Carsharing Fleet Location Design with Mixed Vehicle Types for CO2 Emission Reduction

Joy Chang Joint work with Siqian Shen (U of Michigan IOE) and Ming Xu (U of Michigan SNRE)

> INFORMS Annual Meeting Nashville November 13, 2016

Outline

- Introduction
- Mathematical Models
- Computational Results
- Conclusions

What is carsharing?

- Short-term car rentals
- One-way or round-trip

Industry growth

Worldwide membership tripled over 4 years

Adapted from "Carsharing and personal vehicle services: worldwide market developments and emerging trends", S.A. Saheen.

Worldwide fleet sizes tripled over 4

years

4

Carsharing providers

Carshare design and optimization

- Consider strategic decisions
 - Car types to purchase to appeal to larger customer base?
 - Carbon emissions limit?
- Evaluate the impact
 - Case study (Zipcar Boston)
 - Mathematical modeling
- Optimize profitability and quality of service via models that
 - Incorporate round-trip and one-way demands
 - Incorporate carbon emissions constraint
 - Make strategic decisions about diverse portfolio of vehicle types

Outline

- Introduction
- Mathematical Models
- Computational Results
- Conclusions

Framing the problem

Carsharing companies need a diverse vehicle portfolio

How does demand for different vehicle types affect:

- Profitability
- Quality of service
 - One-way and round-trip
 - Denied trip
 - Trip fulfillment
- Purchasing decisions
- Carbon emissions

Building the spatial-temporal network

- Zones 1, 2
- Time periods 0, 1, 2, 3
- n_{it}: Zone *i* at time *t*

Round-trip arcs

- Zones 1, 2
- Time periods 0, 1, 2, 3
- n_{it}: Zone *i* at time *t*

Туре	Volume	Origin	Destination	Start	End
One-way	3	2	1	0	3
Round-trip	2	2	[2	3

One-way arcs

- Zones 1, 2
- Time periods 0, 1, 2, 3
- n_{it}: Zone *i* at time *t*

Туре	Volume	Origin	Destinatio	Destination Start		End	
One-way	3	2	1	0		3	
Round-trip	2	2		2		3	

Idle arcs

- Zones 1, 2
- Time periods 0, 1, 2, 3
- n_{it}: Zone *i* at time *t*

Туре	Volume	Origin	Destination	Start	End
One-way	3	2	1	0	3
Round-trip	2	2		2	3

Relocation arcs

- Zones 1, 2
- Time periods 0, 1, 2, 3
- n_{it}: Zone *i* at time *t*

Туре	Volume	Origin	Destination	Start	End
One-way	3	2	1	0	3
Round-trip	2	2		2	3

Final spatial-temporal network

- Zones 1, 2
- Time periods 0, 1, 2, 3
- n_{it}: Zone *i* at time *t*

Туре	Volume	Origin	Destination	Start	End
One-way	3	2	1	0	3
Round-trip	2	2		2	3

Defining Model 1

Inputs

- Car purchase cost and emissions generated
- Car rental price
- Arc capacity (demand)

Objective

• Maximize total revenue of operating cars over set time

Defining Model 1

Decision variables

- Number and type of cars purchased at each zone
- Number of cars to route along each arc

Constraints

- Number of cars entering each node equals number of cars leaving
- Carbon emission produced does not exceed limit
- Car purchase cost does not exceed limit

Assumptions

- A set of service zones and a finite number of service periods
- Serve one-way and round-trip rentals
- Cars can be relocated, to balance vehicle distributions
- Unsatisfied demand is immediately lost

Type of Arc	Capacity u_{aj}	CO_2 emission e_{aj}
Idle arcs $a=(n_{it},n_{i,t+1})\in A^I$	v_j^{\max}	0
Round-trip arc $a = (n_{it}, n_{is}) \in A^R$	d_{ijts}	$c_j(s-t)$
One-way arc $a = (n_{it}, n_{i's}) \in A^O$	$d_{ii'jts}$	$c_j(s-t)$
Relocation arc $a = (n_{it}, n_{i',t+l_{ii'}}) \in A^{REL}$	v_j^{\max}	$c_j l_{ii'}$

Type of Arc	Maintenance	Idle	Relocation	Profit	Arc Revenue k_{aj}
Idle arc $a = (n_{it}, n_{i,t+1}) \in A^I$	b_{jt}	p_{jt}	0	0	$-(b_{jt}+p_{jt})$
Round-trip arc $a = (n_{it}, n_{is}) \in A^R$	$\sum_{\ell=t}^{s-1} b_{j\ell}$	0	0	r_{ijts}	$r_{ijts} - \sum_{\ell=t}^{s-1} b_{j\ell}$
One-way arc $a = (n_{it}, n_{i's}) \in A^O$	$\sum_{\ell=t}^{s-1} b_{j\ell}$	0	0	$r_{ii'jts}$	$r_{ii'jts} - \sum_{\ell=t}^{s-1} b_{j\ell}$
Relocation arc $a = (n_{it}, n_{i',t+l_{ii'}}) \in A^{REL}$	$\sum_{\ell=t}^{t+l_{ii'}-1}b_{j\ell}$	0	$c^{\mathrm{rel}}l_{ii'}$	0	$-c^{\text{rel}}l_{ii'} - \sum_{\ell=t}^{t+l_{ii'}-1} b_{j\ell}$

Type of Arc	Capacity u_{aj}	CO_2 emission e_{aj}
Idle arcs $a = (n_{it}, n_{i,t+1}) \in A^I$	v_j^{\max}	0
Round-trip arc $a = (n_{it}, n_{is}) \in A^R$	d_{ijts}	$c_j(s-t)$
One-way arc $a = (n_{it}, n_{i's}) \in A^O$	$d_{ii'jts}$	$c_j(s-t)$
Relocation arc $a = (n_{it}, n_{i',t+l_{ii'}}) \in A^{REL}$	v_j^{\max}	$c_j l_{ii'}$

Type of Arc	Maintenance	Idle	Relocation	Profit	Arc Revenue k_{aj}
Idle arc $a = (n_{it}, n_{i,t+1}) \in A^I$	b_{jt}	p_{jt}	0	0	$-(b_{jt}+p_{jt})$
Round-trip arc $a = (n_{it}, n_{is}) \in A^R$	$\sum_{\ell=t}^{s-1} b_{j\ell}$	0	0	r_{ijts}	$r_{ijts} - \sum_{\ell=t}^{s-1} b_{j\ell}$
One-way arc $a = (n_{it}, n_{i's}) \in A^O$	$\sum_{\ell=t}^{s-1} b_{j\ell}$	0	0	$r_{ii'jts}$	$r_{ii'jts} - \sum_{\ell=t}^{s-1} b_{j\ell}$
Relocation arc $a = (n_{it}, n_{i',t+l_{ii'}}) \in A^{REL}$	$\sum_{\ell=t}^{t+l_{ii'}-1}b_{j\ell}$	0	$c^{\mathrm{rel}}l_{ii'}$	0	$-c^{\mathrm{rel}}l_{ii'} - \sum_{\ell=t}^{t+l_{ii'}-1} b_{j\ell}$

Type of Arc	Capacity u_{aj}	CO_2 emission e_{aj}
Idle arcs $a = (n_{it}, n_{i,t+1}) \in A^I$	v_j^{\max}	0
Round-trip arc $a = (n_{it}, n_{is}) \in A^R$	d_{ijts}	$c_j(s-t)$
One-way arc $a = (n_{it}, n_{i's}) \in A^O$	$d_{ii'jts}$	$c_j(s-t)$
Relocation arc $a = (n_{it}, n_{i',t+l_{ii'}}) \in A^{REL}$	v_j^{\max}	$c_j l_{ii'}$

Type of Arc	Maintenance	Idle	Relocation	Profit	Arc Revenue k_{aj}
Idle arc $a = (n_{it}, n_{i,t+1}) \in A^I$	b_{jt}	p_{jt}	0	0	$-(b_{jt}+p_{jt})$
Round-trip arc $a = (n_{it}, n_{is}) \in A^R$	$\sum_{\ell=t}^{s-1} b_{j\ell}$	0	0	r_{ijts}	$r_{ijts} - \sum_{\ell=t}^{s-1} b_{j\ell}$
One-way arc $a = (n_{it}, n_{i's}) \in A^O$	$\sum_{\ell=t}^{s-1} b_{j\ell}$	0	0	$r_{ii'jts}$	$r_{ii'jts} - \sum_{\ell=t}^{s-1} b_{j\ell}$
Relocation arc $a = (n_{it}, n_{i',t+l_{ii'}}) \in A^{REL}$	$\sum_{\ell=t}^{t+l_{ii'}-1}b_{j\ell}$	0	$c^{\mathrm{rel}}l_{ii'}$	0	$-c^{\mathrm{rel}}l_{ii'} - \sum_{\ell=t}^{t+l_{ii'}-1} b_{j\ell}$

Type of Arc	Capacity u_{aj}	CO_2 emission e_{aj}
Idle arcs $a = (n_{it}, n_{i,t+1}) \in A^I$	v_j^{\max}	0
Round-trip arc $a = (n_{it}, n_{is}) \in A^R$	d_{ijts}	$c_j(s-t)$
One-way arc $a = (n_{it}, n_{i's}) \in A^O$	$d_{ii'jts}$	$c_j(s-t)$
Relocation arc $a = (n_{it}, n_{i',t+l_{ii'}}) \in A^{REL}$	v_j^{\max}	$c_j l_{ii'}$

Type of Arc	Maintenance	Idle	Relocation	Profit	Arc Revenue k_{aj}
Idle arc $a = (n_{it}, n_{i,t+1}) \in A^I$	b_{jt}	p_{jt}	0	0	$-(b_{jt}+p_{jt})$
Round-trip arc $a = (n_{it}, n_{is}) \in A^R$	$\sum_{\ell=t}^{s-1} b_{j\ell}$	0	0	r_{ijts}	$r_{ijts} - \sum_{\ell=t}^{s-1} b_{j\ell}$
One-way arc $a = (n_{it}, n_{i's}) \in A^O$	$\sum_{\ell=t}^{s-1} b_{j\ell}$	0	0	$r_{ii'jts}$	$r_{ii'jts} - \sum_{\ell=t}^{s-1} b_{j\ell}$
Relocation arc $a = (n_{it}, n_{i',t+l_{ii'}}) \in A^{REL}$	$\sum_{\ell=t}^{t+l_{ii'}-1}b_{j\ell}$	0	$c^{\mathrm{rel}}l_{ii'}$	0	$-c^{\mathrm{rel}}l_{ii'} - \sum_{\ell=t}^{t+l_{ii'}-1} b_{j\ell}$

Model 1 **Maximize total revenue** $\sum_{a \in A} \sum_{j \in I} k_{aj} y_{aj}$ $\sum_{a\in\delta^+(n_{it})} y_{aj} - \sum_{a\in\delta^-(n_{it})} y_{aj} = \begin{cases} x_{ij} & \text{if } t = 0\\ 0 & \text{if } t \in \{1, \dots, T-1\} \end{cases}$ $\forall n_{it} \in N, j \in J$ $\sum_{a \in A} \sum_{j \in J} e_{aj} y_{aj} \leq \mathcal{H}$ $\sum_{i \in I} \sum_{j \in J} m_j x_{ij} \leq \mathcal{F}$ $\forall a \in A, j \in J$ $y_{aj} \leq u_{aj}$ $\forall a \in A, j \in J$ $x_{ij} \in \mathbb{Z}_+, y_{aj} \in \mathbb{Z}_+$

Max

Model 1
Max
$$\sum_{a \in A} \sum_{j \in J} k_{aj} y_{aj}$$

s.t. $\sum_{a \in \delta^+(n_{it})} y_{aj} - \sum_{a \in \delta^-(n_{it})} y_{aj} = \begin{cases} x_{ij} & \text{if } t = 0 \\ 0 & \text{if } t \in \{1, ..., T - 1\} \end{cases} \quad \forall \quad n_{it} \in N, j \in J$
 $\sum_{a \in A} \sum_{j \in J} e_{aj} y_{aj} \leq \mathcal{H}$
 $\sum_{i \in I} \sum_{j \in J} m_j x_{ij} \leq \mathcal{F}$
 $y_{aj} \leq u_{aj} \qquad \forall \quad a \in A, \ j \in J$
 $x_{ij} \in \mathbb{Z}_+, \ y_{aj} \in \mathbb{Z}_+ \qquad \forall \quad a \in A, \ j \in J$

Max

$$\sum_{a \in A} \sum_{j \in J} k_{aj} y_{aj}$$

Max

$$\sum_{a \in A} \sum_{j \in J} k_{aj} y_{aj}$$

$$\begin{split} \sum_{a \in \delta^{+}(n_{it})} y_{aj} &- \sum_{a \in \delta^{-}(n_{it})} y_{aj} = \begin{cases} x_{ij} & \text{if } t = 0 \\ 0 & \text{if } t \in \{1, \dots, T-1\} \end{cases} \quad \forall \quad n_{it} \in N, j \in J \end{cases} \\ \sum_{a \in A} \sum_{j \in J} e_{aj} y_{aj} &\leq \mathcal{H} \end{cases} \quad \textbf{Carbon emissions limit} \\ \sum_{i \in I} \sum_{j \in J} m_{j} x_{ij} &\leq \mathcal{F} \end{cases} \quad \forall \quad a \in A, \ j \in J \end{cases} \\ y_{aj} &\leq u_{aj} \qquad \forall \quad a \in A, \ j \in J \end{cases}$$

Max

$$\sum_{a \in A} \sum_{j \in J} k_{aj} y_{aj}$$

$$\begin{split} \sum_{a \in \delta^{+}(n_{it})} y_{aj} &- \sum_{a \in \delta^{-}(n_{it})} y_{aj} = \begin{cases} x_{ij} & \text{if } t = 0 \\ 0 & \text{if } t \in \{1, \dots, T-1\} \end{cases} \quad \forall \quad n_{it} \in N, j \in J \end{cases} \\ \sum_{a \in A} \sum_{j \in J} e_{aj} y_{aj} &\leq \mathcal{H} \\ \sum_{i \in I} \sum_{j \in J} m_{j} x_{ij} &\leq \mathcal{F} \end{cases} \\ y_{aj} &\leq u_{aj} \qquad \forall \quad a \in A, j \in J \end{cases} \quad \textbf{Capacity constraint} \\ x_{ij} \in \mathbb{Z}_{+}, y_{aj} \in \mathbb{Z}_{+} \qquad \forall \quad a \in A, j \in J \end{cases}$$

Max

$$\sum_{a \in A} \sum_{j \in J} k_{aj} y_{aj}$$

• First-come first-serve (FCFS) principle:

If there is a car available (idle) at that node when a customer comes in, you must serve the customer

- Model 2 (M2) enforces FCFS
- Denied trip percentage serves as metric
- New binary variable introduced at each node

Add the following constraints to M1:

 $\begin{aligned} y_{(n_{it},n_{i,t+1}),j} &\leq v_{j}^{max} z_{it}^{j} & \forall i \in I, \ t = 0, 1, ..., T - 1, \ j \in J \\ \\ \sum_{a \in \delta^{+}(n_{it}) \cup (A^{O} \cap A^{U})} (u_{aj} - y_{aj}) &\leq v_{j}^{max} (1 - z_{it}^{j}) \quad \forall i \in I, \ t = 0, 1, ..., T - 1, \ j \in J \\ \\ z_{it}^{j} \in \{0,1\} & \forall i \in I, \ t = 0, 1, ..., T - 1, \ j \in J \end{aligned}$

Add the following constraints to M1:

 $\begin{aligned} y_{(n_{it},n_{i,t+1}),j} &\leq v_{j}^{max} z_{it}^{j} & \forall i \in I, t = 0, 1, ..., T - 1, j \in J \\ \sum_{a \in \delta^{+}(n_{it}) \cup (A^{O} \cap A^{U})} (u_{aj} - y_{aj}) &\leq v_{j}^{max} (1 - z_{it}^{j}) & \forall i \in I, t = 0, 1, ..., T - 1, j \in J \\ z_{it}^{j} &\in \{0,1\} & \forall i \in I, t = 0, 1, ..., T - 1, j \in J \end{aligned}$

If z_{it}^{J} is 1, then idle cars can flow from that node.

Else, no idle cars can flow from that node.

Add the following constraints to M1:

 $\begin{aligned} y_{(n_{it},n_{i,t+1}),j} &\leq v_{j}^{max} z_{it}^{j} & \forall i \in I, \ t = 0, 1, ..., T - 1, \ j \in J \\ \\ \sum_{a \in \delta^{+}(n_{it}) \cup (A^{O} \cap A^{U})} (u_{aj} - y_{aj}) &\leq v_{j}^{max} (1 - z_{it}^{j}) \quad \forall i \in I, \ t = 0, 1, ..., T - 1, \ j \in J \\ \\ z_{it}^{j} \in \{0,1\} & \forall i \in I, \ t = 0, 1, ..., T - 1, \ j \in J \end{aligned}$

If z_{it}^J is 1 (idle cars can flow from that node), then all capacity must be fulfilled.

Add the following constraints to M1:

 $\begin{aligned} y_{(n_{it},n_{i,t+1}),j} &\leq v_j^{max} z_{it}^j & \forall i \in I, \ t = 0, 1, ..., T-1, \ j \in J \\ \\ \sum_{a \in \delta^+(n_{it}) \cup (A^0 \cap A^U)} (u_{aj} - y_{aj}) &\leq v_j^{max} (1 - z_{it}^j) & \forall i \in I, \ t = 0, 1, ..., T-1, \ j \in J \\ \\ z_{it}^j \in \{0,1\} & \forall i \in I, \ t = 0, 1, ..., T-1, \ j \in J \end{aligned}$

All capacity must be fulfilled to have idle cars flow from the node.

Outline

- Introduction
- Mathematical Models
- Computational Results
- Conclusions

Data description

- Zipcar operations for Greater Boston
- Timeframe from Oct. 1 to Nov. 30, 2014
- # of reservations made each hour for 60 zip codes

Car type description

- 4 sedan types
- Gasoline powered, electric, hybrid, plug-in hybrid electric

Vehicle type <i>j</i>	MSRP (m_j)	Revenue (r_j / r'_j)	Relocation (c^{rel})	Idle (p)	$\operatorname{CO}_2(c_j)$
Fit EV 2014	\$37,445	\$7.75/\$12.00	\$8.00	\$0.4	1200 g
Fit LX 2015	\$17,270	\$7.75/\$12.00	\$8.00	\$0.4	2960 g
Accord PHEV 2014	\$39,780	\$7.75/\$12.00	\$8.00	\$0.4	2000 g
Accord Hybrid 2015	\$29,305	\$7.75/\$12.00	\$8.00	\$0.4	2270 g

Computational efficiency

- Tests run for M1 and M2
- Vary one-way demand
- M1 significantly faster than M2

*Use Python + Gurobi 6.0.3, Intel(R) Core(TM) <u>i5-4200U</u> CPU with 6GM RAM

One-Way Proportion	0%	40%	80%	100%			
CPU Time	61.44*	39.39	52.77	63.59			
Optimal Objective Value	\$16,709.95	\$17,382.00	\$20,779.70	\$21,732.05			
*: The best entimelity can -0.021% is achieved							

*: The best optimality gap = 0.031% is achieved.

One-Way Proportion	0%	40%	80%	100%	
CPU Time	169.33	233.55	998.31	91.54	
Optimal Objective Value	\$16,701.15	\$17,371.20	\$20,732.25	\$21,732.05	

Carbon emissions constraint

- Vary carbon emission constraint between 3 x 10⁶ and 6 x 10⁶ grams
- Demand: 40% LX, 20% Hybrid, 20% PHEV, 20% EV

Carbon emissions constraint

- Vary carbon emission constraint between 3 x 10⁶ and 6 x 10⁶ grams
- Demand: 40% LX, 20% Hybrid, 20% PHEV, 20% EV

38

Quality of Service (QoS)

- Vary one-way proportion between 0%, 40%, 80%, 100%
- M1 enforces high QoS and FCFS principle
- Deny trip percentage between 0.1% and 1%

One-Way	Unfulfilled	Unfulfilled	Denied	Idle Vehicle	Vehicle
Proportion	Rentals	Rentals (%)	Trip (%)	Hours	Utilization
0%	164	15.43%	1.03%	1412	61.22%
40%	53	5.74%	0.76%	1690	56.48%
80%	44	4.84%	1.65%	1667	56.82%
100%	10	1.14%	0.11%	1653	57.43%

Quality of Service (QoS)

- Vary one-way proportion between 0%, 40%, 80%, 100%
- M1 enforces high QoS and FCFS principle
- Deny trip percentage between 0.1% and 1%

One-Way	Unfulfilled	Unfulfilled	Denied	Idle Vehicle	Vehicle
Proportion	Rentals	Rentals (%)	Trip (%)	Hours	Utilization
0%	164	15.43%	1.03%	1412	61.22%
40%	53	5.74%	0.76%	1690	56.48%
80%	44	4.84%	1.65%	1667	56.82%
100%	10	1.14%	0.11%	1653	57.43%

Quality of Service (QoS)

- Vary one-way proportion between 0%, 40%, 80%, 100%
- M1 enforces high QoS and FCFS principle
- Deny trip percentage between 0.1% and 1%

One-Way	Unfulfilled	Unfulfilled	Denied	Idle Vehicle	Vehicle
Proportion	Rentals	Rentals (%)	Trip (%)	Hours	Utilization
0%	164	15.43%	1.03%	1412	61.22%
40%	53	5.74%	0.76%	1690	56.48%
80%	44	4.84%	1.65%	1667	56.82%
100%	10	1.14%	0.11%	1653	57.43%

Trip fulfillment for 40% one-way setting

Trip fulfillment for 40% one-way setting

Outline

- Introduction
- Mathematical Models
- Computational Results
- Conclusions

Conclusions

Carsharing companies want to

- Expand market demographic
- Provide reliable service
- Benefit environment by lowering carbon emissions

Our model

- Determines diverse vehicle portfolio
- Enforces high QoS and first-come first-serve principle
- Enforces carbon emissions constraints while still maximizing profit

The future: service-based transportation

- Ford's expanded business plan is to be "both an auto and a mobility company"
- General Motors invested \$500 million in Lyft, a ridesharing service
- Future work:

Developing more strategies to expand ridesharing services Integrating shared autonomous vehicles into daily life

Questions?