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ABSTRACT

In this paper, we propose a method for robust kernel density esti-
mation. We interpret a KDE with Gaussian kernel as the inner prod-
uct between a mapped test point and the centroid of mapped training
points in kernel feature space. Our robust KDE replaces the centroid
with a robust estimate based on M-estimation [1]. The iteratively
re-weighted least squares (IRWLS) algorithm for M-estimation de-
pends only on inner products, and can therefore be implemented us-
ing the kernel trick. We prove the IRWLS method monotonically
decreases its objective value at every iteration for a broad class of
robust loss functions. Our proposed method is applied to synthetic
data and network traffic volumes, and the results compare favorably
to the standard KDE.

Index Terms— kernel density estimation, M-estimator, outlier,
kernel feature space, kernel trick

1. INTRODUCTION

Kernel density estimators (KDEs) are perhaps the most common
nonparametric density estimators for multivariate data. They are es-
sential ingredients in the toolbox of researchers in statistical data
analysis, data mining, and machine learning [2, 3], and form the
backbone of numerous methods for classification, clustering, and
level set estimation. In addition, they are well-known to be consis-
tent density estimators under suitable conditions on the bandwidth
tending to zero [2, 4]. In this paper we propose a robust kernel den-
sity estimator (RKDE) that is resistant to outlying data points.

The need for a robust KDE arises when analyzing either con-
taminated or uncontaminated data. Contaminated data refers to data
consisting of realizations from both a nominal or “clean” distribu-
tion in addition to outlying or anomalous measurements. In an in-
creasing number of applications, data arise from high-dimensional or
high-throughput systems where the nominal distribution itself may
be quite complex and not amenable to parametric modeling. Robust
nonparametric estimation of the nominal distribution is therefore rel-
evant for problems such as anomaly detection, where an anomaly
detector may be defined as a level set of the nominal distribution,
and outlier ranking, where outliers are ordered with respect to the
nominal density contour on which they lie.

Analysis of uncontaminated data also benefits from a robust
KDE. For example, in one common approach to clustering, contours
are defined to be the connected components of a level set of an un-
derlying density. As the level is varied, a hierarchical clustering or
cluster tree is swept out [5]. Since KDEs are averages of kernels cen-
tered at the data points, for sufficiently low levels of a KDE, outliers
will eventually form isolated clusters which is contrary to our intu-
ition. Alternatively, clusters may be defined as the basins of attrac-
tion (with respect to a hill-climbing algorithm) of modes of a density,
which will again give rise to one-point clusters near outliers. We may

summarize this phenomenon by saying that the standard KDE tends
to overfit the data in the vicinity of isolated points.

Our work focuses on KDEs based on the Gaussian kernel with
isotropic covariance. This kernel is a kernel in both popular uses
of the word: it is nonnegative and integrates to one and is therefore
appropriate for KDEs, but it is also an inner product kernel, mean-
ing it may be viewed as evaluating an inner product between points
in a high-dimensional Hilbert space [6]. This allows us to write the
KDE as an inner product between a test point and a sample aver-
age (or centroid) of training points in feature space. We achieve
a RKDE by estimating this centroid with an M -estimator, a tech-
nique developed for robust estimation of centroids in robust para-
metric statistics. The standard algorithm for M -estimators, known
as the iterative re-weighted least squares (IRWLS), depends only on
inner products and may therefore be implemented efficiently using
the kernel function. The RKDE has the form

flx) = Z wik(x,%;)

where k is a kernel function, w; > 0, Z?:l w; = 1, and w; tends to
be downweighted for outlying data points. We present simulations
that demonstrate significant improvement of RKDEs over standard
KDEs, as assessed by the Kullback-Liebler divergence, and we also
illustrate the application of the RKDE to a problem in Internet traffic
analysis.

2. MULTIVARIATE M-ESTIMATOR

Given i.i.d samples x1,X2, -+ ,Xp € R generated from a multi-
variate Gaussian pdf f (x; 8) with unknown mean 6 and covariance
matrix 021, the maximum likelihood (ML) estimator of @ is

0= argmaxz In f (xi;0)
0 =1

= argmin} o (i — 0 M

i=1

where p (z) = x?/2. We can find 0 by taking the derivative of (1)
with respect to € and setting it equal to zero, i.e,

fZ(xi75)~M:0 )
i=1 i — 0|
where ¢ = p’ and we define 1(0)/0 := limgz—0 ¢ (z) /z. For p ()
function in the ML estimation case, ¥ () = = and (2) has a closed
form solution 6 = % >, xi, the sample mean.

The sample mean is seriously affected by the presence of out-
liers. In 1964, Huber proposed a robust estimator called an M-
estimator, M for maximum likelihood [7]. An M -estimator is the
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Fig. 1. The comparison between three different ) functions: ML
case with Gaussian, Huber’s, and Hampel’s.

solution of (1) but where different loss functions are used. For ex-
ample, Huber’s loss function is defined as
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For outliers such that || x—8|| > k, ¢ () in (3) is constant while
1 (x) = x is monotonically increasing. Therefore, we can expect
M -estimators to be less affected by outliers than the ML estimator.
Another well known 1) function is Hampel’s 1) function which is
defined as

|| 0<fz[ <a
a ,a<|z|<b

= (sgn - 4
0 ,e <zl

¥ (x) in (4) gives more penalty to outliers than that in (3). The plot
of these ¢ functions are shown in Fig 1.

For 1) functions in (3) and (4), the equation (2) does not have
closed form solution, but can be solved by the iteratively re-weighted
least squares (IRWLS) method. We extend the result of [1] for uni-
variate M -estimators to the multivariate case. Because of space lim-
itations, we present only this initial result. Future work will develop
local and global optimality properties.

Theorem 1 Consider the optimization problem (1). Assume that
Y(x)/x is bounded and monotone decreasing for x > 0. Then,
for any initial guess w'®, the Sfollowing iteratively re-weighted least
squares method produces a sequence {O(k ) Y2, such that the objec-
tive function value monotonically decreases at every iteration.
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Proof For notational convenience, we sometimes omit the super-
script k. At step k+1, given 0" define the surrogate functions
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where 7; = ||x; — 8)||. We can show that
Ui(ri) = p(ri).
To see this, let z(z) = U;(z) — p(z). Note that
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Since v (z)/x is monotone decreasing for = > 0,
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Therefore, z(z) > z(r;) = 0 for all z.
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Since U; is quadratic, the second inequality is strict if k+1 #*
0" Therefore, the objective function value monotonically de-
creases at every iteration.

3. KERNEL DENSITY ESTIMATION: A VIEW FROM
KERNEL FEATURE SPACE

Let x1,...,Xn € R? be a random sample from a distribution with
density f (x). A kernel density estimate of f, also called a Parzen
window estimate, is a nonparametric estimate given by

Foo =23 kxx)

where k (x,x;) is a kernel function. The most commonly used ker-
nel function is a Gaussian kernel

o\ —d/2 llx — x;||?
k(x,xi) = (2n0”) exp{ 557 } .

We can view the KDE as performing operations in a high dimen-
sional feature space. For the Gaussian kernel, there exists a mapping
® : RY — 'H, where H is an infinite dimensional Hilbert space,
such that k (x,x;) = (®(x), ®(x:)) [6].

From this point of view, the KDE can be expressed as

60 =23 (60, 0x)) = <<I><x>, oy <1>(xn> 6

i=1 1=1

Therefore, given an input x, the KDE outputs the inner product be-
tween ®(x) and the sample mean, or the centroid, of the ®(x;).



4. ROBUST KERNEL DENSITY ESTIMATION

As mentioned earlier, the sample mean can be drastically influenced
by outliers. Therefore, we replace the sample mean in (5) with a
robust mean estimator m. By adopting the M-estimator criterion
explained in Section 2, m is

—argmmzp 1 (x;) — ml)
S i=1

where p is a robust loss function. The only remaining issue is how to
compute ||® (x;) — m® || in the IRWLS method. This can be done

by observing
= <¢' (x:) — m(k), D (x5) — m<k)>

9, m®) 1 (m® m®).
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The IRWLS algorithm for RKDE is summarized below.

1. Initialize wZ(O), Letk =1.

2. Compute ||® (x;) — m®)|| using the equations above.

3. Update @) = 9 (1| (x:) = m @]} /||@ (x;) = m®].
4. Normalize w( ) to get w(k)

5. If the algorithm converges, m = > | w(k)d) (xi). Other-

wise, let k < k + 1 and go to step 2.

The resulting RKDE is

F(x) = (@(x),m) = <¢<x>,zw£k)¢>(xi>>
i " )) = Z wik (x, %)

If the p function is not convex, we may be stuck in a local min-
imum, and thus good initialization is required. We initialize w< )
such that m®) is the geometric median of ® (xi), i.e.,

mY = argminz [|® (x:) — m]|

R

since the geometric median is a more robust initializer than the cen-
troid. Note that the geometric median is the solution of (1) with
p () = z, or equivalently, the solution of (2) with ¢ (z) = sgn (z).
The geometric median can be found by Weiszfeld’s algorithm [8],
which is equivalent to the above IRWLS method with ¢ (z) =

sgn (z).

5. EXPERIMENTS

5.1. Experimental setting

We demonstrate our algorithm on 1D and 2D synthetic data and real
world data. For all experiments, we use the Gaussian kernel as the
kernel function and the bandwidth is chosen as the least square cross-
validation estimator [9]. Hampel’s ¢ function in (4) is used and the
parameters a, b, and c are selected by the following heuristic.

First, we compute d; = ||® (x;) — m||, the distance between
the geometric median m™) and ® (x;). Then, a is set to the median
of {d;} (the median absolute deviation), b is the 95th percentile of
{d;}, ¢ = max{d;}.

5.2. Synthetic data

In the first example, we experiment with 1- dimensional data. The
pdf is a Gaussian mixture given by

fi (@) = 0.5¢(x;0,1) + 0.5¢ (x; 10, 1)

where ¢ (z; u, o) is a univariate Gaussian pdf with mean  and vari-
ance o2, Different numbers of outliers are generated from a uniform
distribution from -5 to 15. The number of data samples, n, is 200
and the numbers of outliers m are 0, 10,20, 40. For m = 40, the
results are shown in Fig 2. From the figure, we can see that KDEs
are affected by outliers such that the density estimates have small
bumps over the regions where outliers exist. On the other hand, the
RKDE method gives better density estimates which do not have such
features, and thus can be considered less affected by outliers.

0.2
—true
oisr [ N | b
RKDE
0.16 - —— data points b
outliers
0.14

i sa I
-5 o 5 10 15

Fig. 2. The comparison of density estimates. True density (solid
line), KDE (dotted line), and RKDE (dashed line).

For a 2-dimensional example, 200 data samples are generated
from a Gaussian mixture given by

f2 (X) = O5¢(X7 K, Zl) +0.5¢ (X; Ko, 22)

where g1, = [—3,0]" , p, = [3,0]” and Xy = ¥y = I. The num-
bers of outliers from a uniform distribution over [—6, 6] x [—6, 6]
are m = 0,10, 20, and, 40. The results for m = 20 are shown in
Fig 3. From (c), we can see that the lower level contour of the KDE
encloses the outliers. However, in (d), the contours of the RKDE are
much closer to that of the true density.

We compare RKDE with KDE quantitatively, using the
Kullback-Leibler (KL) divergence as the performance measure. We
compute both D (f||f) and D (f]|f) where f is either the
KDE or RKDE and f is the true density. For each 1d and 2d ex-
ample, the average KL divergence over 100 simulations is shown in
Table 1. For both cases, D1 (f||f) for RKDE is always better than
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(c) KDE with outliers (d) Robust KDE with outliers

Fig. 3. Contours of densities along with data samples from true den-
sity (o) and outliers (x).

Table 1. KL divergence between true density firye and fxpr and
frrpE for simulated data

n =200

1d data m=0 [m=10 ] m=20 | m=40
Drcr (firue|| fxkDE) | 0.0333 | 0.0507 | 0.0698 | 0.1065
Dxr, (firue||frrpE) | 0.0906 | 0.0529 | 0.0509 | 0.0695
Drr (fxpe|[firue) | 0.0335 | 0.1122 | 0.1919 | 0.3390
Drcr (frpe||firue) | 0.0331 | 0.0290 | 0.0330 | 0.0509

n =200

2d data m=0 [ m=10 ] m=20 | m=40
Drcr (firue||fxkDE) | 0.0745 | 0.0968 | 0.1228 | 0.1795
Drr (firue||frRcDE) | 0.0868 | 0.0756 | 0.0702 | 0.0883
Dxr (fxpe|[firue) | 0.0878 | 02525 | 0.4405 | 0.7536
Dicr (frpe||firue) | 00670 | 0.0707 | 0.0789 | 0.1060

that for KDE. On the other hand, for D 1,(f||f), KDE is somewhat
better than robust KDE when outliers do not exist. This can be con-
sidered as a tradeoft between efficiency and robustness. However,
Dicr(f||f) is the one that reflects the robustness to outliers and we
see the biggest improvement here.

5.3. Network anomaly detection

We also experiment with Internet traffic flowing over links in the
Abilene network [10]. In Fig 4, each point corresponds to the total
traffic volume (measured in bytes) for a given ten minute interval
over a pair of links, from Houston and Washington to Atlanta. In this
setting, we may want to determine which points represent potentially
anomalous behavior, such as might be caused by malicious activities
(e.g., denial of service attacks). We could do this by estimating the
underlying nominal density and thresholding the estimated density
value at the given level [11]. Thus, the RKDE is applicable here.
The contour plots of the KDE and RKDE are shown in Fig 4 (a)
and (b), respectively. While the KDE overfits the data, the RKDE
method finds a more reasonable estimate of the nominal density. Fur-
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Fig. 4. Contours of density estimates for Abilene network traffic
(thresholds at the same quantiles: 20%, 50%, 70%, 95%, 99.5%).
Outliers detected by PCA method are marked ‘x’.

thermore, outliers detected using a global method based on principal
components analysis (PCA) (having access to all data on all links in
the network) [12, 13] are marked as ‘x’ and the result shows that the
RKDE downweights these points in estimating the nominal density
relative to the KDE.

6. REFERENCES

[1] P. Huber, Robust Statistics, Wiley, New York, 1981.
[2] D. W. Scott, Multivariate Density Estimation, Wiley, New York, 1992.

[3] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, Springer, New York, 2001.

—

—

[4] Luc Devroye and Gabor Lugosi, “Combinatorial methods in density
estimation,” 2001.

[5

—

J. A. Hartigan, “Consistency of single linkage for high-density clus-
ters,” Journal of the American Statistical Association, vol. 76, pp. 388—
394, 1981.

B. Scholkopf and A. J. Smola, Learning with Kernels, MIT Press,
Cambridge, MA, 2002.

[7]1 P.J. Huber, “Robust estimation of a location parameter,” Ann. Math.
Statist, vol. 35, pp. 73-101, 1964.

E Weiszfeld, “Sur le point pour lequel la somme des distances de n
points donnes est minimum,” Tohoku Math. Journal, pp. 355-386,
1937.

[9] B.A. Turlach, “Bandwidth selection in kernel density estimation: A
review,” Technical Report 9317, C.O.R.E. and Institut de Statistique,
Université Catholique de Louvain, 1993.

[6

—_

[8

—_

[10] “http://www.internet2.org” .

[11] P.Chhabra, C. Scott, E. Kolaczyk, and M. Crovella, “Distributed spatial
anomaly detection,” to appear at I[EEE INFOCOM 2008.

[12] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. Kolaczyk, and
N. Taft, “Structural analysis of network traffic flows,” Proc. ACM
SIGMETRICS/Performance, 2004.

[13] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide traf-
fic anomalies,” Proc. ACM SIGCOMM, 2004.



