0. In all remaining states both players are sure that the game is Gb. When

q1 “ q ` 1 player 1 attaches at least probability ε
ε`p1´εqε

to the event that player 2 has not

received her message, and is in her information set q. But note that player 2 chooses A in her

information set q, by the inductive assumption. Because ε
ε`p1´εqε

ą 1
2
, player 1 thus attaches

at least probability 0.5 to the event that player 2 chooses A. But because

1

2
¨ 0 `

1

2
¨ 1 ą

1

2
¨ p´Lq `

1

2
¨ M,

it follows that player 1’s best response is A.

When q2 “ q ` 1 player 2 attaches at least probability ε
ε`p1´εqε

to the event that player 1

has not received her message, and is in her information set q ` 1. But we just concluded that

player 1’s choice in her information set q ` 1 is A. Therefore, by the same argument that we

used in the previous paragraph player 2’s unique best choice is A.

This argument can be continued ad infinitum, and the result is proven.

Global Games

There are two players, i “ 1, 2. Each player has two strategies: “I(invest)” and “N(ot

invest)”. They payoffs are given by the following matrix:
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I N

I θ, θ θ ´ 1, 0

N 0, θ ´ 1 0, 0

Here, θ P R is the “state of the economy.” Note that, if θ ą 1, I is a dominant strategy.

If θ P r0, 1s, pI, Iq and pN,Nq are pure strategy Nash equilibria. If θ ă 0, N is a dominant

strategy.

Now assume that players don’t know the value of θ. Suppose that θ is uniformly distributed

on R. Observe that this is not really a well-defined probability measure. Nonetheless, for a

slightly informal presentation of the argument, let’s work with this ”improper prior” as it is

sometimes called in the literature.

Neither player observes θ. But each player i gets a private signal: xi “ θ ` εi where

εi is normally distributed with mean 0 and standard deviation σ. Assume that the εi are

independent.

The“improper prior”matters when we now calculate each player i’s posteriors when observ-

ing xi “ x. Two posteriors matter: what does player i believe about θ, and what does player i

believe about the signal xj observed by the other player. I now claim that under the improper

prior the posterior about θ is the normal distribution with mean x and standard deviation σ,

and that player i’s posterior about xj is the normal distribution with mean x and standard

deviation
?
2σ.

Where does the improper prior enter? We have removed from the calculation here the prior

mean and variance of θ. If the variance of the prior tends to infinity, then neither prior mean

nor prior variance matter for the posterior.

These calculations simplify the proof of the following proposition.

Proposition 17. This game has an (essentially) unique Bayesian Nash equilibrium: each player

invests if xi ą 1{2 and does not invest if xi ă 1{2.

To understand why this result is interesting suppose xi P p0, 1q and σ Ñ 0. Then it is

“almost common knowledge” that θ “ xi. Yet only one of the two pure strategy Nash equilibria

is played in equilibrium.
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Proof. We prove the result by iterated elimination of strictly dominated strategies (IESDS).

We begin by showing that for xi ą 0.5 the only strategy surviving IESDS is I.

In Step 1 we argue that I is strictly dominant when xi ą 1. When xi ą 1, the expected

value of θ is greater than 1. Therefore it is strictly dominant to Invest.

For Step n suppose we had concluded after n steps, for both players i, that I is the only

surviving strategy when xi ą x̄n, where x̄n ą 0.5. Then the probability that player i attaches

to the event that player j ‰ i does not invest is at most:

ϕ

ˆ

x̄n ´ xi
?
2σ

˙

.

where ϕ is the cumulative distribution function of the standard normal distribution. Player i’s

expected utility from investing when observing xi is therefore at least:

xi ´ ϕ

ˆ

x̄n ´ xi
?
2σ

˙

.

This expression is increasing in xi. There is a unique x̂ such that this expression is 0 if xi “ x̂.

Observe that: 0.5 ă x̂ ă x̄n. We set: x̄n`1 “ x̂.

Now consider the sequence: px̄nqnPN. This sequence is decreasing. Also, the sequence is

bounded below by 0.5. Therefore the sequence is converging. Denote the limit by x̄8.

For given x̄ define bpx̄q to be the unique solution to:

xi ´ ϕ

ˆ

x̄ ´ xi
?
2σ

˙

“ 0.

The sequence px̄nqnPN satisfies for all n P N:

x̄n`1 “ bpx̄nq.

Because b is continuous, we must have:

bpx̄8q “ x̄8.

Therefore:

x̄8 ´ ϕ

ˆ

x̄8 ´ x̄8
?
2σ

˙

“ 0 ô

x̄8 “ ϕp0q “ 0.5.
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We have shown that for xi ą 0.5 the only strategy surviving IESDS is I. A symmetric argument

shows that for xi ă 0.5 the only strategy surviving IESDS is N .

A very large literature has developed surrounding the theory of global games. Global game

models have been used to model phenomena such as bank runs, or currency crises, where games

with multiple equilibria are involved, and the theory of global games might help to predict when

one equilibrium rather than another is played. The impact of providing additional information

about θ has also been investigated, and the results of such investigations have been interpreted

as providing information about things such as monetary policy announcements.

A paper by Weinstein and Yildiz (Econometrica 2007) has suggested a reason for being

cautious in interpreting the theory of global games. They showed that for every Nash equi-

librium of a complete information game there is some incomplete information perturbation in

which the original game is “almost common knowledge” and which has a unique Bayesian Nash

equilibrium that is close to the original Nash equilibrium.
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Topic 6: Extensive Games

1. An Example

Let us consider a dynamic game of incomplete information. Players 1 and 2 play one of the

following two games, where player 1 chooses rows and player 2 chooses columns.

H N

T -1,-1 -3,0

N 2,-1 0,0

H N

T 1,1 -1,0

N 2,1 0,0

x y

Figure 9

The true game is with probability 0.6 the game on the left, labeled x, and with probability

0.4 the game on the right, labeled y. Player 1 knows which is the true game, but player 2 does

not. Player 1 moves first. Player 2 observes player 1’s choice, and then moves second. We can

graphically represent this situation as follows:

0

1 1

2 2 2 2

x y

T N T N

H N H N H N H N

(0.6) (0.4)

−1
−1

−3
0

2
−1

0
0

1
1

−1
0

2
1

0
0

Figure 10
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Reading Figure 10 from top to bottom, the game begins with a random move by player 0,

which selects either the game labeled x, or the game labeled y, where the former is chosen with

probability 0.6 and the latter is chosen with probability 0.4. We interpret player 0 as “Nature.”

Player 0 has no utilities. All moves by player 0 are random. After player 0, player 1 moves, and

chooses either T or N . Then player 2 moves, choosing either H or N . The utilities are listed at

the end of the tree, with player 1’s utilities coming first, and player 2’s utilities coming second.

The red and blue dotted lines in Figure 10 are crucial. They connect nodes of the game

tree at which player 2 moves, but player 2 does not know which of the connected nodes she is

at. Consider, for example, the two nodes connected by a red dotted line. These are the two

nodes where player 2 observes that player 1 has chosen T , but player 2 does not know whether

“Nature” has chosen x or y. Thus, player 2, when it is her turn, does not know which of these

two nodes she is at. The two nodes connected by a blue dotted line correspond to player 1’s

choice of N . Player 2 does observe player 1’s choice, but she does not observe “Nature’s” choice.

This is why we have connected these two nodes with a blue dotted line.

Nodes that are connected by a dotted line belong to the same “information set” of player

2. In fact, each node at which a player has to make a decision belongs to an information set.

However, we don’t show information sets for player 1 because they each have only one element.

When player 1 chooses, he knows which of the two nodes he is at, because he knows whether

the game is x or y.

The example in Figure 10 is a classic signaling game. Player 1 is a potential employee of

player 2. If Nature chooses x, then this means that player 1 is not a good match for player 2.

If Nature chooses y, then this means that player 1 is a good match. Player 1 chooses to “train”

or “not to train.” Training is costly for player 1. In state x the cost is 3. In state y the cost

is 1. Player 2 observes whether player 1 trains, but does not know whether player 1 is a good

match as an employee. Player 2 has to choose whether to “hire” or “not to hire” player 1. If

player 2 hires player 1, the benefit to player 1 is equal to 2. Player 1’s utility is given by this

benefit minus the cost of training. Player 2 has utility -1 if she hires an employee who is not a

good match, and it is 1 if she hires an employee who is a good match. Note that training does

not have any impact on the benefit that the employer derives from an employee, and for the

employee it is only a cost, not a benefit.
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2. Informal Definition of Extensive Games

Extensive games are games that are represented by figures such as Figure 10. The basic

structure is a directed graph that begins with an initial node. From each node some edges

originate that connect the given node to subsequent nodes. We only consider finite extensive

games here, so that the game ends with terminal nodes. Utilities are associated with each

terminal node.

Next to each node we indicate the player who chooses at that node. This player may be

player 0, in which case it is a chance move. The edges that connect nodes are labeled with the

names of the corresponding actions. If the player who chooses at a node is player 0, then the

edges are also labeled with the probability with which each of the nodes is chosen by “Nature.”

The set of nodes at which some player i moves is partitioned into “information sets.” The

interpretation is that, if an information set is reached, the player knows that this information

set has been reached, but the player does not observe which of the nodes in the information set

has been reached. Therefore, all nodes that are in the same information set must be associated

with the same player, and they must also all offer this player the same set of possible actions.

In the graphs that I draw here, I omit information sets that contain just one element. That is, if

for some node no information set is indicated then this means that the node is in an information

set by itself, i.e. the player who chooses at that node knows that she is at that node.

Defining extensive games formally requires some cumbersome notation. Therefore, here, I

adopt instead the approach of pointing at Figure 10, and defining extensive games as any figure

that looks like Figure 10.

Another example is on the next page. This is in fact the same multi-stage game that we

already discussed in Section 7 of Topic 4. Notice that to represent simultaneous moves we have

introduced an artificial order of moves, specifically player 1 moves first and player 2 moves

second, but have then indicated using information sets that player 2, when moving after player

1, does not observe player 1’s previous move.

Of course, the games of perfect information that we showed in Topic 4 as trees are also

extensive games. In those examples, we did not have to indicate any information sets because

at every decision node that player who moved at that decision node knew at which decision

node she was.
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Figure 11

3. Strategies, Nash Equilibria, and Subgame-Perfect Equilibria

A strategy of a player in an extensive game assigns to each information set of that player

an action. This is the natural generalization of the concept of a strategy that we introduced in

Topics 4 and 5. As before, the best way to think of strategies is to think of them as “complete

contingent plans,”where the contingencies that players plan for include the possibility that they

themselves at some point do not what they intended to do. We focus again on pure strategies,

and do not discuss in these notes randomization in extensive games.

If we are given a list of strategies, one for each player, then we can determine which of the

terminal nodes of the game we will reach if players follow those strategies. Therefore, we can
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also determine players’ utilities. If there are random moves in the game, such as in Figure 10,

we will obtain a probability distribution over terminal nodes, and then we can determine each

players’ expected utility.

Here is an example. Suppose in the game in Figure 10 player 1’s strategy is to choose T at

her left decision node, but N at her right decision node, and player 2’s strategy is to choose H

at her red information set, but to choose N at her blue information set, then the result will be

that with probability 0.6 players get utilities p´1,´1q, and with probability 0.4 players’ utilities

will be p0, 0q, so that the expected utilities will be p´0.6,´0, 6q.

Once we have each player’s strategy set and for each player, for each profile of strategies, the

associated expected utility of that player, then we have again obtained the normal form of the

given extensive game, and we can determine Nash equilibria of the normal form. The strategy

sets can easily be quite large, and explicitly writing down the normal form of an extensive game

and then finding the Nash equilibria can be quite tedious.

As we explained in the context of Topic 4, we might not be interested in all Nash equilibria,

but only in the Nash equilibria that are also subgame-perfect, that is, that form Nash equilibria

of the game itself, and of all subgames. In Figure 12 I have indicated one of the subgames of the

extensive game shown in Figure 11. The subgame is surrounded by a red line. The important

features of the subgame are these: it consists of one initial node and all subsequent nodes and

edges. Moreover, there is no information set that is partially in the subgame, and partially

outside of the subgame. This means that, whenever they have reached the subgame, players

know that they are playing the subgame.

In Topic 4 we have focused on Nash equilibria that are also Nash equilibria of all subgames,

and we can do the same in extensive games. As in multi-stage games, also in general extensive

games, such Nash equilibria are called subgame-perfect equilibria. But note that some extensive

games have no subgames. The game in Figure 10, for example, has no subgame.
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4. Sequential Equilibria

We now take a closer look at the game in Figure 10. Figure 13 shows the normal form of

that game. Strategies of player 1 indicate first what player 1 chooses to do when she knows

that she is not a good match, and second what she chooses to do when she knows she is a good

match. Strategies of player 2 indicate first whether player 2 hires a potential employee who is

trained, and second whether player 2 hires a potential employee who is not trained.
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HH HN NH NN

TT -0.2,-0.2 -0.2,-0.2 -2.2,0 -2.2,0

TN 0.2,-0.2 -0.6,-0,6 -1,0.4 -1.8,0

NT 1.6,-0.2 0.4,0.4 0.8,-0.6 -0.4,0

NN 2,-0.2 0,0 2,-0.2 0,0

Figure 13

The game in Figure 13 has two Nash equilibria: pNT,HNq. and pNN,NNq. In the first

Nash equilibrium, a player 1 who is a good match signals this by training, whereas a player 1 who

is not a good match does not train. Player 2 hires only those player 1s who are trained. In the

second Nash equilibrium, nobody ever trains, and nobody ever gets hired. In the language that

economists use to describe equilibria of signaling games, the first equilibrium is a “separating

equilibrium,” and the second equilibrium is a “pooling equilibrium.”

A lot of thought has gone into the question whether the pooling equilibrium is plausible.

Intuitively, when meeting an untrained player 1, player 2 thinks that with probability 0.6 this

player is a bad match, and with probability 0.4 this player is a good match. Therefore, in

expected terms, it is not worthwhile to hire the player 1. But what if player 2 meets a trained

player 1? In equilibrium, this is not supposed to happen. Is player 2’s plan not to hire a trained

player 1 rational? Using a metaphor that we employed earlier: Is the “threat” not to hire a

trained player 1 credible?

Whether it is rational for player 2 not to hire a trained player 1 depends on what player

2 believes about the quality of the match with such a player 1. If, for example, player 2

believes that a trained player 1 is with probability 0.6 a bad match, and with probability 0.4

a good match, then it is rational not to hire player 1. But if the probabilities were the reverse

probabilities, then it would be rational to hire player 1.

The concept of “sequential equilibrium,” which is a new equilibrium concept that we in-

troduce in this section, requires us to describe for each player not only the player’s strategy

but also the player’s beliefs. For every information set of every player, we have to indicate

with which probability the player believes she is at any of the nodes that are included in this

information set. This is obviously not relevant when an information set has only one element.
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But for each of the two information sets of player 2 in Figure 10, we have to indicate which

probability player 2 assigns to the events that player 1 is a good match or a bad match. Players’

choices have to be expected utility maximizing given their beliefs, and given the other players’

strategies. Every sequential equilibrium is a Nash equilibrium, and indeed it is a subgame-

perfect equilibrium, but not every Nash equilibrium, nor every subgame-perfect equilibrium is

a sequential equilibrium.

Let us examine whether the two Nash equilibria of the game in Figure 10 are sequential

equilibria. For the first equilibrium, we could specify the beliefs of player 2 as follows: Player

2 believes with probability 1 that player 1 is a good match if player 1 acquires training, and

otherwise player 2 believes with probability 1 that player 1 is a bad match. These are indeed

the only beliefs that are consistent with the equilibrium. Sequential equilibrium requires us to

specify beliefs that are consistent with the equilibrium.

For the second equilibrium, we specify that player 2 believes that a player 1 who is not

trained is with probability 0.6 a bad match, and with probability 0.4 a good match. This

is again the only specification of beliefs that are consistent with the equilibrium. But which

beliefs should we specify for the information set that is reached when player 1 does train? The

equilibrium does not pin down those beliefs. Sequential equilibrium allows us to specify any

beliefs that could be calculated as conditional probabilities if for each choice of each player there

were some tiny but positive probability with which the player does not make the equilibrium

choice but some other choice. These tiny probabilities may be different for different players,

and, for given player, for different choices of that player.

We could associate with the second Nash equilibrium the beliefs of player 2 that player

1, when trained, is with probability 0.6 a bad match and with probability 0.4 a good match.

This would be the correct conditional probabilities if bad and good matches had the same tiny

probability of getting trained by chance. Then the belief of player 2 at her information set

should just be equal to her prior. Therefore, the second Nash equilibrium is also a sequential

equilibrium. Indeed, there are many beliefs that support this sequential equilibrium. For

example, player 2 could believe that bad matches are twice as likely to get trained by chance

as good matches. Then, when encountering a player 1 who is trained, her posterior belief that
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this player is a bad match would be:

0.6 ¨ 2 ¨ ε

0.6 ¨ 2 ¨ ε ` 0.4 ¨ ε
“

3

4
.

This would also be a belief that would form, together with the equilibrium strategies, and

the implied belief when player 1 is trained, a sequential equilibrium. Thus, we can see that

many beliefs are allowed by sequential equilibrium. Indeed, one can easily show that any belief

about a trained player that makes it expected utility maximizing not to hire her can be used

to support the given equilibrium as a sequential equilibrium.

Which beliefs about untrained players are sensible, though? Given that it is more expensive

for player 1s who are a bad match to get trained than for player 1s who are a good match,

shouldn’t it be more likely that a trained player is a good match? This simple question has

been the focus of a lot of research in game theory, in particular in the 1980s and 1990s. The

focus of this literature are belief-based refinements of sequential equilibrium. We shall not

take up this question here, however, and instead accept that the signaling game of Figure 10

has sequential equilibria in which the different types separate, but also sequential equilibria

in which the different types pool. No unambiguous prediction follows from the concept of

sequential equilibrium for this game.



110

Appendix for Topic 6

Formal Definition of Extensive Games

I begin by providing the formal definition of an extensive games. A useful auxiliary term is

that of a “tree,” and to define that term we first need to define “directed graphs.”

Definition 34. A “directed graph” is a pair G “ pV,Eq where

• V is a finite set (“vertices”, “nodes”);

• E Ď V ˆ V (“edges”)

Definition 35. Let G “ pV,Eq be a directed graph and suppose x, x̂ P V where x ‰ x̂. If

px, x̂q P E we say that x̂ is a “direct successor” of x and that x is a “direct predecessor” of x̂.

Definition 36. Let G “ pV,Eq be a directed graph and suppose x P V . We say that x is a

“terminal node” of x if there does not exist a x̂ P V that is a direct successor of x.

Definition 37. Let G “ pV,Eq be a directed graph, and suppose x, x̂ P V where x ‰ x̂. A “path”

from x to x̂ is a sequence of vertices and edges:

px1, e1, x2, e2, . . . , xK , eK , xK`1
q

such that for all k “ 1, 2, . . . , K:

• ek “ pxk, xk`1q

• ek P E

and:

• x1 “ x; xK`1 “ x̂.
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If there is a path from x to x̂, we say that x̂ is a “successor” of x and that x is a “predecessor”

of x̂.

Definition 38. A “tree” is a triple G “ pV,E, x0q where

• pV,Eq is a directed graph;

• x0 P V (the “root”);

• for every x P V with x ‰ x0 there is a unique path from x0 to x.

Now we are ready to provide the central definition of this section.

Definition 39. A game in extensive form is a list of the following form:

• a finite, non-empty set N “ t1, 2, . . . , nu (the players);

• a tree G “ pV,E, x0q (the game tree);

• a partition of the set of elements of V that are not terminal nodes into subsets Vi, for

i P N Y t0u (the set of nodes where player i chooses; player 0 is Nature);

• for every x̄ P V0 a probability distribution over tpx, x̂q P E|x “ x̄u (probabilities for each

of Nature’s moves);

• for every player i P N a partition of Vi into ki subsets V
j
i pj “ 1, 2, . . . , kiq such that:

x̄, ¯̄x P V j
i ñ |tpx, x̂q P E|x “ x̄u| “ |tpx, x̂q P E|x “ ¯̄xu|

(player i’s information sets)

• for every player i P N , for every information set V j
i of player i, a set AipV

j
i q (the actions

available to player i at information set V j
i );

• for every x̄ P V j
i , a bijection fi,x̄ of the form:

fi,x̄ : tpx, x̂q P E|x “ x̄u Ñ AipV
j
i q,

(labeling player i’s choices at each information set);
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• for every i P N a function ui : V̄ Ñ R where V̄ is the set of terminal nodes (player i’s

utility function).

The extensive games in Figures 10 and 11 illustrate this definition.

Strategies and Memory

Definition 40. A “(pure) strategy of player i” is a function:

si : tV j
i |j P t1, 2, . . . , kiuu Ñ

ď

jPt1,2,...,kju

AipV
j
i q,

such that sipV
j
i q P AipV

j
i q for every j “ 1, 2, . . . , ki.

We denote the set of all pure strategies of player i by Si.

We next introduce two different definitions of randomized strategies. Both definitions gen-

eralize the definition of a mixed strategy in static games of complete information. The first

definition is:

Definition 41. A “mixed strategy of player i” is a probability distribution σi P ∆pSiq.

Notice that, although we use here the term“mixed strategies,” this is only one of two different

generalizations of the notion of mixed strategies to extensive games. We shall use a different

term in the second definition. But also the second definition generalizes what is referred to as

“mixed strategies” in static games.

The above definition of mixed strategies formalizes an “ex ante” notion of randomization.

Playing a mixed strategy in the sense of this definition means that, before the game begins,

the player picks randomly one of the many possible contingent plans for playing the game, and

then sticks to this plan for the remainder of the game.

We denote the set of all mixed strategies of player i, as defined above, by Σi.

The next generalization of the concept of a “mixed strategy” is an ex post notion of ran-

domization. Instead of randomly picking a complete contingent plan for the remainder of the
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game, where this contingent plan is deterministic, we now formalize the behavior of a player,

whenever asked to make a choice, picks randomly their next choice, and who only plans ex ante

the probabilities with which she will randomize, but not the actual choice. Thus, randomization

is planned initially, but is carried out later. We refer to such a complete contingent plan of

random choices as a “behavior strategy.”

Definition 42. A “behavior strategy of player i” is a function:

bi : tV j
i |j “ 1, 2, . . . , kiu Ñ ∆

¨

˝

ď

jPt1,2,...,kju

AipV
j
i q

˛

‚,

such that for every j “ 1, 2, . . . , kj the support of bipV
j
i q is a subset of AipV

j
i q.

We denote the set of all behavior strategies of player i by Bi.

An interesting question is whether it is really necessary to distinguish these two forms of

randomization, or whether it is sufficient to consider just one of them. Mathematically, each

of the two concepts would seem redundant if for every mixed strategy there is an “equivalent”

behavior strategy, and vice versa. To study this question formally, we need to define the notion

of “equivalent.”

Define:

Si “ Σi Y Bi.

For every

s “ ps1 . . . snq P
ą

iPN

Si

and every

x P V

we denote by

ρpx; sq

the probability that x will be visited when players choose according to s.

Definition 43. Two strategies si, ŝi are equivalent if for all s´i P S´i and all x P V :

ρpx; psi, s´iqq “ ρpx; pŝi, s´iqq
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We now give an example of a behavior strategy for which no equivalent mixed strategy

exists. Consider the following game:

1

1

L

L

R

R

The “Absent Minded Driver” Example

This example is a one player “game.” A driver drives down the highway and needs to find

the right exit. There are two exists. At each exit the driver can either turn off the motorway

(choice R) or continue to drive on the motorway (choice L).4 The information set indicates

the key feature of this example: The driver is forgetful. When he sees an exit, he does not

remember whether this is the first or the second exit.

In this game there is only one information set, and there are only two choices at that

information set. Therefore, the driver in this game has only two pure strategies: R and L.

The first pure strategy implies that the driver exits at the first exit. The second pure strategy

implies that the driver never takes any exit. There is no pure strategy that implies that the

driver takes the second exit.

Next, consider mixed strategies. A mixed strategy assigns some probability q to the pure

strategy R, and the complementary probability 1´q to the pure strategy L. Note that therefore,

when the driver adopts a mixed strategy, she will never exit at the second exit. With probability

q the driver always exits, and thus exits at exit 1, and with the complementary probability 1´q

the driver never exits.

4For our discussion here it does not matter which payoffs the driver gets if he takes either of the two exits,

or continues at both exits.
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Finally, consider behavior strategies. A behavior strategy assigns a probability p to exiting

(R) whenever the driver encounters an exit. Thus, with probability p she will exit at the first

exit. With probability p1 ´ pqp (probability of continuing at the first exit times probability of

exiting at the second exit) she will exit at the second exit. With the remaining probability of

p1 ´ pq2 she will continue at both exits.

Consider the mixed strategy that corresponds to q “ 0.5. There is no corresponding behavior

strategy. This is because any behavior strategy would have to correspond to a probability p

that is strictly between zero and 1, and therefore, the driver would exit with positive probability

at the second exit. But under the mixed strategy the driver never exits at the second exit.

Now consider the behavior strategy that corresponds to p “ 0.5. There is no corresponding

mixed strategy. This is because no mixed strategy leads the driver to exit at the second exit

with positive probability, but this is what the behavior strategy accomplishes.

In this example, the single player in the game suffers from a particular form of imperfect

memory. She does not know whether she has visited a given information set before. If we

rule out this form of imperfect memory, then the two concepts of randomization that we are

considering here are ordered in the sense that the set of outcome distributions that can be

implemented by one form of randomization is contained in the set of outcome distributions

that can be implemented by the other form of randomization. Specifically, we have:

Proposition 18. Consider a game in extensive form. Let i P N be a player such that for all

j P t1, 2, . . . , kiu: |Aipv
j
i q| ě 2. Then there is for every behavior strategy of player i an equivalent

mixed strategy of player i if and only if on every path that connects the root with a terminal

node there is for every information set V j
i of player i at most one node that belongs to the path.

We omit the proof of this result. The condition on which this proposition is based is referred

to as“no absent-mindedness.” A player is absent-minded if she does not know remember whether

she has visited an information set before, that is, if there is a path from the root of the extensive

game tree to a terminal node that intersects an information set twice.

The converse of the claim in the previous proposition need not hold, i.e. there might be

outcome distributions that can be implemented by a mixed strategy but not by any behavior

strategy. Here is an example.
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1

L R

1 1

A B A B

Forgetting Your own Previous Choice

This is again a single player game. The player first chooses between L and R, and then

between A and B, but between the first and the second choice the player forgets what his first

choice was. The player has four pure strategies. They are represented by the ordered pairs in

tL,Ru ˆ tA,Bu. Now consider the mixed strategy that picks pL,Aq with probability 0.5 and

pR,Bq with probability 0.5. The implied distribution over terminal nodes is that the left most

and the right most terminal nodes are reached with probability 0.5 each. No behavioral strategy

can achieve this. The reason is that a behavioral strategy cannot involve correlations between

the choices at the first and at the second information set. Therefore, if a mixed strategy reaches

the left most and the right most terminal node each with positive probability it must also reach

the two other terminal nodes with positive probability.

To obtain full equivalence between behavioral and mixed strategies we need to assume that

there is no imperfect recall at all. We define this as follows.

Definition 44. Consider a game in extensive form. Let i P N . We say that i has perfect recall

if x, x̂ P V j
i for some j implies the following.

If x1
i , x

2
i , . . . , x

L
i “ x are the decision nodes of player i on the path from the root to x, and

if x̂1
i , x̂

2
i , . . . , x̂

L̂
i “ x̂ are the decision nodes of player i on the path from the root to x̂, then:

• L “ L̂ (no absent-mindedness);
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• for every ℓ P t1, 2, . . . , L´ 1u there is an information set V k
i of player i such that xℓ

i P V k
i

and x̂ℓ
i P V k

i (no forgetting of what i knew before);

• for every ℓ P t1, 2, . . . , L ´ 1u, if pxℓ
i , x̄q is on the path from the root to x, and if pxℓ

i , ¯̄xq is

on the path from the root to x̂, then:

fi,xℓ
i
pxℓ

i , x̄q “ fi,x̂ℓ
i
px̂ℓ

i , ¯̄xq.

(no forgetting of what i did before).

We state the main result of this section without proof:

Proposition 19 (Kuhn’s Theorem). Consider a game in extensive form. If a player i P N has

perfect recall then there is for every mixed strategy of i an equivalent behavior strategy of player

i.

Subgame-Perfect Equilibria

In the main text we introduced the concepts of Nash equilibrium and subgame-perfect

equilibrium of a game in extensive form informally. In this section, we give a formal definition

of subgame-perfect equilibrium.

Definition 45. For a given game in extensive form let x be a vertex that is not the root: x ‰ x0,

and that is also non-terminal. Let i P N Y t0u be such that x P Vi. Denote by V pxq the set

that consists of x and all successors of x. Suppose that for every x1 P V pxq, if x1 P V j
i for some

i and j, then V j
i Ď V pxq. Then the subgame starting at x of the given extensive game is the

extensive game consisting of the following:

• The same set N of players as in the original extensive game.

• The set V pxq of vertices.

• The set E X V pxq ˆ V pxq of edges.

• The root x0 “ x.
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• The player partition Vipxq “ Vi X V pxq for all i P N .

• For every x1 P V0pxq the same probability distribution over Nature’s moves as in the

original game.

• The information sets V j
i pxq “ tV j

i |V j
i Ď Vipxqu for all i P N .

• For every information set V j
i pxq the same set of actions, and the same labeling of actions,

as in the original game.

• The utility function ui that is the restriction of the utility function in the original game

to the terminal nodes that are in V pxq, for every i P N .

Definition 46. Consider an extensive game. Let bi be a behavior strategy of player i. Let x be

a non-terminal vertex. Suppose that there is a subgame starting in x. Then we denote by birxs

the restriction of bi to the information sets of player i in the subgame that starts in x.

Definition 47. A list pb1, b2, . . . , bnq of behavior strategies forms a subgame-perfect equilibrium

of an extensive game the strategies form a Nash equilibrium, and if, for every non-terminal

x P V in which a subgame starts, the restrictions of the strategies to the subgame starting in x,

(b1rxs, b2rxs, . . . , bnrxs), form a Nash equilibrium of the subgame.

We now introduce a version of the algorithm of “one-shot deviation principle” for arbitrary

finite games in extensive form.

Definition 48. Consider an extensive game. Let b “ pb1, b2, . . . , bnq be a list of behavior strate-

gies. Let x be a vertex in which a subgame begins. The truncation of the game at x given b is

the extensive game that one obtains by:

• removing all successors of x, so that x becomes a terminal node;

• associating with x the payoffs that players would have obtained by playing the strategies

pb1rxs, b2rxs, . . . , bnrxsq in the subgame starting at x.
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Definition 49. Consider an extensive game.

• A subgame beginning in x is called a shortest subgames if there are no subgames that begin

in a successor of x.

• A subgame beginning in x is called a longest subgames if there are no subgames that begin

in a predecessor of x.

Definition 50. Consider an extensive game. Let pb1, b2, . . . , bnq be a list of behavior strategies.

The shortest truncation of the game given b is the extensive game that one obtains by successively

truncating the game in each of its longest subgames.

The following result is a “one-shot deviation principle” for arbitrary finite extensive games.

Proposition 20. Behavior strategies pb1, b2, . . . , bnq form a subgame-perfect equilibrium if and

only if they form a Nash equilibrium of the shortest truncation of every subgame.

The one shot deviation principle is the result that justifies the backward induction algorithm:

1. Find the shortest subgames.

2. Determine for each shortest subgame a Nash equilibrium.

3. Truncate the game by removing all shortest subgames.

4. Start again at 1.

The backwards induction algorithm finds all subgame-perfect equilibria. Because the al-

gorithm can always be implemented (by Nash’s existence theorem for mixed strategy Nash

equilibria), we have the following:

Proposition 21. Every finite extensive game has at least one subgame-perfect equilibrium in

pure or behavior strategies.
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Trembling Hand Perfect Equilibrium

We begin with the following example, which is due to Reinhard Selten:

1

2

33

L R

λ ρ

A B A B

0
0
0

3
2
2

0
0
1

4
4
0

1
1
1

Selten’s Example

This game has two Nash equilibria in pure strategies: pR, ρ,Aq and pL, ρ,Bq. This game

has no subgames. Therefore, both of these Nash equilibria are also subgame-perfect. But one

might argue that the second equilibrium relies on a move that violates the “spirit of subgame-

perfection:” If player 2’s decision node were reached, then player 2 should not choose ρ as

the equilibrium prescribes, but he should choose λ. If he chooses ρ he obtains a utility of 1,

but if chooses λ anticipating player 3’s equilibrium move B, he will get a utility of 4. Thus,

player 2’s equilibrium move is not utility maximizing if player 2’s decision node is reached. The

equilibrium is subgame-perfect because no subgame starts in player 2’s decision node. This

is because player 3’s information set is such that player 3 does not know whether a move by

player 2 or a move by player 1 preceded his choice. Thus, the sequence of moves that begins

with player 2’s choice cannot be separated from the rest of the game.

Reinhard Selten presented this example in his paper “Reexamination of the Perfectness

Concept for Equilibrium Points in Extensive Games,” International Journal of Game Theory,

1975. He commented: “There cannot be any mistakes if the players are absolutely rational.

Nevertheless, a satisfactory interpretation of equilibrium points in extensive games seems to

require that the possibility of mistakes is not completely excluded. This can be achieved by a

point of view which looks at complete rationality as a limiting case of incomplete rationality.”
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Trembling-hand perfect equilibrium is one formalization of the idea that Selten expressed

in the above quote. We now introduce its formal definition.

Definition 51. A perturbation for player i is a function δi that assigns to every information set

V j
i of player i a strictly positive measure on AipV

j
i q such that:

ÿ

aiPAipV
j
i q

δipV
j
i qrais ă 1.

To simplify notation we shall write below δipaiq instead of δipV
j
i qrais.

Definition 52. Let Γ be an extensive game. Let δ “ pδ1, δ2, . . . , δnq be a list of perturbations, one

for each player. We denote by Γpδq the δ-perturbed game, i.e. the game in which each player

i at every information set V j
i has to choose each action ai P AipV

j
i q at least with probability

δipaiq.

We denote by Bipδiq the set of behavior strategies of player i in the δ-perturbed game. In

the perturbed game, pb1, b2, . . . , bnq form a Nash equilibrium of the δ-perturbed game Γpδq if

for each player i behavior strategy bimaximizes uipb1, b2 . . . , bnq among all strategies in Bipδiq.

We can now provide the central definition of this section:

Definition 53. A list of behavior strategies b˚ “ pb˚
1 , b

˚
2 , . . . , b

˚
nq is a (trembling hand) perfect

equilibrium if there exists a sequence of lists of perturbations:

`

δk
˘

kPN
“

`

δk1 , δ
k
2 , . . . , δ

k
n

˘

kPN

and a sequence of lists of behavior strategies:

`

bk
˘

kPN
“

`

bk1, b
k
2, . . . , b

k
n

˘

kPN

such that:

• for every player i P I, every information set V j
i of player i, and every action ai P AipV

j
i q:

lim
kÑ8

δki paiq “ 0;
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• for every k P N bk is a Nash equilibrium of Γpδkq;

• lim
kÑ8

bi “ b˚.

Existence of trembling-hand perfect equilibrium in finite games in extensive form is relatively

easy to show.

Proposition 22. Every finite game in extensive form has at least one trembling-hand perfect

equilibrium.

To see this pick any sequence of perturbations. By Nash’s existence theorem, each perturbed

game has at least one Nash equilibrium in behavior strategies. The sequence of Nash equilibria

of the perturbed games has moreover a convergent subsequence because it is contained in a

compact set. The limit of such a subsequence is a trembling-hand perfect equilibrium.

Proposition 23. Every perfect equilibrium is a subgame-perfect equilibrium, but not every subgame-

perfect equilibrium is a perfect equilibrium.

We omit the relatively straightforward proof of the first part of this proposition. To illustrate

the second part of this proposition consider this game:

L R

T 1,1 0,0

B 0,0 0,0

In this game, pB,Rq is a subgame-perfect equilibrium (because it is a Nash equilibrium, and

there are no subgames), but it is not a perfect equilibrium (because T and L are the only best

responses to fully mixed strategies).

We now provide a proof that in Selten’s example pR, ρ,Aq is a perfect equilibrium. Choose

ε P p0, 0.25q. Define for all k P N:

δkpaiq “ εk for all ai P tL, ρ,A,Bu

δkpaiq “
?
εk for all ai P tR, λu
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We will show that there exists a k̄ P N such that for all k P N with k ě k̄ the game Γpδkq has

a Nash equilibrium in which players assign the maximum feasible probability to R, ρ, and A.

This obviously implies that pR, ρ,Aq is a perfect equilibrium. We begin by considering player

1’s choice in the proposed Nash equilibrium. R is preferred to L if:

3εk ď 4εk
?
εk ` p1 ´

?
εkq

This obviously holds for sufficiently large k. Next, we consider player 2’s choice. ρ is preferred

to λ if:

4εk ď 1

Again, this holds for sufficiently large k. Finally, we turn to player 3’s choice. A is preferred to

B if:

2εk ď p1 ´ εkq
?
εk ô

2
?
εk ď 1 ´ εk

This also holds for sufficiently large k. This completes our proof.

We can also also easily see that in Selten’s example pL, ρ,Bq is not a perfect equilibrium.

For player 2’s choice of ρ to be optimal, we would have to have for sufficiently large k:

4p1 ´ εkq ď 1

This does not hold for sufficiently large k.

Sequential Equilibrium

The concept of sequential equilibrium was proposed by David Kreps and Robert Wilson in

their article ”Sequential Equilibria,” Econometrica, 1982, pp. 863-894. One of their purposes

was too simplify Selten’s definition of trembling-hand perfect equilibrium. They also wanted

to introduce a formal language that would make it easier to talk about possible refinements of
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trembling-hand perfect equilibrium based on ideas about which “beliefs” that players may hold

during the game are “plausible” and which are not.

Consider again Selten’s example. The reason why pL, ρ,Bq is not a plausible Nash equi-

librium of this game is that player 2’s choice of ρ is not utility maximizing, provided that

player 2’s information is reached, and provided that player 2 believes that in the future play-

ers will follow the equilibrium strategies. Kreps and Wilson introduced the requirement of

“sequential rationality,” which requires that at every information set players act to maximize

expected utility, conditional on the information set being reached, and believing that in the

future all players will stick to the equilibrium strategies. This requirement generalizes the idea

of “subgame-perfection” to arbitrary extensive games.

While it is straightforward to formalize this requirement for information sets that have

just a single element, it is not immediate what the requirement of “sequential rationality”

would mean at information sets that have more than one element. At such information sets,

a player’s expected utility maximizing strategies are well-defined only if we first specify the

player’s beliefs about which of the different decision nodes in the same information set has been

reached. Therefore, Kreps and Wilson introduced this definition:

Definition 54. A belief system of player i is a function µi that assigns to every information set

V j
i of player i a probability distribution over the elements of V j

i .

A “sequential equilibrium” in Kreps and Wilson’s strategy consists not only of a list of

strategies, one for each player, but also a list of a belief systems, one for each player. This is

because only if the belief systems are specified we can check whether players are sequentially

rational. This motivates the following definition.

Definition 55. An assessment is a pair pb, µq such that

• b “ pb1, b2, . . . , bnq is a list of behavior strategies, one for each player;

• µ “ pµ1, µ2, . . . , µnq is a list of belief systems, one for each player.

The important point is that a “sequential equilibrium” in Kreps and Wilson’s definition

is not just a list of strategies, but an assessment, that is, a list of strategies, and a list of
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belief systems. This is an important shift in perspective in comparison to the concepts of Nash

equilibrium and trembling-hand perfect equilibrium.

We can now define the concept of sequential rationality.

Definition 56. An assessment pb, µq is sequentially rational if for every player i P N and

for every information set V j
i of player i the strategy bi maximizes player i’s expected utility

conditional on reaching V j
i and conditional on player i’s belief µipV

j
i q at information set V j

i .

The requirement of sequential rationality is not enough for an assessment to be a plausible

equilibrium concept. The belief system must to a certain degree be compatible with the behavior

strategies. For example, when information sets are reached with positive probability when the

equilibrium strategies are played, the belief system should reflect that players continue to believe

in the equilibrium strategies, and have updated their beliefs according to Bayes rule. But we

will also want to impose requirements for beliefs that are formed at information sets that are

not reached with positive probability when the equilibrium strategies are played. Motivated by

Selten’s trembling-hand perfect equilibrium concept, Kreps and Wilson introduced the following

requirement for assessments.

Definition 57. An assessment pb, µq is consistent if there are a sequence pbkqkPN “ pbk1, b
k
2, . . . , b

k
nqkPN

of behavior strategies, and a sequence pµkqkPN “ pµk
1, µ

k
2, . . . , µ

k
nqkPN of belief systems, such that:

• for every k P N, every i P N , information set V j
i of player i, and action ai P AipV

j
i q we

have:

bki pV j
i qrais ą 0;

• for every i P N , information set V j
i of player i, and action ai P AipV

k
i q we have:

lim
kÑ8

bki pV j
i qrais “ bipV

j
i qrais;

• for every k P N, i P N , and every information set V j
i of player i, µk

i pV j
i q is the conditional

probability implied by bk;

• for every i P N and every information set V j
i of player i:

lim
kÑ8

µk
i pV j

i q “ µipV
j
i q.
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Intuitively, we can think of the behavior strategies bki in this definition as players’ behavior

strategies in a perturbed version of the original game. These strategies have at every informa-

tion set full support, i.e. all actions receive positive probability. Therefore, at every information

set beliefs conditionally on reaching that information set about how the information set was

reached are well defined. No information set is reached with zero probability. Kreps and Wil-

son’s definition of consistency of an assessment requires that there is a sequence of full support

strategies, and a corresponding sequence of conditional beliefs, such that the full support strate-

gies converge to the strategy component of the assessment, and the conditional beliefs converge

to the belief system component of the assessment.

We are now ready to define “sequential equilibrium.”

Definition 58. An assessment pb, µq is a sequential equilibrium if it is consistent and sequentially

rational.

The following proposition shows formally that sequential equilibrium is a less restrictive

refinement of Nash equilibrium than trembling-hand perfect equilibrium.

Proposition 24. If b is a trembling-hand perfect equilibrium, then there is a belief system µ such

that pb, µq is a sequential equilibrium.

We don’t prove this result formally. But we explain the intuition behind the result. Recall

that Selten’s definition of trembling hand perfect equilibrium requires the full support strategies

to be Nash equilibria of the perturbed game. This requirement is removed in Kreps and

Wilson’s definition of consistency. This requirement implies that all full support strategies

are expected utility maximizing, subject to the minimum probability bounds in the perturbed

games, conditional on every information set, and conditional on the beliefs that are derived for

this information set by Bayesian updating. By the continuity of expected utility, it follows that

strategies are also maximizing conditionally on the limit beliefs, provided that such limit beliefs

exist. The existence of limit beliefs can be ensured by considering an appropriate subsequence of

the Nash equilibria of perturbed games that converge to a trembling-hand perfect equilibrium.

Kreps and Wilson also showed that in almost all games there is no difference between

trembling-hand perfect equilibrium and sequential equilibrium. Specifically, they proved:
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Proposition 25. In almost all games, if pb, µq is a sequential equilibrium, then there exists a

trembling-hand perfect equilibrium b1 that implies the same probability distribution over terminal

nodes as b does.

I have not defined what Kreps and Wilson meant by “almost all games.” I shall not give

the precise definition. But roughly speaking it says that games in which the proposition is not

true are very exceptional, and are “knife edge.”

To see that not every sequential equilibrium corresponds to a trembling hand perfect equi-

librium it suffices to consider static games. In static games, every Nash equilibrium is also a

sequential equilibrium. Therefore, the example that we used in the discussion following Propo-

sition 23 to show that not every subgame-perfect equilibrium is trembling-hand perfect also

demonstrates that not every sequential equilibrium is trembling-hand perfect.

The following result, together with the earlier results, situates sequential equilibrium pre-

cisely between subgame-perfect equilibrium and trembling hand perfect equilibrium:

Proposition 26. If pb, µq is a sequential equilibrium, then b is a subgame-perfect equilibrium.

We return to Selten’s example from the previous subsection. Consider the first Nash equi-

librium, pR, ρ,Aq. We saw earlier that this equilibrium is trembling-hand perfect. Therefore,

we know from Proposition 24 that there is a belief system that forms together with these strate-

gies a sequential equilibrium. Only the beliefs of player 3 matter. This is because the other

two players’ information sets are singletons. To obtain beliefs for player 3 we can consider the

conditional probabilities implied by the full support strategies that we constructed as Nash

equilibrium strategies for perturbed games when proving that pR, ρ,Aq is trembling-hand per-

fect. Focusing on the left decision node in player 3’s information set, the conditional probability

of reaching this node is:
εk

εk ` p1 ´ εkq
?
εk

“
1

1 ` 1´εk?
εk

.

As εk Ñ 0, this converges to 0. Thus, the Nash equilibria of the perturbed game help us to

obtain a suitable limit belief for player 3: player 3 places probability 0 on the node on the left in

his information set and probability 1 on the node on the right in his information set. This belief

obviously renders the choice of A utility maximizing. Thus, sequential rationality is satisfied.
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Moreover, consistency is satisfied by construction, given the way in which we derived player 3’s

beliefs from the Nash equilibria of perturbed versions of the game in Selten’s example.

In Selten’s example it is also clear that the strategy combination pL, ρ,Bq is not part of a

sequential equilibrium. This is because regardless of the belief system ρ is not a sequentially

rational choice for player 2. We conclude that in this example trembling-hand perfect equilibria

and sequential equilibria are the same.

I conclude this section by discussing two examples in which sequential equilibria have some

surprising properties. Both examples are taken from an article by David Kreps and Gary

Ramey (“Structural Consistency, Consistency, and Sequential Rationality,”Econometrica 1987,

1331-1348). Consider first Example 1 from Kreps and Ramey (1987). The set of Nash equilibria

of this game is as follows: player 1 plays R1. Player 2 chooses R2. Finally, player 3 chooses L

and R with positive probability each, where each is chosen with probability of at least 1{3. Are

there belief systems that make these choices a sequential equilibrium? Consistency of beliefs

will imply that player 2’s belief at her information set places probability 1 on the right hand side

node in her information set. To make player 3’s randomization sequentially rational, a belief

system must put equal probabilities on the center and on the right decision node in player 3’s

information set. Moreover, consistency implies that the center decision node is infinitely more

likely than the left decision node in player 3’s information set. Thus, there is only one candidate

for a consistent belief system that makes these choices sequentially rational: player 3’s beliefs

must put probability 1/2 on the center and on the right decision node in his information set.

What is remarkable about the unique sequential equilibrium of Example 1 in Kreps and

Ramey (1987) is that the beliefs of player 3 imply that player 3 believes that player 1 and 2’s

choices are correlated. The beliefs are thus not based on any hypothesis about player 1 and

2’s behavior if we require that such a hypothesis includes the assumption that players 1 and 2

behave independently.
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Example 1 from Kreps and Ramey (1987)
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Consider next Example 2 from Kreps and Ramey (1987). In this example, there are three

players: player 1a, player 1b, and player 2. Players 1a and 1b have identical utilities, and their

utilities are the top of the two numbers indicated at each terminal node. The bottom number

is player 2’s utility. The game begins in one of the two decision nodes that are marked by an

open circle. Each of these nodes has probability 0.5 of being the initial decision node. These

two nodes belong to information sets of player 1a and player 1b respectively. Thus, each of

the two players 1 is with probability 0.5 the first player to move. The first player to move can

either “quit” or “pass.” Then player 2 can choose either L or R, or player 2 can choose to pass.

If player 2 chose to pass, then the other player 1 can either quit or pass. The information sets

indicate that none of the three players knows whether player 1a or player 1b is the first to move.

In any Nash equilibrium of this game players 1a and 1b choose to quit. Player 2 must

choose L or R with probability no more than 1/3. This implies that player 2’s belief system

must put strictly positive probability on both decision nodes in player 2’s information set.

But this means that player 2 believes that both player 1a and player 1b deviate from their

equilibrium strategies. Nonetheless, when calculating expected payoff from the various choices

at his information set, player 2 bases this calculation on the assumption that the other players

will make equilibrium choices in the future. This seems contradictory.
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Example 2 from Kreps and Ramey (1987)

Perfect Bayesian Equilibrium

It may be difficult to verify that the belief system in an assessment satisfies the consistency

condition of sequential equilibrium. This is because the construction of appropriate perturbed

strategies, and the verification that the conditional probabilities implied by the perturbed strate-
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gies converge to he given belief system, may be a demanding task. Therefore, researchers have

sought to replace the consistency condition by conditions that can be verified without having

to construct perturbed strategies. The equilibrium notion of “perfect Bayesian equilibrium” is

based on this idea. A variety of definitions of this concept have been proposed, and when the

term is used in the literature, one can not always be sure about the precise meaning, although

there is consensus about the broad outlines of the definition of perfect Bayesian equilibrium.

Here, I shall review the definition of perfect Bayesian equilibrium that was suggested by Fu-

denberg and Tirole in “Perfect Bayesian Equilibrium and Sequential Equilibrium,” Journal of

Economic Theory 53 (1991), 236-260, in Section 2 of that article.

Fudenberg and Tirole do not define perfect Bayesian equilibrium for all extensive games,

but only for a subclass of such games, namely multi-stage games with observed actions and with

incomplete information. This is the subclass of games to which the notion of perfect Bayesian

equilibrium is most commonly applied. We begin by defining this subclass of extensive games.

The set of players is: N “ t1, 2, . . . , nu. Each player i has a finite set of possible types, which

we denote by Θi. There is a common prior ρ on Θ “
Ś

iPN Θi. We assume that types are

independent, so that ρ is the product of its marginals ρi on Θi. Types are drawn before players

make any choices, and players observe their own type but not other players’ types. After each

player has chosen their own type the game begins.

The game has stages t “ 1, 2, . . . , T . In each period players simultaneously choose actions.

At the end of the period each player observes the outcome of that period. The set of actions

available to a player is allowed to depend on the history of the game. We introduce the artificial

initial history h0 P H0 “ tou. The set of histories up to period t ´ 1 is some set H t´1. The

set of actions available to player i in period t is a finite set At
iph

t´1q where ht´1 P H t´1,

and the set of histories up to period t is: H t “ tpht´1, pat1, a
t
2, . . . , a

t
nqq |ht´1 P H t´1 and ati P

At
iph

t´1q for all i P Nu. Player i’s utility is a function ui : Θ ˆ HT Ñ R.

A behavior strategy bi for player i is a sequence of functions bti for t “ 1, 2, . . . , T such that

for each t the function bti maps every pair pθi, h
t´1q P Θi ˆ H t´1 into a probability distribution

btipθi, h
t´1q over Aiph

t´1q. A belief system µi for player i is a sequence of functions µt
i for

t “ 1, 2, . . . , T such that for each t the function µt
i maps every pθi, h

t´1q P Θi ˆ H t´1 into a

probability distribution µt
ipθi, h

t´1q over Θ´i. Define b to be a vector of behavior strategies, one

for each player, and define µ to be a list of belief systems, one for each player. An assessment
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is a pair pb, µq. We will define a perfect Bayesian equilibrium to be an assessment that satisfies

a certain set of conditions. We introduce these conditions next.

The first condition for beliefs that Fudenberg and Tirole propose is that for every observed

history there is a joint distribution of types, conditional on this history, such that each player’s

beliefs about the other players’ types is derived from this joint distribution by conditioning on

the player’s own type.

Conditional Common Prior: For every t “ 1, 2, ..., T and for every ht´1 P H t´1 there is a

probability distribution ρtphtq on Θ such that for every player i the belief µt
ipθi, h

t´1q assigns

to every θ´i P Θ´i the conditional probability ρtpht´1qrθi, θ´is{
ř

θ̃´iPΘ´i
ρtpht´1qrθi, θ̃´is.

This assumption says that the commonly observed history of action leads all players to

update the prior distribution of types ρ in the same way, and that each individual player’s

beliefs are then derived by conditioning the shared new distribution of types on the knowledge

of their own type.

Sequential rationality now requires that for every initial history the strategies for the re-

mainder of the game form a Bayesian Nash equilibrium given the conditional common prior at

that history. Formally, we define sequential rationality as follows:

Sequential Rationality: For every t “ 1, 2, ..., T , every ht´1 P H t´1, and every i P N :

uipb|θi, h
t´1, ρtpht´1

qq ě uipb
1
i, b´i|θi, h

t´1, ρtpht´1
qq for all behavior strategies b1

i of player i.

Here, notation such as uipb|θi, h
t´1, ρtpht´1qq stands for the expected utility of player i if

players choose the behavior strategy profile b, if player i’s type is θi, conditional on history ht´1

being reached, and conditional on the probability distribution of types being ρtpht´1q.

We are now going to add three further conditions for beliefs. The first condition is:

Conditional Independence: For every t “ 1, 2, . . . , T and every ht´1 P H t´1 there are prob-

ability measures ρtiph
t´1q on Θi such that for every θ P Θ:

ρtpht´1
qrθs “

ź

iPN

ρtiph
t´1

qrθis.
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The second condition is that beliefs should be updated using Bayes’ rule whenever possible.

It is important that this condition applies not only on the equilibrium path, but also off the

equilibrium path. That is, if a history is realized that has zero probability according to the

equilibrium strategies, then players form new beliefs, but they update these beliefs using Bayes

rule if, from now on, they observe actions that receive positive probability under the equilibrium

strategies.

Bayesian Updating Whenever Possible: For every t “ 1, 2, . . . , T ´1, and every ht´1 P H t´1,

consider an action profile at such that pht´1, atq P H t, and consider a player i P N such that

there exists a θ̃i P Θi with ρtpht´1qrθ̃is ¨ btipθ̃i, h
t´1qratis ą 0. Then for every θi P Θi:

ρt`1
i pht´1, atqrθis “

ρtiph
t´1qrθis ¨ btipθi, h

t´1qratis
ř

θ̃iPΘi

´

ρt´1
i pht´1qrθ̃is ¨ btipθ̃i, h

t´1qratis
¯ .

The final condition is that beliefs about player i should only depend on player i’s actions,

and not on other player’s actions. This is based on the idea that only player i’s actions can

signal anything that is relevant to player i’s type. Other players cannot signal any information

about player i’s type because they do not know the type.

No Signaling What You Don’t Know: For every t “ 1, 2, . . . , T´1, and all pht´1, atq, pht´1, ãtq P

H t, if ati “ ãti, then:

ρiph
t´1, atqrθis “ ρiph

t´1, ãtqrθis for all θi P Θi.

We can now define:

Definition 59. An assessment pb, µq is a perfect Bayesian equilibrium if it satisfies sequential

rationality, and satisfies the conditions (i) Conditional Common Prior, (ii) Conditional Inde-

pendence, (iii) Bayesian Updating Whenever Possible, and (iv) No Signaling What You Don’t

know.

Sometimes, the concept of “weak perfect Bayesian equilibrium” is used. This concept only

requires sequential rationality, and Bayesian updating on the equilibrium path. It omits the

other conditions in the definition of a perfect Bayesian equilibrium.

Fudenberg and Tirole (1991) proved the following result:
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Proposition 27. Suppose that each player has only two types: |Θi “ 2| for all i P N . Then the

set of perfect Bayesian equilibria and the set of sequential equilibria are the same. The same

conclusion is true if there are only two stages: T “ 2.

They also demonstrated by an example that, if the assumptions of this proposition are not

satisfied, not every perfect Bayesian equilibrium needs to be sequential. Here is their example:

Suppose some player i has three possible types: Θi “ tθ1i , θ
2
i , θ

3
i u and that, after some history,

players’ beliefs about this player’s type put probability 1 on type θ1i . Suppose after this history,

player i with type θ2i is supposed to choose ai whereas player i with type θ3i is supposed to choose

âi. The above definition of perfect Bayesian equilibrium does not impose any constraints on

how players’ beliefs are updated when player i is observed to choose ai or âi.

Consider the following beliefs: the other players believe with probability 1 that player i

is of type θ3i if she chooses ai, and they believe with probability 1 that player i is of type θ2i

if she chooses âi. Although these beliefs are not ruled out by perfect Bayesian equilibrium,

they are not consistent. To see this let k be the index of perturbations that justify consistent

beliefs. Let µ1,k
i , µ2,k

i , and µ3,k
i be the conditional probabilities with which player i is of types

θ1i , θ
2
i , θ

3
i . Let ε1,k and ε̂1,k be the probabilities with which player i choose ai and âi if she is

of type θ1. Define ε2,k, ε3,k, ε̂2,k, and ε̂3,k analogously. Note that limkÑ8 ε2,k “ limkÑ8 ε̂3,k “ 1

and limkÑ8 ε̂2,k “ limkÑ8 ε3,k “ 0. Now suppose that action âi is observed. The conditional

probability of player i being of type θ3i is:

µ3,k
i ε3,k

µ1,k
i ε1,k ` µ2,k

i ε2,k ` µ3,k
i ε3,k

.

This can be re-written as:
1

µ1,k
i ε1,k

µ3,k
i ε3,k

`
µ2,k
i ε2,k

µ3,k
i ε3,k

` 1

For the given beliefs to be consistent, this fraction would have to converge to 1 as k tends to

infinity. This requires that the first two terms in the denominator converge to zero as k tends

to infinity. Consider the second term. Note that the ratio ε2,k{ε3,k tends to infinity as k tends

to infinity. Therefore, the second term converging to zero requires that:

lim
kÑ8

µ2,k
i

µ3,k
i

“ 0.
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An analogous argument shows that the belief that player i is of type θ2i if she is observed to

choose âi requires:

lim
kÑ8

µ3,k
i

µ2,k
i

“ 0.

But the last two equalities contradict each other.

Fudenberg and Tirole then modified their definition of perfect Bayesian equilibrium with

the objective of obtaining full equivalence of perfect Bayesian equilibrium and sequential equi-

librium. It has, however, turned out that this project is more complicated than it appeared

to be in Fudenberg and Tirole’s original work. We therefore do not consider here alternative

notions of perfect Bayesian equilibrium.
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