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APPENDIX A
SMO ALGORITHM

Sequential Minimal Optimization (SMO) is a simple algorithm that can quickly solve the SVM QP problem without
any extra matrix storage and without using time-consuming numerical QP optimization steps [1]. SMO decomposes
the overall QP problem into the smallest possible optimization problem. This sub-problem can be solved analytically.
An appropriate variant of SMO to solve (7) is detailed below following [2].

Given α, the algorithm optimizes two variables of α with other variables fixed. Two variables to be optimized
should be chosen from {αi | i ∈ I−} or {αi | i ∈ I+}. Otherwise, the variables which we are trying to optimize cannot
change since the other variables are fixed and due to the constraints

∑
i∈I− αi = 1 and

∑
i∈I+ αi = 1. Suppose that

we choose two variables from {αi | i ∈ I+}. For notational convenience, assume the two variables are α1 and α2

and 1, 2 ∈ I+. Then, (7) reduces to

min
α1,α2

1
2

2∑
i=1

2∑
j=1

αiαjQij +
2∑
i=1

diαi +D

s.t α1, α2 ≥ 0,
2∑
i=1

αi = ∆

where D = 1
2

∑n
i=3

∑n
j=3 αiαjQij −

∑n
i=3 ciαi and

di =
n∑
j=3

αjQij − ci, ∆ = 1−
∑

i∈I+\{1,2}

αi.

We discard D, which is independent of α1 and α2, and eliminate α1 to obtain

min
α2

1
2

(∆− α2)2Q11 + α2 (∆− α2)Q12 (12)

+
1
2
α2

2Q22 + (∆− α2) d1 + α2d2

s.t 0 ≤ α2 ≤ ∆.

Since the objective function is quadratic and convex in one variable α2, we can take the derivative of (12) and set
it equal to zero. Then,

α2 =
∆ (Q11 −Q12) + d1 − d2

Q11 − 2Q12 +Q22
. (13)

Let α∗ denote the value before the optimization step. If we define Oi := Qi1α
∗
1 + Qi2α

∗
2 + di =

∑n
j=1 α

∗
iQij − ci,

then (13) can be expressed as the update equation

α2 = α∗2 +
O1 −O2

Q11 − 2Q12 +Q22
. (14)

If α2 is outside [0,∆], we truncate it so that it is within [0,∆]. After finding α2, α1 can be recovered from α1 = ∆−α2.
The optimality condition and the choice of αi’s can be found in the following way. There are three cases when

choosing α1 and α2 : (a) Both are zero, (b) One is positive and the other is zero, (c) Both are positive.
Case (a): α1 and α2 are not updated because of nonnegativity constraints.
Case (b): Assume that α2 is zero. From (14), α2 is updated only when O1 −O2 > 0 and so is α1

Case (c): α1 and α2 are updated only when O1 6= O2.
The objective value will strictly decrease if and only if α1 and α2 are updated after optimization step. Therefore,
the optimal solution should satisfy

Oi ≥ Oj for αi = 0, αj > 0 (15)
Oi = Oj for αi, αj > 0. (16)

The convergence to the global minimum is thus guaranteed by choosing two αi’s which do not satisfy (15) or (16)
for each optimization step. The optimization procedure for two variables from {αi ∈ I−} is similar.
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APPENDIX B
PROOF OF LEMMA 1
Note that for any given i, (kσ (Xj ,Xi))j 6=i are independent and bounded by M = 1/

(√
2πσ

)d
. For random vectors

Z ∼ f+ (x) and W ∼ f− (x), h (Xi) in (6) can be expressed as

h (Xi) = E [kσ (Z,Xi) | Xi]− γE [kσ (W,Xi) | Xi] .

Since Xi ∼ f+ (x) for i ∈ I+ and Xi ∼ f− (x) for i ∈ I−, it can be easily shown that

E
[
ĥi | Xi

]
= h (Xi) .

For i ∈ I+,

P
{∣∣ĥi − h (Xi)

∣∣ > ε

∣∣∣∣Xi = x, E
}

≤ P
{∣∣∣∣ 1
n+ − 1

∑
j∈I+,j 6=i

kσ (Xj ,Xi)−E [kσ (Z,Xi) | Xi]
∣∣∣∣ > ε

1 + γ

∣∣∣∣Xi = x
}

+ P
{∣∣∣∣ γn− ∑

j∈I−

kσ (Xj ,Xi)− γE [kσ (W,Xi) | Xi]
∣∣∣∣ > γε

1 + γ

∣∣∣∣Xi = x
}

(17)

Since we are conditioning on E, the first term in (17) is

P
{∣∣∣∣ ∑

j∈I+,j 6=i

kσ (Xj ,Xi)− (n+ − 1)E [kσ (Z,Xi) | Xi]
∣∣∣∣ > (n+ − 1) ε

1 + γ

∣∣∣∣Xi = x
}

= P
{∣∣∣∣ ∑

j∈I+,j 6=i

kσ (Xj ,Xi)−E
[ ∑
j∈I+,j 6=i

kσ (Xj ,Xi) | Xi

]∣∣∣∣ > (n+ − 1) ε
(1 + γ)

∣∣∣∣Xi = x
}

= P
{∣∣∣∣ ∑

j∈I+,j 6=i

kσ (Xj ,Xi)−E
[ ∑
j∈I+,j 6=i

kσ (Xj ,Xi) | Xi

]∣∣∣∣ > (n+ − 1) ε
(1 + γ)

∣∣∣∣Xi = x
}

≤ 2e−2(n+−1)ε2/(1+γ)2M2
.

where the last inequality holds by Hoeffding’s inequality [3]. The second term in (17) is

P
{∣∣∣∣∑

j∈I−

kσ (Xj ,Xi)− n−E [kσ (W,Xi) | Xi]
∣∣∣∣ > n−ε

1 + γ

∣∣∣∣Xi = x
}

≤ P
{∣∣∣∣∑

j∈I−

kσ (Xj ,Xi)−E
[∑
j∈I−

kσ (Xj ,Xi) | Xi

]∣∣∣∣ > n−ε

1 + γ

∣∣∣∣Xi = x
}

≤ 2e−2n−ε
2/(1+γ)2M2

≤ 2e−2(n−−1)ε2/(1+γ)2M2
.

Therefore,

P
{∣∣∣ĥi − h (Xi)

∣∣∣ > ε
}

=
∑
x

P
{
Xi = x

}
·P
{∣∣∣ĥi − h (Xi)

∣∣∣ > ε

∣∣∣∣Xi = x
}

≤
∑
x

P
{
Xi = x

}(
2e−2(n+−1)ε2/(1+γ)2M2

+ 2e−2(n−−1)ε2/(1+γ)2M2
)

= 2e−2(n+−1)ε2/(1+γ)2M2
+ 2e−2(n−−1)ε2/(1+γ)2M2

.

In a similar way, it can be shown that for i ∈ I−,

P
{∣∣∣ĥi − h (Xi)

∣∣∣ > ε
}
≤ 2e−2(n+−1)ε2/(1+γ)2M2

+ 2e−2(n−−1)ε2/(1+γ)2M2
.
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Then,

P
{

sup
α∈A

|Hn (α)−H (α)| > ε

}
= P

{
sup
α∈A

∣∣∣∣ n∑
i=1

αiYi

(
ĥi − h (Xi)

)∣∣∣∣ > ε

}

≤ P

{
sup
α∈A

n∑
i=1

αi |Yi|
∣∣∣ĥi − h (Xi)

∣∣∣ > ε

}

= P
{

sup
α∈A

n∑
i∈I+

αi

∣∣∣ĥi − h (Xi)
∣∣∣+

n∑
i∈I−

αiγ
∣∣∣ĥi − h (Xi)

∣∣∣ > ε

}

≤ P
{

sup
α∈A

n∑
i∈I+

αi

∣∣∣ĥi − h (Xi)
∣∣∣ > ε

1 + γ

}
+ P

{
sup
α∈A

n∑
i∈I−

αiγ
∣∣∣ĥi − h (Xi)

∣∣∣ > γε

1 + γ

}
= P

{
max
i∈I+

∣∣∣ĥi − h (Xi)
∣∣∣ > ε

1 + γ

}
+ P

{
max
i∈I−

∣∣∣ĥi − h (Xi)
∣∣∣ > ε

1 + γ

}
= P

{ ⋃
i∈I+

{∣∣∣ĥi − h (Xi)
∣∣∣ > ε

1 + γ

}}
+ P

{ ⋃
i∈I−

{∣∣∣ĥi − h (Xi)
∣∣∣ > ε

1 + γ

}}
≤

∑
i∈I+

P
{∣∣∣ĥi − h (Xi)

∣∣∣ > ε

1 + γ

}
+
∑
i∈I−

P
{∣∣∣ĥi − h (Xi)

∣∣∣ > ε

1 + γ

}
≤ n+

(
2e−2(n+−1)ε2/(1+γ)4M2

+ 2e−2(n−−1)ε2/(1+γ)4M2
)

+ n−

(
2e−2(n+−1)ε2/(1+γ)4M2

+ 2e−2(n−−1)ε2/(1+γ)4M2
)

= n
(

2e−2(n+−1)ε2/(1+γ)4M2
+ 2e−2(n−−1)ε2/(1+γ)4M2

)
.

APPENDIX C
PROOF OF THEOREM 2
Define u = (u1, . . . , un) such that ui = 1/n+ for i ∈ I+ and ui = 1/n− for i ∈ I−. By the similar argument for the
convergence of MISE of kernel density estimate [4], it can be shown, using a multivariate Taylor series, that

MISE (u;n+, n−) = E [ISE (u)]

=
∫
V ar

(
d̂γ (x; u)

)
+ bias2

(
d̂γ (x; u)

)
dx

=
{

1
n+σd

+
γ2

n−σd

}
R (k) +

1
4
σ4R

(
tr
{
Hdγ

})
+ o

(
n−1

+ σ−d + n−1
− σ−d + σ4

)
where R (f) =

∫
f2 (x) dx and Hf represent the Hessian matrix of f . Therefore, ISE (u) converges to 0 in probability

since σ → 0, n+σ
d →∞ and n+σ

d →∞ as n→∞. Furthermore,

P {ISE (α̂) > ε} = P
{
ISE (α̂) > ε, ISE (u) >

ε

2

}
+ P

{
ISE (α̂) > ε, ISE (u) ≤ ε

2

}
≤ P

{
ISE (u) >

ε

2

}
+ P

{
ISE (α̂) > ISE (u) +

ε

2

}
.

From the consistency of ISE (u) and the oracle inequality stated in Theorem 1, ISE (α̂) converges to 0 in probability.

APPENDIX D
PROOF OF THEOREM 3
First note that in the previous analyses we treat N+, N− and γ as deterministic variables but now we turn to the
case where these variables are random. Thus, some of the previous results should be restated considering this.

Lemma 2: γ converges to γ∗ with probability 1.
Proof: Note that N+ and N− are binomial random variables with (n, p) and (n, q) where q = 1 − p. From the

Hoeffding’s inequality, we know that for ∀ε > 0

P
{
N+

n
− p > ε

}
≤ e−2nε2 , P

{
N+

n
− p < −ε

}
≤ e−2nε2

P
{
N−
n
− q > ε

}
≤ e−2nε2 , P

{
N−
n
− q < −ε

}
≤ e−2nε2 .
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Then, for any ε > 0

Pn (ε) , P
{∣∣∣∣N−N+

− q

p

∣∣∣∣ > ε

}
= P {|pN− − qN+| > εpN+}

= P
{
|pN− − qN+| > εpN+, N+ ≥

np

2

}
+ P

{
|pN− − qN+| > εpN+, N+ <

np

2

}
≤ P

{
|pN− − qN+| > εp · np

2

}
+ P

{
N+ <

np

2

}
≤ P

{
|pN− − pqn+ pqn− qN+| >

nεp2

2

}
+ P

{
N+ − pn < −

np

2

}
≤ P

{
|pN− − pqn| >

nεp3

2

}
+ P

{
|qN+ − pqn| >

nεp2q

2

}
+ P

{
N+ − pn < −

np

2

}
= P

{∣∣∣∣N−n − q
∣∣∣∣ > εp2

2

}
+ P

{∣∣∣∣N+

n
− p
∣∣∣∣ > εp2

2

}
+ P

{
N+

n
− p < −p

2

}
≤ 4 exp

(
−nε

2p4

2

)
+ exp

(
−np

2

2

)
.

Since
∑∞
n=1 Pn (ε) <∞ for all ε > 0, γ converges to γ∗ with probability 1.

Lemma 3: Suppose the assumptions in Theorem 3 are satisfied. For any ε′ > 0, P{ISE (α̂) > infα∈A ISE (α)+ε′}
converges to 0.

Proof: We need to restate Theorem 1 as follows. For any δ > 0,

P
{
ISE (α̂) > inf

α∈A
ISE (α) + 4

√
ln (2n/δ)

c[min (N+, N−)− 1]

∣∣∣∣N+ = n+, N− = n−

}
≤ δ

since √
ln (2n/δ)

c[min (n+, n−)− 1]
≤ ε ≤

√
ln (2n/δ)

c[max (n+, n−)− 1]
.

Let us define c′ = 2
(√

2πσ
)2d

/ (1 + 2γ∗)4 and an event D =
{
N+ ≥ np

2 , N− ≥
n(1−p)

2 , γ ≤ 2γ∗
}

. Then,

P

{
ISE (α̂) > inf

α∈A
ISE (α) + 4

√
2 ln (2n/δ)

c′[min (np, n (1− p))− 1]

}

≤ P
{
Dc
}

+ P
{
D
}
·P
{
ISE (α̂) > inf

α∈A
ISE (α) + 4

√
2 ln (2n/δ)

c′[min (np, n (1− p))− 1]

∣∣∣∣D}.
The first term converges to 0 from the strong law of large numbers and Lemma 2. The second term becomes

P
{
ISE (α̂) > inf

α∈A
ISE (α) + 4

√
2 ln (2n/δ)

c′[min (np, n (1− p))− 1]

∣∣∣∣D}

≤ P
{
ISE (α̂) > inf

α∈A
ISE (α) + 4

√
ln (2n/δ)

c[min (N+, N−)− 1]

∣∣∣∣D}

=
∑

P

{
ISE (α̂) > inf

α∈A
ISE (α) + 4

√
ln (2n/δ)

c[min (N+, N−)− 1]

∣∣∣∣D,N+ = n+, N− = n−

}
·P {N+ = n+, N− = n−}

≤
∑

δP {N+ = n+, N− = n−} = δ.

For any δ > 0, we can make 4
√

2 ln (2n/δ)
c′[min(np,n(1−p))−1] smaller than ε′ as n→∞, provided that lnn/nσd → 0 as n→ 0.

Therefore, P {ISE (α̂) > infα∈A ISE (α) + ε′} converges to 0.
Lemma 4: Suppose the assumptions in Theorem 3 are satisfied. Then, ISE (u) converges to 0 in probability.

Proof: Define an event D =
{
N+ ≥ np

2 , N− ≥
n(1−p)

2 , γ ≤ 2γ∗
}

. For any ε > 0,

P {ISE (u) > ε} ≤ P
{
Dc
}

+ P
{
ISE (u) > ε, D

}
.
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The first term converges to 0 from the strong law of large numbers and Lemma 2. Let define a set S =
{

(n+, n−)
∣∣n+ ≥

np
2 , n− ≥

n(1−p)
2 , n−n+

≤ 2γ∗
}

. Then,

P
{
ISE (u) > ε, D

}
=

∑
P
{
ISE (u) > ε, D

∣∣∣∣N+ = n+, N− = n−

}
·P {N+ = n+, N− = n−}

=
∑

(n+,n−)∈S

P
{
ISE (u) > ε

∣∣∣∣N+ = n+, N− = n−

}
·P {N+ = n+, N− = n−}

≤
∑

(n+,n−)∈S

E
[
ISE (u)

∣∣N+ = n+, N− = n−
]

ε
·P {N+ = n+, N− = n−}

≤ 1
ε

∑
(n+,n−)∈S

[
1
nσd

(
2
p

+
8γ∗2

1− p

)
R (k) +

1
4
σ4R

(
tr
{
Hdγ

})
+ o

(
n−1σ−d + σ4

)]
·P {N+ = n+, N− = n−}

≤ 1
ε

(
1
nσd

{
2
p

+
2γ∗2

1− p

}
R (k) +

1
4
σ4R

(
tr
{
Hdγ

})
+ o

(
n−1σ−d + σ4

))
where the second to the last step, we used MISE (u;n+, n−) formula in explained in Appendix C and the fact that
for (n+, n−) ∈ S,

1
n+σd

+
1

n−σd
≤ 2
npσd

+
2

n(1− p)σd
=

1
nσd

(
2
p

+
2

1− p

)
Therefore, ISE (u) converges to 0 since σ → 0 and nσd →∞ as n→∞.
Now let’s prove Theorem 3. From Theorem 3 in [5], it suffices to show that∫ (

d̂γ (x; α̂)− dγ∗ (x)
)2

dx→ 0

in probability. Note that

‖d̂γ (x; α̂)− dγ∗ (x) ‖L2 = ‖d̂γ (x; α̂)− dγ (x) + (γ − γ∗) f− (x) ‖L2

≤ ‖d̂γ (x; α̂)− dγ (x) ‖L2 + ‖ (γ − γ∗) f− (x) ‖L2

=
√
ISE (α̂) + |γ − γ∗| · ‖f− (x) ‖L2 . (18)

For the first term in (18), P
{
ISE (α̂) > ε

}
converges to 0 in probability since

P {SE (α̂) > ε} ≤ P
{
ISE (α̂) > ISE (u) +

ε

2

}
+ P

{
ISE (u) >

ε

2

}
and from Lemma 3 and 4, . The second term in (18) also converges to 0 in probability from Lemma 2. This proves
the theorem.
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