Appendix A
 SMO ALGORITHM

Sequential Minimal Optimization (SMO) is a simple algorithm that can quickly solve the SVM QP problem without any extra matrix storage and without using time-consuming numerical QP optimization steps [1]. SMO decomposes the overall QP problem into the smallest possible optimization problem. This sub-problem can be solved analytically. An appropriate variant of SMO to solve (7) is detailed below following [2].

Given $\boldsymbol{\alpha}$, the algorithm optimizes two variables of $\boldsymbol{\alpha}$ with other variables fixed. Two variables to be optimized should be chosen from $\left\{\alpha_{i} \mid i \in I_{-}\right\}$or $\left\{\alpha_{i} \mid i \in I_{+}\right\}$. Otherwise, the variables which we are trying to optimize cannot change since the other variables are fixed and due to the constraints $\sum_{i \in I_{-}} \alpha_{i}=1$ and $\sum_{i \in I_{+}} \alpha_{i}=1$. Suppose that we choose two variables from $\left\{\alpha_{i} \mid i \in I_{+}\right\}$. For notational convenience, assume the two variables are α_{1} and α_{2} and $1,2 \in I_{+}$. Then, (7) reduces to

$$
\begin{aligned}
\min _{\alpha_{1}, \alpha_{2}} & \frac{1}{2} \sum_{i=1}^{2} \sum_{j=1}^{2} \alpha_{i} \alpha_{j} Q_{i j}+\sum_{i=1}^{2} d_{i} \alpha_{i}+D \\
\text { s.t } & \alpha_{1}, \alpha_{2} \geq 0, \quad \sum_{i=1}^{2} \alpha_{i}=\Delta
\end{aligned}
$$

where $D=\frac{1}{2} \sum_{i=3}^{n} \sum_{j=3}^{n} \alpha_{i} \alpha_{j} Q_{i j}-\sum_{i=3}^{n} c_{i} \alpha_{i}$ and

$$
d_{i}=\sum_{j=3}^{n} \alpha_{j} Q_{i j}-c_{i}, \quad \Delta=1-\sum_{i \in I_{+} \backslash\{1,2\}} \alpha_{i} .
$$

We discard D , which is independent of α_{1} and α_{2}, and eliminate α_{1} to obtain

$$
\begin{align*}
\min _{\alpha_{2}} & \frac{1}{2}\left(\Delta-\alpha_{2}\right)^{2} Q_{11}+\alpha_{2}\left(\Delta-\alpha_{2}\right) Q_{12} \tag{12}\\
& +\frac{1}{2} \alpha_{2}^{2} Q_{22}+\left(\Delta-\alpha_{2}\right) d_{1}+\alpha_{2} d_{2} \\
\text { s.t } & 0 \leq \alpha_{2} \leq \Delta
\end{align*}
$$

Since the objective function is quadratic and convex in one variable α_{2}, we can take the derivative of (12) and set it equal to zero. Then,

$$
\begin{equation*}
\alpha_{2}=\frac{\Delta\left(Q_{11}-Q_{12}\right)+d_{1}-d_{2}}{Q_{11}-2 Q_{12}+Q_{22}} . \tag{13}
\end{equation*}
$$

Let $\boldsymbol{\alpha}^{*}$ denote the value before the optimization step. If we define $O_{i}:=Q_{i 1} \alpha_{1}^{*}+Q_{i 2} \alpha_{2}^{*}+d_{i}=\sum_{j=1}^{n} \alpha_{i}^{*} Q_{i j}-c_{i}$, then (13) can be expressed as the update equation

$$
\begin{equation*}
\alpha_{2}=\alpha_{2}^{*}+\frac{O_{1}-O_{2}}{Q_{11}-2 Q_{12}+Q_{22}} . \tag{14}
\end{equation*}
$$

If α_{2} is outside $[0, \Delta]$, we truncate it so that it is within $[0, \Delta]$. After finding α_{2}, α_{1} can be recovered from $\alpha_{1}=\Delta-\alpha_{2}$.
The optimality condition and the choice of α_{i} 's can be found in the following way. There are three cases when choosing α_{1} and α_{2} : (a) Both are zero, (b) One is positive and the other is zero, (c) Both are positive.

Case (a): α_{1} and α_{2} are not updated because of nonnegativity constraints.
Case (b): Assume that α_{2} is zero. From (14), α_{2} is updated only when $O_{1}-O_{2}>0$ and so is α_{1}
Case (c): α_{1} and α_{2} are updated only when $O_{1} \neq O_{2}$.
The objective value will strictly decrease if and only if α_{1} and α_{2} are updated after optimization step. Therefore, the optimal solution should satisfy

$$
\begin{array}{lll}
O_{i} \geq O_{j} & \text { for } & \alpha_{i}=0, \alpha_{j}>0 \\
O_{i}=O_{j} & \text { for } & \alpha_{i}, \alpha_{j}>0 \tag{16}
\end{array}
$$

The convergence to the global minimum is thus guaranteed by choosing two $\alpha_{i}{ }^{\prime}$ s which do not satisfy (15) or (16) for each optimization step. The optimization procedure for two variables from $\left\{\alpha_{i} \in I_{-}\right\}$is similar.

Appendix B
 Proof of Lemma 1

Note that for any given $i,\left(k_{\sigma}\left(\mathbf{X}_{j}, \mathbf{X}_{i}\right)\right)_{j \neq i}$ are independent and bounded by $M=1 /(\sqrt{2 \pi} \sigma)^{d}$. For random vectors $\mathbf{Z} \sim f_{+}(\mathbf{x})$ and $\mathbf{W} \sim f_{-}(\mathbf{x}), h\left(\mathbf{X}_{i}\right)$ in (6) can be expressed as

$$
h\left(\mathbf{X}_{i}\right)=\mathbf{E}\left[k_{\sigma}\left(\mathbf{Z}, \mathbf{X}_{i}\right) \mid \mathbf{X}_{i}\right]-\gamma \mathbf{E}\left[k_{\sigma}\left(\mathbf{W}, \mathbf{X}_{i}\right) \mid \mathbf{X}_{i}\right] .
$$

Since $\mathbf{X}_{i} \sim f_{+}(\mathbf{x})$ for $i \in I_{+}$and $\mathbf{X}_{i} \sim f_{-}(\mathbf{x})$ for $i \in I_{-}$, it can be easily shown that

$$
\mathbf{E}\left[\widehat{h}_{i} \mid \mathbf{X}_{i}\right]=h\left(\mathbf{X}_{i}\right) .
$$

For $i \in I_{+}$,

$$
\begin{align*}
& \mathbf{P}\left\{\left|\widehat{h}_{i}-h\left(\mathbf{X}_{i}\right)\right|>\epsilon \mid \mathbf{X}_{i}=\mathbf{x}, E\right\} \\
& \leq \mathbf{P}\left\{\left.\left|\frac{1}{n_{+}-1} \sum_{j \in I_{+}, j \neq i} k_{\sigma}\left(\mathbf{X}_{j}, \mathbf{X}_{i}\right)-\mathbf{E}\left[k_{\sigma}\left(\mathbf{Z}, \mathbf{X}_{i}\right) \mid \mathbf{X}_{i}\right]\right|>\frac{\epsilon}{1+\gamma} \right\rvert\, \mathbf{X}_{i}=\mathbf{x}\right\} \\
& \quad+\mathbf{P}\left\{\left.\left|\frac{\gamma}{n_{-}} \sum_{j \in I_{-}} k_{\sigma}\left(\mathbf{X}_{j}, \mathbf{X}_{i}\right)-\gamma \mathbf{E}\left[k_{\sigma}\left(\mathbf{W}, \mathbf{X}_{i}\right) \mid \mathbf{X}_{i}\right]\right|>\frac{\gamma \epsilon}{1+\gamma} \right\rvert\, \mathbf{X}_{i}=\mathbf{x}\right\} \tag{17}
\end{align*}
$$

Since we are conditioning on E, the first term in (17) is

$$
\begin{aligned}
\mathbf{P} & \left\{\left.\left|\sum_{j \in I_{+}, j \neq i} k_{\sigma}\left(\mathbf{X}_{j}, \mathbf{X}_{i}\right)-\left(n_{+}-1\right) \mathbf{E}\left[k_{\sigma}\left(\mathbf{Z}, \mathbf{X}_{i}\right) \mid \mathbf{X}_{i}\right]\right|>\frac{\left(n_{+}-1\right) \epsilon}{1+\gamma} \right\rvert\, \mathbf{X}_{i}=\mathbf{x}\right\} \\
& =\mathbf{P}\left\{\left.\left|\sum_{j \in I_{+}, j \neq i} k_{\sigma}\left(\mathbf{X}_{j}, \mathbf{X}_{i}\right)-\mathbf{E}\left[\sum_{j \in I_{+}, j \neq i} k_{\sigma}\left(\mathbf{X}_{j}, \mathbf{X}_{i}\right) \mid \mathbf{X}_{i}\right]\right|>\frac{\left(n_{+}-1\right) \epsilon}{(1+\gamma)} \right\rvert\, \mathbf{X}_{i}=\mathbf{x}\right\} \\
& =\mathbf{P}\left\{\left.\left|\sum_{j \in I_{+}, j \neq i} k_{\sigma}\left(\mathbf{X}_{j}, \mathbf{X}_{i}\right)-\mathbf{E}\left[\sum_{j \in I_{+}, j \neq i} k_{\sigma}\left(\mathbf{X}_{j}, \mathbf{X}_{i}\right) \mid \mathbf{X}_{i}\right]\right|>\frac{\left(n_{+}-1\right) \epsilon}{(1+\gamma)} \right\rvert\, \mathbf{X}_{i}=\mathbf{x}\right\} \\
& \leq 2 e^{-2\left(n_{+}-1\right) \epsilon^{2} /(1+\gamma)^{2} M^{2}} .
\end{aligned}
$$

where the last inequality holds by Hoeffding's inequality [3]. The second term in (17) is

$$
\begin{aligned}
& \mathbf{P}\left\{\left.\left|\sum_{j \in I_{-}} k_{\sigma}\left(\mathbf{X}_{j}, \mathbf{X}_{i}\right)-n_{-} \mathbf{E}\left[k_{\sigma}\left(\mathbf{W}, \mathbf{X}_{i}\right) \mid \mathbf{X}_{i}\right]\right|>\frac{n_{-} \epsilon}{1+\gamma} \right\rvert\, \mathbf{X}_{i}=\mathbf{x}\right\} \\
& \quad \leq \mathbf{P}\left\{\left.\left|\sum_{j \in I_{-}} k_{\sigma}\left(\mathbf{X}_{j}, \mathbf{X}_{i}\right)-\mathbf{E}\left[\sum_{j \in I_{-}} k_{\sigma}\left(\mathbf{X}_{j}, \mathbf{X}_{i}\right) \mid \mathbf{X}_{i}\right]\right|>\frac{n_{-} \epsilon}{1+\gamma} \right\rvert\, \mathbf{X}_{i}=\mathbf{x}\right\} \\
& \quad \leq 2 e^{-2 n_{-} \epsilon^{2} /(1+\gamma)^{2} M^{2}} \leq 2 e^{-2\left(n_{-}-1\right) \epsilon^{2} /(1+\gamma)^{2} M^{2}}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathbf{P}\left\{\left|\widehat{h}_{i}-h\left(\mathbf{X}_{i}\right)\right|>\epsilon\right\} & =\sum_{\mathbf{x}} \mathbf{P}\left\{\mathbf{X}_{i}=\mathbf{x}\right\} \cdot \mathbf{P}\left\{\left|\widehat{h}_{i}-h\left(\mathbf{X}_{i}\right)\right|>\epsilon \mid \mathbf{X}_{i}=\mathbf{x}\right\} \\
& \leq \sum_{\mathbf{x}} \mathbf{P}\left\{\mathbf{X}_{i}=\mathbf{x}\right\}\left(2 e^{-2\left(n_{+}-1\right) \epsilon^{2} /(1+\gamma)^{2} M^{2}}+2 e^{-2\left(n_{-}-1\right) \epsilon^{2} /(1+\gamma)^{2} M^{2}}\right) \\
& =2 e^{-2\left(n_{+}-1\right) \epsilon^{2} /(1+\gamma)^{2} M^{2}}+2 e^{-2\left(n_{-}-1\right) \epsilon^{2} /(1+\gamma)^{2} M^{2}} .
\end{aligned}
$$

In a similar way, it can be shown that for $i \in I_{-}$,

$$
\mathbf{P}\left\{\left|\widehat{h}_{i}-h\left(\mathbf{X}_{i}\right)\right|>\epsilon\right\} \leq 2 e^{-2\left(n_{+}-1\right) \epsilon^{2} /(1+\gamma)^{2} M^{2}}+2 e^{-2\left(n_{-}-1\right) \epsilon^{2} /(1+\gamma)^{2} M^{2}} .
$$

Then,

$$
\begin{aligned}
\mathbf{P} & \left\{\sup _{\boldsymbol{\alpha} \in A}\left|H_{n}(\boldsymbol{\alpha})-H(\boldsymbol{\alpha})\right|>\epsilon\right\}=\mathbf{P}\left\{\sup _{\boldsymbol{\alpha} \in A}\left|\sum_{i=1}^{n} \alpha_{i} Y_{i}\left(\widehat{h}_{i}-h\left(\mathbf{X}_{i}\right)\right)\right|>\epsilon\right\} \\
& \leq \mathbf{P}\left\{\sup _{\boldsymbol{\alpha} \in A} \sum_{i=1}^{n} \alpha_{i}\left|Y_{i}\right|\left|\widehat{h}_{i}-h\left(\mathbf{X}_{i}\right)\right|>\epsilon\right\} \\
& =\mathbf{P}\left\{\sup _{\boldsymbol{\alpha} \in A} \sum_{i \in I_{+}}^{n} \alpha_{i}\left|\widehat{h}_{i}-h\left(\mathbf{X}_{i}\right)\right|+\sum_{i \in I_{-}}^{n} \alpha_{i} \gamma\left|\widehat{h}_{i}-h\left(\mathbf{X}_{i}\right)\right|>\epsilon\right\} \\
& \leq \mathbf{P}\left\{\sup _{\boldsymbol{\alpha} \in A} \sum_{i \in I_{+}}^{n} \alpha_{i}\left|\widehat{h}_{i}-h\left(\mathbf{X}_{i}\right)\right|>\frac{\epsilon}{1+\gamma}\right\}+\mathbf{P}\left\{\sup _{\boldsymbol{\alpha} \in A} \sum_{i \in I_{-}}^{n} \alpha_{i} \gamma\left|\widehat{h}_{i}-h\left(\mathbf{X}_{i}\right)\right|>\frac{\gamma \epsilon}{1+\gamma}\right\} \\
& =\mathbf{P}\left\{\max _{i \in I_{+}}\left|\widehat{h}_{i}-h\left(\mathbf{X}_{i}\right)\right|>\frac{\epsilon}{1+\gamma}\right\}+\mathbf{P}\left\{\max _{i \in I_{-}}\left|\widehat{h}_{i}-h\left(\mathbf{X}_{i}\right)\right|>\frac{\epsilon}{1+\gamma}\right\} \\
= & \mathbf{P}\left\{\bigcup_{i \in I_{+}}\left\{\left|\widehat{h}_{i}-h\left(\mathbf{X}_{i}\right)\right|>\frac{\epsilon}{1+\gamma}\right\}\right\}+\mathbf{P}\left\{\bigcup_{i \in I_{-}}\left\{\left|\widehat{h}_{i}-h\left(\mathbf{X}_{i}\right)\right|>\frac{\epsilon}{1+\gamma}\right\}\right\} \\
\leq & \sum_{i \in I_{+}} \mathbf{P}\left\{\left|\widehat{h}_{i}-h\left(\mathbf{X}_{i}\right)\right|>\frac{\epsilon}{1+\gamma}\right\}+\sum_{i \in I_{-}} \mathbf{P}\left\{\left|\widehat{h}_{i}-h\left(\mathbf{X}_{i}\right)\right|>\frac{\epsilon}{1+\gamma}\right\} \\
\leq & n_{+}\left(2 e^{-2\left(n_{+}-1\right) \epsilon^{2} /(1+\gamma)^{4} M^{2}}+2 e^{-2\left(n_{-}-1\right) \epsilon^{2} /(1+\gamma)^{4} M^{2}}\right) \\
& +n_{-}\left(2 e^{-2\left(n_{+}-1\right) \epsilon^{2} /(1+\gamma)^{4} M^{2}}+2 e^{-2(n--1) \epsilon^{2} /(1+\gamma)^{4} M^{2}}\right) \\
= & n\left(2 e^{\left.-2\left(n_{+}-1\right) \epsilon^{2} /(1+\gamma)^{4} M^{2}+2 e^{-2\left(n_{-}-1\right) \epsilon^{2} /(1+\gamma)^{4} M^{2}}\right) .}\right.
\end{aligned}
$$

Appendix C
 PROOF OF THEOREM 2

Define $\mathbf{u}=\left(u_{1}, \ldots, u_{n}\right)$ such that $u_{i}=1 / n_{+}$for $i \in I_{+}$and $u_{i}=1 / n_{-}$for $i \in I_{-}$. By the similar argument for the convergence of MISE of kernel density estimate [4], it can be shown, using a multivariate Taylor series, that

$$
\begin{aligned}
& M I S E\left(\mathbf{u} ; n_{+}, n_{-}\right)=\mathbf{E}[\operatorname{ISE}(\mathbf{u})] \\
& \quad=\int \operatorname{Var}\left(\widehat{d}_{\gamma}(\mathbf{x} ; \mathbf{u})\right)+\operatorname{bias}^{2}\left(\widehat{d}_{\gamma}(\mathbf{x} ; \mathbf{u})\right) d \mathbf{x} \\
& =\left\{\frac{1}{n_{+} \sigma^{d}}+\frac{\gamma^{2}}{n_{-} \sigma^{d}}\right\} R(k)+\frac{1}{4} \sigma^{4} R\left(\operatorname{tr}\left\{\mathcal{H}_{d_{\gamma}}\right\}\right)+o\left(n_{+}^{-1} \sigma^{-d}+n_{-}^{-1} \sigma^{-d}+\sigma^{4}\right)
\end{aligned}
$$

where $R(f)=\int f^{2}(\mathbf{x}) d \mathbf{x}$ and \mathcal{H}_{f} represent the Hessian matrix of f. Therefore, $I S E(\mathbf{u})$ converges to 0 in probability since $\sigma \rightarrow 0, n_{+} \sigma^{d} \rightarrow \infty$ and $n_{+} \sigma^{d} \rightarrow \infty$ as $n \rightarrow \infty$. Furthermore,

$$
\begin{aligned}
\mathbf{P}\{\operatorname{ISE}(\widehat{\boldsymbol{\alpha}})>\epsilon\} & =\mathbf{P}\left\{\operatorname{ISE}(\widehat{\boldsymbol{\alpha}})>\epsilon, \operatorname{ISE}(\mathbf{u})>\frac{\epsilon}{2}\right\}+\mathbf{P}\left\{\operatorname{ISE}(\widehat{\boldsymbol{\alpha}})>\epsilon, \operatorname{ISE}(\mathbf{u}) \leq \frac{\epsilon}{2}\right\} \\
& \leq \mathbf{P}\left\{\operatorname{ISE}(\mathbf{u})>\frac{\epsilon}{2}\right\}+\mathbf{P}\left\{\operatorname{ISE}(\widehat{\boldsymbol{\alpha}})>\operatorname{ISE}(\mathbf{u})+\frac{\epsilon}{2}\right\}
\end{aligned}
$$

From the consistency of $I S E(\mathbf{u})$ and the oracle inequality stated in Theorem 1, ISE ($\widehat{\boldsymbol{\alpha}})$ converges to 0 in probability.

APPENDIX D

Proof of Theorem 3

First note that in the previous analyses we treat N_{+}, N_{-}and γ as deterministic variables but now we turn to the case where these variables are random. Thus, some of the previous results should be restated considering this.

Lemma 2: γ converges to γ^{*} with probability 1.
Proof: Note that N_{+}and N_{-}are binomial random variables with (n, p) and (n, q) where $q=1-p$. From the Hoeffding's inequality, we know that for $\forall \epsilon>0$

$$
\begin{aligned}
& \mathbf{P}\left\{\frac{N_{+}}{n}-p>\epsilon\right\} \leq e^{-2 n \epsilon^{2}}, \quad \mathbf{P}\left\{\frac{N_{+}}{n}-p<-\epsilon\right\} \leq e^{-2 n \epsilon^{2}} \\
& \mathbf{P}\left\{\frac{N_{-}}{n}-q>\epsilon\right\} \leq e^{-2 n \epsilon^{2}}, \quad \mathbf{P}\left\{\frac{N_{-}}{n}-q<-\epsilon\right\} \leq e^{-2 n \epsilon^{2}}
\end{aligned}
$$

Then, for any $\epsilon>0$

$$
\begin{aligned}
& \mathbf{P}_{n}(\epsilon) \triangleq \mathbf{P}\left\{\left|\frac{N_{-}}{N_{+}}-\frac{q}{p}\right|>\epsilon\right\}=\mathbf{P}\left\{\left|p N_{-}-q N_{+}\right|>\epsilon p N_{+}\right\} \\
&=\mathbf{P}\left\{\left|p N_{-}-q N_{+}\right|>\epsilon p N_{+}, N_{+} \geq \frac{n p}{2}\right\}+\mathbf{P}\left\{\left|p N_{-}-q N_{+}\right|>\epsilon p N_{+}, N_{+}<\frac{n p}{2}\right\} \\
& \leq \mathbf{P}\left\{\left|p N_{-}-q N_{+}\right|>\epsilon p \cdot \frac{n p}{2}\right\}+\mathbf{P}\left\{N_{+}<\frac{n p}{2}\right\} \\
& \leq \mathbf{P}\left\{\left|p N_{-}-p q n+p q n-q N_{+}\right|>\frac{n \epsilon p^{2}}{2}\right\}+\mathbf{P}\left\{N_{+}-p n<-\frac{n p}{2}\right\} \\
& \leq \mathbf{P}\left\{\left|p N_{-}-p q n\right|>\frac{n \epsilon p^{3}}{2}\right\}+\mathbf{P}\left\{\left|q N_{+}-p q n\right|>\frac{n \epsilon p^{2} q}{2}\right\}+\mathbf{P}\left\{N_{+}-p n<-\frac{n p}{2}\right\} \\
&=\mathbf{P}\left\{\left|\frac{N_{-}}{n}-q\right|>\frac{\epsilon p^{2}}{2}\right\}+\mathbf{P}\left\{\left|\frac{N_{+}}{n}-p\right|>\frac{\epsilon p^{2}}{2}\right\}+\mathbf{P}\left\{\frac{N_{+}}{n}-p<-\frac{p}{2}\right\} \\
& \quad \leq 4 \exp \left(-\frac{n \epsilon^{2} p^{4}}{2}\right)+\exp \left(-\frac{n p^{2}}{2}\right) .
\end{aligned}
$$

Since $\sum_{n=1}^{\infty} \mathbf{P}_{n}(\epsilon)<\infty$ for all $\epsilon>0, \gamma$ converges to γ^{*} with probability 1.
Lemma 3: Suppose the assumptions in Theorem 3 are satisfied. For any $\epsilon^{\prime}>0, \mathbf{P}\left\{I S E(\widehat{\boldsymbol{\alpha}})>\inf _{\boldsymbol{\alpha} \in A} I S E(\boldsymbol{\alpha})+\epsilon^{\prime}\right\}$ converges to 0 .

Proof: We need to restate Theorem 1 as follows. For any $\delta>0$,

$$
\mathbf{P}\left\{\left.I S E(\widehat{\boldsymbol{\alpha}})>\inf _{\boldsymbol{\alpha} \in A} I S E(\boldsymbol{\alpha})+4 \sqrt{\frac{\ln (2 n / \delta)}{c\left[\min \left(N_{+}, N_{-}\right)-1\right]}} \right\rvert\, N_{+}=n_{+}, N_{-}=n_{-}\right\} \leq \delta
$$

since

$$
\sqrt{\frac{\ln (2 n / \delta)}{c\left[\min \left(n_{+}, n_{-}\right)-1\right]}} \leq \epsilon \leq \sqrt{\frac{\ln (2 n / \delta)}{c\left[\max \left(n_{+}, n_{-}\right)-1\right]}}
$$

Let us define $c^{\prime}=2(\sqrt{2 \pi} \sigma)^{2 d} /\left(1+2 \gamma^{*}\right)^{4}$ and an event $D=\left\{N_{+} \geq \frac{n p}{2}, N_{-} \geq \frac{n(1-p)}{2}, \gamma \leq 2 \gamma^{*}\right\}$. Then,

$$
\begin{aligned}
& \mathbf{P}\left\{I S E(\widehat{\boldsymbol{\alpha}})>\inf _{\boldsymbol{\alpha} \in A} I S E(\boldsymbol{\alpha})+4 \sqrt{\frac{2 \ln (2 n / \delta)}{c^{\prime}[\min (n p, n(1-p))-1]}}\right\} \\
& \quad \leq \mathbf{P}\left\{D^{c}\right\}+\mathbf{P}\{D\} \cdot \mathbf{P}\left\{\left.I S E(\widehat{\boldsymbol{\alpha}})>\inf _{\boldsymbol{\alpha} \in A} I S E(\boldsymbol{\alpha})+4 \sqrt{\frac{2 \ln (2 n / \delta)}{c^{\prime}[\min (n p, n(1-p)-1]}} \right\rvert\, D\right\}
\end{aligned}
$$

The first term converges to 0 from the strong law of large numbers and Lemma 2 . The second term becomes

$$
\begin{aligned}
& \mathbf{P}\left\{\left.I S E(\widehat{\boldsymbol{\alpha}})>\inf _{\boldsymbol{\alpha} \in A} I S E(\boldsymbol{\alpha})+4 \sqrt{\frac{2 \ln (2 n / \delta)}{c^{\prime}[\min (n p, n(1-p))-1]}} \right\rvert\, D\right\} \\
& \\
& \leq \mathbf{P}\left\{\left.I S E(\widehat{\boldsymbol{\alpha}})>\inf _{\boldsymbol{\alpha} \in A} I S E(\boldsymbol{\alpha})+4 \sqrt{\frac{\ln (2 n / \delta)}{c\left[\min \left(N_{+}, N_{-}\right)-1\right]}} \right\rvert\, D\right\} \\
& \\
& =\sum \mathbf{P}\left\{\left.I S E(\widehat{\boldsymbol{\alpha}})>\inf _{\boldsymbol{\alpha} \in A} I S E(\boldsymbol{\alpha})+4 \sqrt{\frac{\ln (2 n / \delta)}{c\left[\min \left(N_{+}, N_{-}\right)-1\right]}} \right\rvert\, D, N_{+}=n_{+}, N_{-}=n_{-}\right\} \\
& \\
& \leq \quad \cdot \mathbf{P}\left\{N_{+}=n_{+}, N_{-}=n_{-}\right\} \\
& \leq \delta \mathbf{P}\left\{N_{+}=n_{+}, N_{-}=n_{-}\right\}=\delta
\end{aligned}
$$

For any $\delta>0$, we can make $4 \sqrt{\frac{2 \ln (2 n / \delta)}{c^{\prime}[\min (n p, n(1-p))-1]}}$ smaller than ϵ^{\prime} as $n \rightarrow \infty$, provided that $\ln n / n \sigma^{d} \rightarrow 0$ as $n \rightarrow 0$. Therefore, $\mathbf{P}\left\{I S E(\widehat{\boldsymbol{\alpha}})>\inf _{\boldsymbol{\alpha} \in A} I S E(\boldsymbol{\alpha})+\epsilon^{\prime}\right\}$ converges to 0 .

Lemma 4: Suppose the assumptions in Theorem 3 are satisfied. Then, $\operatorname{ISE}(\mathbf{u})$ converges to 0 in probability.
Proof: Define an event $D=\left\{N_{+} \geq \frac{n p}{2}, N_{-} \geq \frac{n(1-p)}{2}, \gamma \leq 2 \gamma^{*}\right\}$. For any $\epsilon>0$,

$$
\mathbf{P}\{I S E(\mathbf{u})>\epsilon\} \leq \mathbf{P}\left\{D^{c}\right\}+\mathbf{P}\{I S E(\mathbf{u})>\epsilon, D\}
$$

The first term converges to 0 from the strong law of large numbers and Lemma 2. Let define a set $S=\left\{\left(n_{+}, n_{-}\right) \mid n_{+} \geq\right.$ $\left.\frac{n p}{2}, n_{-} \geq \frac{n(1-p)}{2}, \frac{n_{-}}{n_{+}} \leq 2 \gamma^{*}\right\}$. Then,

$$
\begin{aligned}
& \mathbf{P}\{I S E(\mathbf{u})>\epsilon, D\} \\
&=\sum_{\left(n_{+}, n_{-}\right) \in S} \mathbf{P}\left\{I S E(\mathbf{u})>\epsilon, D \mid N_{+}=n_{+}, N_{-}=n_{-}\right\} \cdot \mathbf{P}\left\{N_{+}=n_{+}, N_{-}=n_{-}\right\} \\
&=\sum_{\left(n_{+}, n_{-}\right) \in S} \mathbf{P}\left\{I S E(\mathbf{u})>\epsilon \mid N_{+}=n_{+}, N_{-}=n_{-}\right\} \cdot \mathbf{P}\left\{N_{+}=n_{+}, N_{-}=n_{-}\right\} \\
& \leq \frac{\mathbf{E}\left[I S E(\mathbf{u}) \mid N_{+}=n_{+}, N_{-}=n_{-}\right]}{\epsilon} \cdot \mathbf{P}\left\{N_{+}=n_{+}, N_{-}=n_{-}\right\} \\
& \leq \sum_{\left(n_{+}, n_{-}\right) \in S}\left[\frac{1}{n \sigma^{d}}\left(\frac{2}{p}+\frac{8 \gamma^{* 2}}{1-p}\right) R(k)+\frac{1}{4} \sigma^{4} R\left(\operatorname{tr}\left\{\mathcal{H}_{d_{\gamma}}\right\}\right)+o\left(n^{-1} \sigma^{-d}+\sigma^{4}\right)\right] \\
& \cdot \mathbf{P}\left\{N_{+}=n_{+}, N_{-}=n_{-}\right\} \\
& \leq \frac{1}{\epsilon}\left(\frac{1}{n \sigma^{d}}\left\{\frac{2}{p}+\frac{2 \gamma^{* 2}}{1-p}\right\} R(k)+\frac{1}{4} \sigma^{4} R\left(\operatorname{tr}\left\{\mathcal{H}_{d_{\gamma}}\right\}\right)+o\left(n^{-1} \sigma^{-d}+\sigma^{4}\right)\right)
\end{aligned}
$$

where the second to the last step, we used $\operatorname{MISE}\left(\mathbf{u} ; n_{+}, n_{-}\right)$formula in explained in Appendix C and the fact that for $\left(n_{+}, n_{-}\right) \in S$,

$$
\frac{1}{n_{+} \sigma^{d}}+\frac{1}{n_{-} \sigma^{d}} \leq \frac{2}{n p \sigma^{d}}+\frac{2}{n(1-p) \sigma^{d}}=\frac{1}{n \sigma^{d}}\left(\frac{2}{p}+\frac{2}{1-p}\right)
$$

Therefore, $\operatorname{ISE}(\mathbf{u})$ converges to 0 since $\sigma \rightarrow 0$ and $n \sigma^{d} \rightarrow \infty$ as $n \rightarrow \infty$.
Now let's prove Theorem 3. From Theorem 3 in [5], it suffices to show that

$$
\int\left(\widehat{d}_{\gamma}(\mathbf{x} ; \widehat{\boldsymbol{\alpha}})-d_{\gamma^{*}}(\mathbf{x})\right)^{2} d \mathbf{x} \rightarrow 0
$$

in probability. Note that

$$
\begin{align*}
\left\|\widehat{d}_{\gamma}(\mathbf{x} ; \widehat{\boldsymbol{\alpha}})-d_{\gamma^{*}}(\mathbf{x})\right\|_{L^{2}} & =\left\|\widehat{d}_{\gamma}(\mathbf{x} ; \widehat{\boldsymbol{\alpha}})-d_{\gamma}(\mathbf{x})+\left(\gamma-\gamma^{*}\right) f_{-}(\mathbf{x})\right\|_{L^{2}} \\
& \leq\left\|\widehat{d}_{\gamma}(\mathbf{x} ; \widehat{\boldsymbol{\alpha}})-d_{\gamma}(\mathbf{x})\right\|_{L_{2}}+\left\|\left(\gamma-\gamma^{*}\right) f_{-}(\mathbf{x})\right\|_{L^{2}} \\
& =\sqrt{\operatorname{ISE}(\widehat{\boldsymbol{\alpha}})}+\left|\gamma-\gamma^{*}\right| \cdot\left\|f_{-}(\mathbf{x})\right\|_{L^{2}} . \tag{18}
\end{align*}
$$

For the first term in (18), $\mathbf{P}\{\operatorname{ISE}(\widehat{\boldsymbol{\alpha}})>\epsilon\}$ converges to 0 in probability since

$$
\mathbf{P}\{S E(\widehat{\boldsymbol{\alpha}})>\epsilon\} \leq \mathbf{P}\left\{\operatorname{ISE}(\widehat{\boldsymbol{\alpha}})>\operatorname{ISE}(\mathbf{u})+\frac{\epsilon}{2}\right\}+\mathbf{P}\left\{\operatorname{ISE}(\mathbf{u})>\frac{\epsilon}{2}\right\}
$$

and from Lemma 3 and 4, The second term in (18) also converges to 0 in probability from Lemma 2. This proves the theorem.

References

[1] John C.Platt, "Sequential minimal optimization: A fast algorithm for training support vector machines," Technical Report MSR-TR-98-14, April 2001.
[2] Mark Girolami and Chao He, "Probability density estimation from optimally condensed data samples," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 10, pp. 1253-1264, OCT 2003.
[3] L. Devroye and G. Lugosi, "Combinatorial methods in density estimation," 2001.
[4] D. W. Scott, Multivariate Density Estimation, Wiley, New York, 1992.
[5] Charles T. Wolverton and Terry J. Wagner, "Asymptotically optimal discriminant fucntions for pattern classification," IEEE Trans. Info. Theory, vol. 15, no. 2, pp. 258-265, Mar 1969.

