# Beyond Standard Model Physics with Neutrino Driven Sources Workshop

MIT January 15 – 16, 2018

## Welcome and Thanks for Coming

#### Goals and Background for the Workshop

- The goal of this workshop is to bring theorists and experimentalists together to discuss and elucidate the physics of accelerator-driven, isotope-based neutrino sources.
- Plan to concentrate on IsoDAR as an example but hope to explore other future possibilities.
- The two main IsoDAR physics possibilities looked at so far:
  - Searching for nuebar disappearance at short-baseline via inverse beta decay (arXiv: 1205.4419)
  - Nuebar-electron elastic scattering as a measurement of the weak mixing angle and/or to search for non-standard neutrino interactions. (arXiv 1307.5081)
- Enhancing the physics case for accelerator-driven sources such as IsoDAR is a main impetus for the workshop.
  - Coming up with ideas to explore qualitatively at the workshop and then in more details later.

#### **Schedule and Agenda**

#### Monday morning (1/15):

- -9:00-9:30am People gather, eat donuts, and talk
- -9:30-10:00am Intro/welcome (Shaevitz)
- -10:00-10:30am Physics with IsoDAR@KamLAND (Shaevitz)
- -10:30-11:00am How does IsoDAR work? (Conrad)
- -11:00-11:30am Kamland's plans and how IsoDAR fits (Winslow)
- -11:30-12:00pm IsoDAR at other venues and future sources (Spitz)
- -12:00-12:15pm Workshop resources and goals (Spitz)
- -12:15pm We will go to lunch together.

#### Monday afternoon (1/15):

- -1:30-2:00pm Status of sterile neutrinos (Huber)
- -2:00-2:30pm BSM questions with nuebar-electron (de Gouvea)
- -2:30-6:00pm Workshop style session (extra breakout room is 26-528)
- -3:00pm-finish IsoDAR ion source tour (optional)
- -6:30pm Dinner (At Naco Taco Please fill out doodle poll )

#### Tuesday morning and afternoon (1/16):

- -9:00am Start working time and discussion (all morning)
- -12:00pm Working lunch
- -1:00pm Start 10 minute talks/reports from each working group
- -3:00pm End

#### **Google Doc to Collect Ideas**

We have created an editable google document <u>here</u>, to collect ideas and thoughts on IsoDAR physics. Please feel free to add to this document (any time, including now) as you see fit!

"Ideas: Beyond Standard Model Physics with Neutrino Driven Sources"

- -IsoDAR as a source for coherent neutrino-nucleus scattering.
- -IsoDAR events in Super-K, perhaps as a source for understanding supernova (nuebar-indcued IBD) efficiencies at low energies.
- -IsoDAR at DUNE (neutral current neutrino-nucleus scattering).
- -Changing IsoDAR's target to Aluminum so that we have a source of nue, rather than nuebar.
- -IsoDAR as a source for a neutrino trident production search.
- -Using IsoDAR to inform reactor-based experiments.
- -Use 7Li source to produce 8Be and look for 17 MeV e+e- anomaly (see <a href="https://arxiv.org/pdf/1504.01527.pdf">https://arxiv.org/pdf/1504.01527.pdf</a> and <a href="https://arxiv.org/pdf/1604.07411.pdf">https://arxiv.org/pdf/1604.07411.pdf</a>). Need ability to tune proton energy to 0.441 and 1.03 MeV for resonant production, but IsoDAR beam current is 1000 times that of original experiment, so could be promising YK
- could extend reach of <u>LSND</u> to <u>light DM</u>, signal is either DM-electron scattering or DM decay to e+e- pair in detector (see <a href="https://arxiv.org/pdf/1703.06881.pdf">https://arxiv.org/pdf/1703.06881.pdf</a>). Depends on bremsstrahlung rate or pi0 production rate if the beam energy can be tuned above pion threshold yK

## Possible Working Groups (More Later from Josh on Organization)

- Some ideas for topics:
  - Pushing on 'already-characterized' IsoDAR physics
  - IsoDAR as a source for coherent neutrino-nucleus scattering.
  - IsoDAR at other detectors: Super-K, DUNE, JUNO .....
  - IsoDAR as a  $v_e$ , rather than a  $v_e$  source.
  - IsoDAR as a source for a neutrino trident production search.
  - Using IsoDAR to provide measurements important for reactor and geoneutrino measurements
  - Precision β-decay spectrum measurements (i.e  $^8$ Li spectrum from  $\overline{\nu}_e$  energy distribution.)
- More from Josh on working groups and tools/ntuples etc.

## Physics with IsoDAR@KamLAND



#### **IsoDAR Experiment**

Isotope Decay-At-Rest Neutrino Source ( $\bar{v}_e$  Disappearance) to Search for Sterile Neutrinos

#### What is IsoDAR@KamLAND?

- High intensity  $\bar{\nu}_e$  source using  $\beta$ -decay at rest of  $^8$ Li isotope  $\Rightarrow$  IsoDAR
- 8Li produced by a high-intensity proton 10 ma (5ma H<sub>2</sub><sup>+</sup>) beam from a 60 MeV cyclotron
  - p +  $^9$ Be → many n's ⇒ n +  $^7$ Li (shielding) →  $^8$ Li ⇒  $^8$ Li →  $^8$ Be + e<sup>-</sup> +  $^-$ ν<sub>e</sub>
  - Mean  $\overline{v}_e$  energy = 6.5 MeV with 2.6×10<sup>22</sup>  $\overline{v}_e$  / yr
  - Continuous (non-bunched)  $\bar{v}_e$  flux (8Li half-life = 840 ms)
- Put this cyclotron-isotope source near the large KamLAND neutrino detector.



- Physics measurements:
  - $\nu_{\rm e}$  disappearance measurement in the region of the LSND and reactor-neutrino anomalies.
  - Measure oscillatory behavior within the detector as a function of L and E.
  - Precision electroweak measurements using  $\bar{\nu}_e$  + e<sup>-</sup>  $\rightarrow \bar{\nu}_e$  + e<sup>-</sup>
  - Other "exotic" physics possibilities

#### **Detection Channels**

#### Sterile v search: Inverse β decay (IBD)



## BSM physics: $\overline{v}_e$ -e elastic scattering (ES)



#### IBD channel:

- Delayed coincidence
- Neutrino energy reconstructed
- 3. Large cross section
- Cross section known to < 1%</li>
- 5. Only occurs on free protons
- 6. 1.8 MeV  $\overline{v}_e$  energy threshold

#### **ES** channel:

- Single scatters in detector
- 2. Outgoing  $\overline{v}_{e}$  energy unknown
- 3. Lower cross section
- 4. Cross section known to < 1%
- 5. No  $\overline{V}_{e}$  energy threshold

#### Where Can IsoDAR Run?

KamLAND – 1 kton Liq Scint



JUNO – 20 kton Liq Scint



Borexino – 0.25 kton Liq Scint



LENA - 50 kton Liq Scint



DUNE - 10 kton LAr but no free protons









#### **Many Experimental Hints for Sterile Neutrinos**

• MiniBooNE/LSND  $v_e$  /  $v_e$  appearance signals



Reactor Anomaly:
 v<sub>e</sub> disappearance signals?



 Also, radioactive source anomaly (SAGE/GALLEX) Data sets indicate a high  $\Delta m^2$ 

Can be fit by introducing a new v, ...but it must be non-interacting (sterile)!



These signals are at the 2-4 $\sigma$  level  $\Rightarrow$  Need new "definitive" experiments *Establishing the existence of sterile neutrinos would be a major* result for particle physics

#### 3+1 Models May Not be the Solution.

- There is "tension" for 3+1 models between:
  - Neutrino and antineutrino data
  - Appearance and disappearance data

 $\Rightarrow$  If there are sterile neutrinos, the solution is probably not 3+1

| Global Fit Results |                            | $\chi^2_{PG} 	ext{ (dof)}$ | PG(%) |
|--------------------|----------------------------|----------------------------|-------|
| 3+1                | $\nu$ vs. $\overline{\nu}$ | 15.6 (3)                   | 0.14% |
| 3+2                | $\nu$ vs. $\overline{\nu}$ | 13.9 (7)                   | 5.3%  |
| 3+3                | $\nu$ vs. $\overline{\nu}$ | 10.9 (12)                  | 53%   |





Experiments must be designed to be definitive, Even in 3+2 or 3+3 models....

 $\Rightarrow$  Otherwise we are likely to just end up with more questions.

#### **Establishing the Existence of Sterile Neutrinos**

 Since sterile neutrino do not interact, can look for them by searching for the disappearance of normal neutrinos

$$v_e \rightarrow v_{sterile} \rightarrow Disappears$$

• This happens because the mass of the  $\overline{\nu}_e$  and the  $\overline{\nu}_{sterile}$  are different ( $\Delta m^2 \neq 0$ ) $\Rightarrow$  Neutrino Oscillations

Disappearance Probability = 
$$1 - \sin^2 2\theta \sin^2 (1.27 \Delta m^2 L / E)$$

- To establish the existence ⇒ Need a definitive experiment
  - High significance at the  $> 5\sigma$  level
  - Smoking gun: Observation of oscillatory behavior within detector

#### v - Source



#### IsoDAR $\overline{\nu}_e$ Source



 $5 \text{ mA H}_2^+ @ 60 \text{ MeV}/n$ (600 kW proton beam)

$$^{8}\text{Li} \rightarrow ^{8}\text{Be} + e^{-} + \bar{\nu}_{e}$$

Produces  $1.29 \times 10^{23} \ \bar{\nu}_e$  in 5 years (with 90% duty factor)

## The IsoDAR at KamLAND Experiment



- IsoDAR Setup
  - Small Backgrounds
  - Good control of systematic uncertainties
- Physics measurements:
  - $v_e$  disappearance measurement in the region of the LSND and reactor-neutrino anomalies.
  - Measure oscillatory behavior within the detector as a function of L and E.

#### **Key features of IsoDAR setup:**

- High statistics
- Compact antineutrino source
  - Bring source to underground detector
  - $\sigma_x = \sigma_v = 23$  cm and  $\sigma_z = 37$  cm
- Well understood energy spectrum
  - <sup>8</sup>Li β-decay dominates v<sub>e</sub> flux
  - Above 3 MeV environmental backgrounds
- Pair with the underground KamLAND detector
  - Both L and E accurately reconstructed
    - vertex: 12cm/√E(MeV)
    - energy: 6.4% →  $3\%/\sqrt{E(MeV)}$
  - Delayed coincidence signal reduces backgrounds
  - Backgrounds don't show L/E oscillation behavior

#### Advantage of IsoDAR $\Rightarrow$ High-intensity, well-understood $v_e$ beam

- IsoDAR  $\overline{v}_e$  beam
  - About 0.016 <sup>8</sup>Li isotopes per proton produced
    - Giving a very high-intensity  $\overline{v}_e$  flux
  - 8Li is the only significant neutrino producing isotope
    - Well-understood energy spectrum
  - <sup>8</sup>Li production mainly from neutron capture on <sup>7</sup>Li sleeve





#### **Advantage of IsoDAR** ⇒ Compact neutrino source

- IsoDAR produces compact neutrino source:
  - $-\sigma_x = \sigma_y = 23$  cm and  $\sigma_z = 37$  cm
  - Well-understood energy spectrum
- Couple with KamLAND resolutions
  - vertex: 12cm/√E(MeV)
  - energy: 6.4%/√E(MeV)

⇒ These combine to give excellent

L/E resolution for oscillation





#### **Proposal to Run at KamLAND**



60 MeV/n 5 mA H<sub>2</sub><sup>+</sup> Cyclotron

 $^9$ Be/ $^7$ Li Target and  $\overline{v}_{\rm e}$  Source

#### Five Years of Running at KamLAND

#### Inverse β Decay (IBD)



| Accelerator                              | 60 MeV/amu of H <sub>2</sub> <sup>+</sup>                                     |  |  |
|------------------------------------------|-------------------------------------------------------------------------------|--|--|
| Current                                  | 10 mA of protons on target                                                    |  |  |
| Power                                    | 600 kW                                                                        |  |  |
| Duty cycle                               | 90%                                                                           |  |  |
| Run period                               | 5 years (4.5 years live time)                                                 |  |  |
| Target                                   | <sup>9</sup> Be surrounded by <sup>7</sup> Li (99.99%)                        |  |  |
|                                          | <sup>8</sup> Li $\beta$ decay ( $\langle E_{\nu} \rangle = 6.4 \text{ MeV}$ ) |  |  |
| $\overline{\nu}_e/1000$ protons          | 14.6                                                                          |  |  |
| $\overline{\nu}_e$ flux                  | $1.29 \times 10^{23} \ \overline{\nu}_e$                                      |  |  |
| Detector                                 | KamLAND                                                                       |  |  |
| Fiducial mass                            | 897 tons                                                                      |  |  |
| Target face to detector center           | 16 m                                                                          |  |  |
| Detection efficiency                     | 92%                                                                           |  |  |
| Vertex resolution                        | $12 \text{ cm}/\sqrt{E \text{ (MeV)}}$                                        |  |  |
| Energy resolution                        | 3% /√E (MoV)                                                                  |  |  |
| Prompt energy threshold                  | 3 MeV                                                                         |  |  |
| IBD event total                          | 8.2×10 <sup>5</sup>                                                           |  |  |
| $\overline{\nu}_e$ -electron event total | 2600                                                                          |  |  |
|                                          |                                                                               |  |  |



#### **820,000 IBD** events

> Sterile neutrino search

#### 2,600 $\overline{v}_e$ -electron events

- $\triangleright$  Measure sin<sup>2</sup>θ<sub>w</sub> to 3.2%
- Probe weak couplings and nonstandard interactions (NSIs)

#### IsoDAR $\bar{v}_e$ Disappearance Oscillation Sensitivity (3+1)



 $\Rightarrow$  Global fit region can be ruled out at > 5 $\sigma$  in 4 months of running!

## IsoDAR at KAMLAND Measurement Sensitivity (5 yrs)



#### Oscillation L/E Waves in IsoDAR at KAMLAND

Observed/Predicted event ratio vs L/E including energy and position smearing



IsoDAR's high statistics and good L/E resolution has potential to distinguish (3+1) and (3+2) oscillation models

#### IsoDAR Comparison to Other $\bar{\nu}_e$ Disappearance Proposals



#### IsoDAR @ JUNO









## IsoDAR Also Has Excellent Measurement Capability for $\bar{\nu}_e$ + e<sup>-</sup> $\rightarrow \bar{\nu}_e$ + e<sup>-</sup>

- Precision neutrino-electron scattering is one of the cleanest way to probe the electroweak interactions of the neutrino
  - Purely leptonic process so no QCD corrections and uncertainties



- Cross section is extremely small so a difficult measurement
  - Need a very high flux neutrino source and a large detector
- Since this standard model process is very well understood, one can use these studies to look for new physics.
  - Some hints that neutrinos could have anomalous weak interactions
  - Extensions to the standard model can have new mediators for this type of process
- IsoDAR coupled with KamLAND could make the world's best  $\,\nu_e^{} e^{}$  elastic scattering measurement

#### $\overline{\nu}_{\rm e}$ e Elastic Scattering

#### Standard Model



$$\frac{d\sigma}{dT} = \frac{2G_F^2 m_e}{\pi} \left[ g_R^2 + g_L^2 (1 - \frac{T}{E_\nu})^2 - g_R g_L \frac{m_e T}{E_\nu^2} \right]$$

$$g_L = \frac{1}{2} + \sin^2 \theta_W; \quad g_R = \sin^2 \theta_W$$



#### Non-Standard Interactions (NSI)

$$\frac{d\sigma(E_{\nu},T)}{dT} = \frac{2G_F^2 m_e}{\pi} [(\tilde{g}_R^2 + \sum_{\alpha \neq e} |\epsilon_{\alpha e}^{eR}|^2) + \\ \bar{\nu}_e \qquad \bar{\nu}_e \qquad (\tilde{g}_L^2 + \sum_{\alpha \neq e} |\epsilon_{\alpha e}^{eL}|^2) \left(1 - \frac{T}{E_{\nu}}\right)^2 - \\ (\tilde{g}_R \tilde{g}_L + \sum_{\alpha \neq e} |\epsilon_{\alpha e}^{eR}| |\epsilon_{\alpha e}^{eL}|) m_e \frac{T}{E_{\nu}^2}]$$

$$ilde{g}_L = g_L + \epsilon_{ee}^{eL} \quad ilde{g}_R = g_R + \epsilon_{ee}^{eR}$$



#### $v_e$ e Elastic Scattering Signal



#### Characteristics

- Single scatters in the detector from the low xsec  $\, \overline{\nu}_e$  process
- Can't measure incoming  $\bar{\nu}_e$  energy since outgoing  $\bar{\nu}_e$
- Normalization of incoming  $\bar{\nu}_e$  flux known from 800K IBD events
- Cross section known to <1%</li>
- No  $\bar{\nu}_e$  energy threshold
- IsoDAR produces a continuous beam ⇒ No beam timing cuts
- Both beam and non-beam backgrounds

#### Beam Backgrounds

#### $\Rightarrow$ IBD events where you miss the neutron tag

- IBD rejection inefficiencies come from
  - Neutrons wandering outside target region
  - Neutron capture γ's which escape target region
  - Finite energy resolution
  - Neutron capture on other isotopes
  - Very long/short neutron capture times

#### **Beam Backgrounds**

- IBD rejection inefficiencies come from
  - Neutrons wandering outside target region
  - Neutron Capture vs which escape target region
  - Finite energy resolutived Energy Cut
  - Neutron capture on other isotopes
  - Very Loose Time Coincidence Cut



IBD rejection efficiencies of 99.75% are achievable

#### **Non-beam Background**



#### Non-beam Background

- Background reduction strategies:
  - Long muon veto
    - Remove muon spallation production of cosmogenics
  - 3 MeV energy threshold
    - Remove natural radioactivity from rock and material
  - 5 meter radius cut on fiducial volume
    - Remove external gammas
  - Can measure and subtract nonbeam background using the large sample of KamLAND beam-off running

|                               | Events |
|-------------------------------|--------|
| <sup>8</sup> B solar neutrino | 890.1  |
| $^{208}T1$                    | 594.3  |
| External $\gamma$ stainless   | 227.4  |
| External γ rock               | 533.7  |
| Spallation <sup>8</sup> B     | 42.5   |
| Spallation <sup>8</sup> Li    | 94.9   |
| Spallation <sup>11</sup> Be   | 490.0  |
| Total                         | 2872.9 |
|                               |        |



#### $\overline{v}_e$ e Elastic Scattering Kinematics



- Reduction of non-beam backgrounds by cutting on outgoing electron angle wrt IsoDAR target
  - No directionality available for liquid scintillator detectors.
  - Only can be done for water
     Cherenkov or LAr detectors
  - 30° cut would reduce non-beam background by x6





## $v_e$ e ES Events with IsoDAR Spectrum for $E_{Vis} > 3$ MeV ( $\theta_e$ vs $E_e$ )



#### **Sensitivity Estimates**

$$s_0 = \sin^2 \theta_W^0$$
 and  $s_f = \sin^2 \theta_W^{\text{Fit}}$ 

$$\chi^{2}$$
  $(s_{f}) =$ 

$$\sum_{i} \frac{\left(N_{i}\left(s_{0}\right) - \left(N_{i}\left(s_{f}\right) + \alpha * ES_{i}\left(s_{f}\right) + \beta * B_{i}^{on}\right)\right)^{2}}{\left(N_{i}\left(s_{0}\right) + B_{i}^{off}\right)} + \left(\frac{\alpha}{\sigma_{\alpha}}\right)^{2} + \left(\frac{\beta}{\sigma_{\beta}}\right)^{2},$$
ES Signal Beam-off Beam-on Bkgnd  $N_{i}\left(s\right) = ES_{i}\left(s\right) + B_{i}^{off} + B_{i}^{on}$ 

Beam-on Bkgnd uncertainty  $v_e$  Flux uncertainty

$$\sigma_{\beta} = 0.02/0.25 = 0.08$$
  $\sigma_{\alpha} = 0.007$   $\sin^2 \theta_W^0 = 0.238$ 

#### IsoDAR at KamLAND

#### Use $\overline{\nu}_e$ e Elastic Scattering $\Rightarrow$ Measure $\sin^2\theta_W$

- 5yr data gives 2600 events with  $E_{vis}>3MeV \Rightarrow \delta sin^2\theta_W = 0.0076$  (~3.2%)
  - Would be world's best  $\overline{v_e}$ e (or  $v_e$ e) elastic scattering measurement



|              | Bkg factor | $\delta \sin^2 \theta_W$ | $\frac{\delta \sin^2 \theta_W}{\sin^2 \theta_W}$ | $\delta \sin^2 	heta_W^{	ext{stat-only}}$ |
|--------------|------------|--------------------------|--------------------------------------------------|-------------------------------------------|
| Rate + shape | 1.0        | 0.0076                   | 3.2%                                             | 0.0057                                    |
| Shape only   | 1.0        | 0.0543                   | 22.8%                                            | 0.0395                                    |
| Rate only    | 1.0        | 0.0077                   | 3.2%                                             | 0.0058                                    |
| Rate + shape | 0.5        | 0.0059                   | 2.5%                                             | 0.0048                                    |
| Rate + shape | 0.0        | 0.0040                   | 1.7%                                             | 0.0037                                    |



#### IsoDAR at KamLAND

#### **Search for Non-Standard Neutrino Interactions**

- Use precision neutrino-electron scattering to probe for Non-Standard Interactions (NSI) since it is a well-understood Standard Model process
  - Sensitivity comparable to current world average
  - IsoDAR@KamLAND measurement would constrain and restrict allowed regions as well as possibly see indications of new physics



#### IsoDAR at KamLAND Physics Program

- Two physics measurements have been investigated:
  - Sterile neutrino search using  $\overline{v}_e$  disappearance
  - Precision electroweak measurements and NSI searches
- Going beyond the work done on these two core topics is an important component for strengthening the IsoDAR physics case.
  - Making these two measurements better and finding ways to apply the data to other physics might be possible.
  - Expanding the use of the IsoDAR@KamLAND experiment to other processes (i.e.  $v_e$  instead of  $v_e$  scattering)
  - Possibility of using IsoDAR with other detectors or other types of setups.

### ⇒ Next Talk

### How does IsoDAR work?

- Janet Conrad