Bertrand-Competition without Demand-Rationing

1. Introduction

It is well known that Bertrand's model of price competition has
the following unsatisfactory feature: If there are at least two
firms and if these firms have identical cost functions with con-
stant marginal costs there is a unique equilibrium and in this
equilibrium the price equals marginal costs and the firms have
zero profits, Thus in the case of constant marginal costs
Bertrand's price competition leads to the competitive outcome
even if the number of firms is small.

This paper analyzes the case that firms have identical cost
functions with increasing marginal costs. In this case the
crucial question is whether the firms have the possibility to
ration demand or not, i.e. whether for a given price-system
firms are able to restrict their sales to an upper limit which
is smaller than their demand or whether they have to satisfy
their entire demand. This question is important because one can
easily think of situations in which a firm might wish to under-
cut its competitors without satisfying the entire demand at the
lower price in order to avoid too high increases in marginal
costs.

Empirically it seems to be plausible that firms have some possi-
bility to ration demand. But gametheoretic models which include
this possibility are somewhat problematic since equilibria in
pure strategies frequently do not exist. This paper considers
the empirically less plausible case in which firms have no
possibility to ration demand. This case has the advantage that
pure-strategy-equilibria exist under rather general conditions.
It is shown that in this case some "pathologies" emerge which are
different from the "pathologies" of the Bertrand-model in the
case of constant marginal costs: There is a continuum of pure-
strategy-equilibria of the Bertrand-game., The competitive price
is one of the possible equilibrium prices, but there are also



equilibrium prices which are higher or smaller than the com-
petitive price; Furthermore the set of Bertrand-prices does
not shrink to the competitive price as the number of firms
tends to infinity.

These results are presented in the following sections. All
proofs are straightforward and therefore omitted.

2. The Model

I consider a market for a homogeneous good. Market demand is
described by a demand function

D: R+-———+ R+

p — D(p)
which satisfies the following assumptions:

There is a ﬁ > 0 such that:

(A.1) D(p) > O if 0&p <D
(A.2) D is differentiable on 10; p [
(A.3) D'(p)¢ O if 0<p ¢ D
(A.4) D is continuous at D

(A.5) D(p)=0 if p32 D

There are n (® 2 ) identical firms. The firms have no technological
capacity constraints., Their production costs are described by a
cost function

C: R+«———+ R+

X — C(x)
Assumptions for C are:

(A.6) C is continuously differentiable on R,
(A.7) c(0)=0

(A.8) C'(x)> O if x5 0

(A.9) C is strictly convex on R,



=y p) (=

These assumptions imply that the average costs C(x)/x are in-
creasing. Finally I assume that

(A.10) C'(0) < D .
This excludes an obviously uninteresting case.

Firms play the following game: Each firm i chooses a price

p; € R, . Firms seek to maximize their profits. Sales are de-
termined as follows: Let p be the lowest price and let m be
the number of firms charging the lowest price. Then the firms
with the lowest price sell D(p)/m, all the other firms don't
sell anything.

The Nash-equilibria of this game will be called "Bertrand-
equilibria™, the corresponding minimum-prices will be called
"Bertrand-prices", It will be interesting to compare the out-
comes of the Bertrand-game with the competitive outcome. Obviously
there is a unique competitive price. In the following this price
is denoted by Po+

2. Results

For the analysis of the Bertrand-equilibria it is useful to ¢on-
gsider the following class of functions:

T

2 R+-———->R

p —— T (p):= p- ) C'(M;HEZ)

m

m

where me N , TTm(p) is the profit of a firm choosing the price p
if p is the lowest price and if there are m-1 other firms which
also choose p. Obviously for a given number n of firms the set

of Bertrand-equilibria depends only on the functions Trm with

1« m £n, The following lemma contains a list of some properties
of these functions:



Lemma: For every m ¢ IN:

(1) T (p)=0 if pz D

(11) There is a B ¢ 1C'(0) ; B[ such that
Wm(p)<o if 0¢p <P
m (p)=0 if p=1Dp,
Trm(p) 70 if 1-5m< 13 f)

(111) By ¥ Ppuq

For every meIN with m 2z 2

(iv) There is a B ¢1%, ; p [ such that
T (0> W(p) if o
T (p)= T, (p) if p=75
T () <T (p) if By < p<¢?d

i
o]
~
B’d

(v) Dy > Ppeq

(vi) 'W1 is increasing on [0; 5. 1
From this lemma one can easily derive the following characteri-
zation of Bertrand-equilibria:

Proposition 1: A price-vector (p1,p2,...,pn) is a Bertrand-
equilibrium if and only if

Py=Dp=.es =p ¢ [5, 55,]
holds.

The next proposition concerns the relation between the possible
outcoms of the Bertrand-game and the competitive outcome:

Proposition 2: The competitive price Po is an interior point of
the interval [ P, 3 Py

So the Bertrand-game may lead to the competitive price Pgs but
it may also lead to prices which are higher or smaller than Do

-5 -
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I now turn to the question how the set of Bertrand-prices and

the competitive price Pe change if the number n of firms increases.
I assume that the functions D and C are given and fixed, From

the parts (iii) and (v) of the lemma we know already that the
boundary points of the interval of Bertrand-prices decrease if

n increases, The following proposition describes the behaviour

of these points as n tends to infinity:

Proposition 3: As n tends to infinity 5n converges to C'(0) and

b, converges to Dy

This proposition shows that the set of Bertrand-prices converges

to the closed interval whose lower boundary are the marginal

costs at zero and whose upper boundary is the "break-even-price"

of a monopolist, i.e. the lowest price which a monopolist can

choose without making losses.

For the competitive price it is obvious that it decreases as n
increases, The following proposition concerns the convergence of i

Proposition 4: As n tends to infinity the competitive price P,

converges to C'(0).

From propositions 3 and 4 it is obvious that the set of Bertrand-
prices does not shrink to the competitive price as the number of
firms becomes large,

4, Why p, is a Bertrand-Price for any given Number of Firms

In this section a simple graphic figure is used to illustrate

the nature of the Bertrand-equilibria. The following figure shows
the market-demand-curve (D), the split demand-curve (D/n) and

the average-cost-curve (AC):

(Insert figure 1)

From the lemma and proposition 1 follows that 51 is a Bertrand-
price for any given number of firms. This is iluustrated in the
figure.



Assume that all firms choose 51. Then each firm has a profit
which is equal to the rectangle A. Does it pay for a firm to
deviate ? If it charges a price which is higher than 51 then

its profit will be zero because it doesn't sell anything., If

it undercuts 51 then it will make losses because its sales will
be so high that the average costs exceed the price, In the figure
this is shown for the price p. A firm which undercuts 51 and
chooses the price p will make losses which are equal to the
rectangle B. So no firm has an incentive to deviate and p is a
Bertrand-price.

The figure shows clearly that this argument is only possible
because we have assumed that firms are not able to ration demand.
Similarly all the results contained in this paper depend crucially
on this assumption.
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Proofs

Proof of the lemma:

(i)

Part (i) is trivial,

(ii)

If p lies in the interval [0 : D[ we can write for Tr%(p):

T, (»)=F (p)- 2

where o Q%PI )
F(p)=p - )

m

Since p ¢[0; ﬁ{: implies D(p) > 0 it is sufficient for the proof
of part (ii) of the lemma to consider the function F . Four
properties of Fm are relevant:

(1) F, is continuous.
This follows immediately from the continuity of D and C.
(2) B (c'(0)) < 0

Proof:

i

F (c'(0)) < 0O {

7
5 ( D(c'(0)) )

(s

0'(0) - — T 50 =>

m
DLCY(O v ¢ DLEY
O'(O) .J_%_l.(g,(_ﬁfill)

The last inequality is an implication of the convexity of C
and the assumption that C(0) =0 holds.



(3) lim F (p) >0

P‘*P
Proof:
lim F_(p)
P-»Dp
Lin o ( Xp) >)
—] lm p-
e D(p]
=p - 1lim 9&51
x=>0 X

From L'Hospital's rule follows: 1lim C(x)/x = C'(0). There-
fore the last term equals: x=0

p - C'(0)
This is by assumption positive.

From (1), (2) and (3) follows that there is a P elor(o); o[
with F (p )=0. This implies of course il (p )-O For the proof
of the remaining claims of part (ii) of the lemma it is now
sufficient to show that

(4) F_1is increasing von [o;D[.

This is rather evident from the definition of Fm if one re-
members that the demand decreases as p increases and that

our assumptions for the cost function C imply that the
average costs increase,

(iii)

From (ii) follows that p > D is equivalent to:

m+1

ﬂ-m+1(5m)> O

. D) D(3, )
ot - - C(gmr) 70



D(p,. ) D(p, )
- m m+1 m
Pp* m T Tm ¢ ( M1 ) >0

The convexity of C implies together with the assumption C(0) =

that
m+1 c( ;Em)) o ( m+1 Dif?)) = ¢ D(Em))

holds., Therefore it is sufficient to show that

D(p,,) D(p,,)
By, im - ¢ fn)m )20
T (5, 20

holds. But according to the definition of im fﬁ_m(ﬁm) is zero.

(iv)
Consider the difference TT1(p) -.n-m(p). If p lies in the interval

[O; 5[_ we can write for this difference:
T (o) - T _(p) = a(p)- 2r

where
¢ (p) = m Fy(p) - F (D)

(I adopt the definition of the functions F, and F_ from the proof

of part (ii).) Since pe [0 ,p [ implies D(p) > O 1t is sufficient
for the proof of part (iv) of the lemma to consider the function G _.

Four properties of Gm are relevant:

(1) G, is continuous.

This follows immediately from the continuity of D and C.

(2) ¢ (py) € O

Proof:



Gm(P1) <0 <='>
m F1(§1) - Fm(131) <0

Since F1(§1) is zero this is equivalent to
Fm(P1) >0

This follows immediately from part (iii) of the lemma.

(3) lim Gm(p) >0

P=D
Proof:
lim G (p)
bP=-D
= lim (m F,(p) - F _(p))
p"ﬁ 1 m

]

m-+ lim F,(p) - 1lim F _(p)
p+p | p=5 "

In the proof of part (ii) it was shown that

lim F,(p) = lim ¥ (p) = p - C'(0)
PP p=P

holds., Therefore we have

‘1lim G (p)
PP

[
= (m=-1) (p - ¢'(0))
This is by assumption positive.
From (1), (2) and (3) follows that there is a B ¢ 13 spl
with G (5,) = 0. This implies W (5,) = W, (5 ). Por the proof

of the remaining claims of part (iv) of the lemma it is now
sufficient to show that



ﬁ
(4) G, is increasing on [0; D C.
Proof:

Since Gm is differentiable it is sufficient to show that for
every p & ]O; 5[ we have:

G!(p) 7 0 =p

m Fi(p) -~ Fp(p) 7 O =7

m (1 - 2(@) ¢'(D(p)) D'(p) - c(D(p)) D'(p) )
(D(p))*

De) ¢ (pdy D'p) _ o(RAa)) D' (p)
(Xpl)y2

= (1 = ) 70 =)

m (D(p))? - m D(p) C'(D(p)) D'(p) - m C(D(p)) D'(p)

> (0(2))% - D(p) o' (R pr(p) - m (AR pr(p)

This follows from:

m D(p) C'(D(p)) D'(p) + m C(D(p)) D'(p)

¢n(p) o (2R pr(p) + m oRL) pr(p) s

m D(p) C'(D(p)) + m C(D(p))
> 0(p) (2R 4 m o(Red)
and this is implied by

or((p)) 7o AR A o(n(p)) 7 oRr)

This is true because both C and C' are increasing.



(v)

From (iv) follows that im'> D is equivalent to

m+1
T (5, > ,4(5,) =>
5 0(3,) - 00(5,0) » 5 ) L o XPa)y oy
_ o(py)) - 0(%‘1—))
Py, 7 =
m b5,y -

By definition 5m satisfies:

Ty =T LGy =2
- _ - D(py) D(p,)
B D(5,) - COD(E,)) = B, — D - o(—BL)  d=>
_ D(p,,)
o(D(5,)) - O(—:2l)
5, - .
) D(3,)
D(F,) - —n

Therefore it is sufficient to prove:

_ D(p,,) _ p(3,,)
o(D(5,)) - C(G)  o(D(F,)) - o(—aml
<

_ D(p,,) _ D(B,,)
D(Fy) - e D(B,) - —p

This is obviously proved if it can be shown that

c(x) = c(y)
X -y

where y < x

is dmcreasing in y. The first derivative of this term with respect
to y is:



(x - y) (=¢'(y)) = (C(x) - c(y)) (=1)
(x - y)°

This is positive if and only if:

o1 (y) ¢ S =Ll

As one can easily verify this is true because C is convex.

(vi)

Since TT& is differantiable it is sufficient to show that
Ti(p) >0

holds for every p € ]0 ;ﬁmf: . This is equivalent to
p D'(p) + D(p) - C'(D(p)) D'(p) > O

Since D(p) is positive and D'(p) is negative this follows from:

p < C'(D(p))

In the remaining parts of this proof it is shown that this
inequality is true for every pe¢ ]0; 5m[—' From part (iv) follows
that for every p in this interval the following inequality holds:

T >T () =>
p 2Apd _ o2y 3 p(p) - 0((p)) (=

. S0) - o))
’ D(p) - 2pJ

m

It is easy to show that the convexity of C implies that the ratio
on the right hand side of this inequality is smaller than C'(D(p)).
Therefore

p £ C'(D(p))

follows, - 8 -



Proof of proposition 1:

The proof consists of two parts:
(1)

In the first part of the proof it is shown that for every price-
vector (py,Pps+s.,p,) which is a Bertrand-equilibrium

Py =DPp=.ee =D, holds, This is proved indirectly. Assume that

in a Bertrand-equilibrium prices are not identical. Let p be

the lowest price and let m be the number of firms which choose p.
I now distinguish between three cases:

(1) p< P and ﬂbm(p) <0

Then consider a firm which chooses the price p. This firm

makes losses. Therefore it would be profitable for this firm

to deviate from (p1,p2,...,pn) and to choose a price which is
higher than p. Thus it could avoid the losses. So (PysPpse++sP,)
is not a Bertrand-equilibrium.

(2) p <p and T (p)z 0

Then consider a firm which chooses a price which is higher
than p. This firm doesn't sell anything and therefore its
profit is zero. For this firm it would be profitable to de-
viate from (p,,Pps«..,P,) and to choose the price p too be-
cause then its profit would be'n-m+1(p) and the parts (ii)
and (iii) of the lemma show that 7Tm(p) z O implies that

ﬂ-m+1(p) is positive. Therefore the vector (py,Ppse«+sP,)
is not a Bertrand-equilibrium.

Pal
(3) p 2D

Then the profit of every firm is zero. If a firm deviates from
(p1,p2,...,pn) and chooses a price p' which is smaller than p
its profit will be N 4(p'). Part (ii) of the lemma shows that
there is a price p' which is smaller than p and for which
TT1(p') is positive. Therefore each firm has an incentive to

deviate from (p1,p2,...,pn). So this pricevector is not a
Bertrand-equilibrium.

- 9 -
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In the second part of this proof it is shown that a pricevector
(p1,p2,...,pn) with p;=p,=...=p =D is a Bertrand-equilibrium
if and only if p is an element of the interval [:ﬁn; in] . The
definition of Bertrand-equilibria implies immediately that
(p1,p2,...,pn) is a Bertrand-equilibrium if and only if the

following two conditions are satisfied:

(«) T _(p)

v

0

v

@ %) TT_(p) sup T (p")

p'é€ [0;pl

I show first that these two conditions can't be satisfied if the
n in] . For all p
with p < 5n the first condition is violated. This shows part (ii)

price p is not contained in the interval L[ P

of the lemma. For all p with fn < p < 5n we have according to
part (iv) of the lemma: ﬂ-1(p) >'U£(p). For continuity reasons
this implies that there is a p' which is very close to p but
smaller than p for which TT1(p') 7'Trn(p') holds. Therefore p
doesn't satisfy ¥). For p 2 D we have:“n"n(p)==0. But part (ii)
of the lemma implies that there is a p' < p with Il ,(p') » 0. So
again M) is violated. So it is proved that for every price
which is not contained in the interval [,ﬁn; inj either con-
dition (%) or condition &) is violated.

I show next that every price p with pe [ﬁn ;ﬁn] satisfies Dboth
conditions. For .the first condition this is an immediate consequence’
of the lemma. So consider condition ¥#). In part (vi) of the
lemma it was stated that TT1 is increasing on LO; ﬁn] . There-
fore p £ in implies:

sup W (p*) =T ,(p)
o' efO;pl

So @¢# is equivalent to:

T ) > T, ()

Part (iv) of the lemma shows that this is satisfied for every

- 10 -



Proof of proposition 2:

The lemma shows that a price p is an interior point of the
interval [f)n ; 511] if and only it M n(p) > 0 and TTn(p) 7TT1(p)
holds. So it has to be proved that the competitive price P,
satisfies these two conditions.

\|n(pc) 7 O can be proved as follows: First it is easy to see that
Pe satisfies the following condition:

D(p,)
n

p, = C'( )

Since the strict convexity of C and the assumption C(0) = 0
imply that for positive quantities average costs are smaller
than marginal costs and since D(pc) igs positive we can conclude:

C(D(ic,))
o T o) =
ALY
B(p,)  D(p,)
P, —i - U—) >0 <)
M (p,) 7 0

The second condition: lln(pc) v TT}(pC) can be proved as follows:
By definition P satisfies:

T (p,) zp, x - C(x)

for every nonnegative x with x # D(pc)/n. Actually one can easily
show that as a consequence of the strict convexity of C the
inequality is strict if x is positive and x # D(pc)/n holds.
Since D(pc) is positive substituting D(pc) for x yields:

T, (p,) » by D(p,) = o(D(py)) = T, (p,)

This completes the proof.



Proof of proposition 3:

The two statements of the proposition are proved seperately:

(1) lin F, = 0'(0)

The parts (ii) and (iii) of the lemma show that the sequence (5ny
is decreasing and bounded below by C'(0). This implies that it
is convergent and that

lim ﬁn = C'(0)

n-—oo

holds. Therfore it is sufficient to show that

lim ﬁn £ C'(0)
n->

holds. Now ﬁn is defined by the following equation:

T, (5,) =0 {=>
D(p,) o(p,,)
L nn - (—=) =0 =
) C(D(in))
= D(3,)
n

Since the average costs increase this implies:
o))

D(0)

n

p, <

Taking limits on both sides yields:

C(P%?l)
lim P & lim ——— =  1inm 9%?2

n»ee T nsee Do) X -0
n

- 12 -



According to L'Hospital's rule this is equivalent to:

lim B, € ¢'(0)
n—»eo

This had to be shown.

(ii) 1im P, = D
n>ee B 1

The parts (iii) and (iv) of the lemma show that the sequence (fn)
is decreasing and bounded below by 51.3This implies that it is
convergent and that

lim P, = P
nooo B 1

holds. Therefore it is sufficient to show that

lim P, £ D
Nyoe B 1

holds. Por the proof of this inequality consider any p with
Py <D< P. If n is sufficiently high 7T1(p) > ,(p) holds
as the following inequalities show:

T, 7lTn(p) (=72
p D(p) - o(p(s)) » p AR - o(2Ar)) ¢=

p D(p) - C(D(p)) > p 9%?1 &
p D(p)
p D(p) - C¢(D(p))

noy

But the lemma and proposition 1 show that TT}(p):> I n(p)
implfes:

B, 4 D

So this inequality holds for every p with 51 < p ¢ ﬁ if n exceeds

- 13 -



a certain value (which depends on p). This implies:

lim D, ¢ D
nooe D 1

which had to be shown.

Proof of proposition 4:

In this proof I denote by Pe . n the price which is the competitive
14
price if the number of firms is n. I have to prove that

lim p = O'(O)
n-> 0o c,n

holds. The previous results show that the sequence (pc n) is

’
decreasing and bounded below by C'(0). This implies that it is
convergent and that

lim p 2C'(0)

n—»oee sl

holds, Therfore it is sufficient to show that

lim p ¢ C'(0)

n- e Gl

holds. It is rather obvious that for every n e IN

p'(0)
Be i = O 1=
holds because for prices which are higher than C'(D(0)/n) the
total supply exceeds D(0O) which is the highest possible demand.
Taking limits on both sides of the inequality yields:
¢ 1im o9y o oo 1im 2800y L aro)
n n>oe 1

n - oo

lim p

n - e cy,n

This completes the proof.



