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What is carsharing?

• Short-term car rentals

• One-way or round-trip
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Industry growth
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Carsharing providers 
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Private companies Nonprofit Government

Entity Zipcar City CarShare Seattle

Vehicles removed 
(foregone buying 
or sold)

15 privately owned 
vehicles for every 
Zipcar

17,000 1,200 – 1,600

Reduced vehicle 
miles

90% of members 
drive 5,500 less 
miles

140 million miles N/A



Carshare design and optimization

• Consider strategic decisions
• Car types to purchase to appeal to larger customer base? 
• Carbon emissions limit? 

• Evaluate the impact
• Case study (Zipcar Boston)
• Mathematical modeling

• Optimize profitability and quality of service via models that
• Incorporate round-trip and one-way demands
• Incorporate carbon emissions constraint
• Make strategic decisions about diverse portfolio of vehicle types 
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Framing the problem

Carsharing companies need a diverse vehicle portfolio

How does demand for different vehicle types affect:

• Profitability

• Quality of service 

• One-way and round-trip

• Denied trip

• Trip fulfillment

• Purchasing decisions

• Carbon emissions 
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Building the spatial-temporal network

• Example: 
• Zones 1, 2

• Time periods 0, 1, 2, 3

• nit: Zone i at time t
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Round-trip arcs

• Example: 
• Zones 1, 2

• Time periods 0, 1, 2, 3

• nit: Zone i at time t

Type Volume Origin Destination Start End

One-way 3 2 1 0 3

Round-trip 2 2 2 3
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One-way arcs

• Example: 
• Zones 1, 2

• Time periods 0, 1, 2, 3

• nit: Zone i at time t

Type Volume Origin Destination Start End

One-way 3 2 1 0 3

Round-trip 2 2 2 3
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Idle arcs

• Example: 
• Zones 1, 2

• Time periods 0, 1, 2, 3

• nit: Zone i at time t

Type Volume Origin Destination Start End

One-way 3 2 1 0 3

Round-trip 2 2 2 3
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Relocation arcs

• Example: 
• Zones 1, 2

• Time periods 0, 1, 2, 3

• nit: Zone i at time t

Type Volume Origin Destination Start End

One-way 3 2 1 0 3

Round-trip 2 2 2 3
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Final spatial-temporal network

• Example: 
• Zones 1, 2

• Time periods 0, 1, 2, 3

• nit: Zone i at time t

Type Volume Origin Destination Start End

One-way 3 2 1 0 3

Round-trip 2 2 2 3
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Defining Model 1

Inputs

• Car purchase cost and emissions generated

• Car rental price

• Arc capacity (demand) 

Objective

• Maximize total revenue of operating cars over set time 
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Defining Model 1  

Decision variables

• Number and type of cars purchased at each zone

• Number of cars to route along each arc

Constraints

• Number of cars entering each node equals number of cars leaving

• Carbon emission produced does not exceed limit

• Car purchase cost does not exceed limit
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Assumptions

• A set of service zones and a finite number of service periods

• Serve one-way and round-trip rentals

• Cars can be relocated, to balance vehicle distributions

• Unsatisfied demand is immediately lost
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Network arc parameters
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Network arc parameters
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Network arc parameters
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Network arc parameters
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Model 1

Max σ𝑎𝜖𝐴 σ𝑗𝜖𝐽 𝑘𝑎𝑗𝑦𝑎𝑗

s.t. σ𝑎𝜖𝛿+(𝑛𝑖𝑡) 𝑦𝑎𝑗 − σ𝑎𝜖𝛿−(𝑛𝑖𝑡) 𝑦𝑎𝑗 = ቊ
𝑥𝑖𝑗 if 𝑡 = 0

0 if 𝑡 𝜖 {1, … , 𝑇 − 1}
∀ 𝑛𝑖𝑡 𝜖 N, 𝑗 𝜖 𝐽

σ𝑎𝜖𝐴 σ𝑗𝜖𝐽 𝑒𝑎𝑗𝑦𝑎𝑗 ≤ ℋ

σ𝑖𝜖𝐼 σ𝑗𝜖𝐽 𝑚𝑗𝑥𝑖𝑗 ≤ ℱ

𝑦𝑎𝑗 ≤ 𝑢𝑎𝑗 ∀ a 𝜖 A,   j 𝜖 J

𝑥𝑖𝑗 𝜖 ℤ+, 𝑦𝑎𝑗 𝜖 ℤ+ ∀ a 𝜖 A,   j 𝜖 J
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Maximize total revenue



Model 1

Max σ𝑎𝜖𝐴 σ𝑗𝜖𝐽 𝑘𝑎𝑗𝑦𝑎𝑗

s.t. σ𝑎𝜖𝛿+(𝑛𝑖𝑡) 𝑦𝑎𝑗 − σ𝑎𝜖𝛿−(𝑛𝑖𝑡) 𝑦𝑎𝑗 = ቊ
𝑥𝑖𝑗 if 𝑡 = 0

0 if 𝑡 𝜖 {1, … , 𝑇 − 1}
∀ 𝑛𝑖𝑡 𝜖 N, 𝑗 𝜖 𝐽

σ𝑎𝜖𝐴 σ𝑗𝜖𝐽 𝑒𝑎𝑗𝑦𝑎𝑗 ≤ ℋ

σ𝑖𝜖𝐼 σ𝑗𝜖𝐽 𝑚𝑗𝑥𝑖𝑗 ≤ ℱ

𝑦𝑎𝑗 ≤ 𝑢𝑎𝑗 ∀ a 𝜖 A,   j 𝜖 J

𝑥𝑖𝑗 𝜖 ℤ+, 𝑦𝑎𝑗 𝜖 ℤ+ ∀ a 𝜖 A,   j 𝜖 J
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Flow balance constraint



Model 1

Max σ𝑎𝜖𝐴 σ𝑗𝜖𝐽 𝑘𝑎𝑗𝑦𝑎𝑗

s.t. σ𝑎𝜖𝛿+(𝑛𝑖𝑡) 𝑦𝑎𝑗 − σ𝑎𝜖𝛿−(𝑛𝑖𝑡) 𝑦𝑎𝑗 = ቊ
𝑥𝑖𝑗 if 𝑡 = 0

0 if 𝑡 𝜖 {1, … , 𝑇 − 1}
∀ 𝑛𝑖𝑡 𝜖 N, 𝑗 𝜖 𝐽

σ𝑎𝜖𝐴 σ𝑗𝜖𝐽 𝑒𝑎𝑗𝑦𝑎𝑗 ≤ ℋ

σ𝑖𝜖𝐼 σ𝑗𝜖𝐽 𝑚𝑗𝑥𝑖𝑗 ≤ ℱ

𝑦𝑎𝑗 ≤ 𝑢𝑎𝑗 ∀ a 𝜖 A,   j 𝜖 J

𝑥𝑖𝑗 𝜖 ℤ+, 𝑦𝑎𝑗 𝜖 ℤ+ ∀ a 𝜖 A,   j 𝜖 J
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Budget limit



Model 1

Max σ𝑎𝜖𝐴 σ𝑗𝜖𝐽 𝑘𝑎𝑗𝑦𝑎𝑗

s.t. σ𝑎𝜖𝛿+(𝑛𝑖𝑡) 𝑦𝑎𝑗 − σ𝑎𝜖𝛿−(𝑛𝑖𝑡) 𝑦𝑎𝑗 = ቊ
𝑥𝑖𝑗 if 𝑡 = 0

0 if 𝑡 𝜖 {1, … , 𝑇 − 1}
∀ 𝑛𝑖𝑡 𝜖 N, 𝑗 𝜖 𝐽

σ𝑎𝜖𝐴 σ𝑗𝜖𝐽 𝑒𝑎𝑗𝑦𝑎𝑗 ≤ ℋ

σ𝑖𝜖𝐼 σ𝑗𝜖𝐽 𝑚𝑗𝑥𝑖𝑗 ≤ ℱ

𝑦𝑎𝑗 ≤ 𝑢𝑎𝑗 ∀ a 𝜖 A,   j 𝜖 J

𝑥𝑖𝑗 𝜖 ℤ+, 𝑦𝑎𝑗 𝜖 ℤ+ ∀ a 𝜖 A,   j 𝜖 J

25

Carbon emissions limit



Model 1

Max σ𝑎𝜖𝐴 σ𝑗𝜖𝐽 𝑘𝑎𝑗𝑦𝑎𝑗

s.t. σ𝑎𝜖𝛿+(𝑛𝑖𝑡) 𝑦𝑎𝑗 − σ𝑎𝜖𝛿−(𝑛𝑖𝑡) 𝑦𝑎𝑗 = ቊ
𝑥𝑖𝑗 if 𝑡 = 0

0 if 𝑡 𝜖 {1, … , 𝑇 − 1}
∀ 𝑛𝑖𝑡 𝜖 N, 𝑗 𝜖 𝐽

σ𝑎𝜖𝐴 σ𝑗𝜖𝐽 𝑒𝑎𝑗𝑦𝑎𝑗 ≤ ℋ

σ𝑖𝜖𝐼 σ𝑗𝜖𝐽 𝑚𝑗𝑥𝑖𝑗 ≤ ℱ

𝑦𝑎𝑗 ≤ 𝑢𝑎𝑗 ∀ a 𝜖 A,   j 𝜖 J

𝑥𝑖𝑗 𝜖 ℤ+, 𝑦𝑎𝑗 𝜖 ℤ+ ∀ a 𝜖 A,   j 𝜖 J

26

Capacity constraint



Model 1

Max σ𝑎𝜖𝐴 σ𝑗𝜖𝐽 𝑘𝑎𝑗𝑦𝑎𝑗

s.t. σ𝑎𝜖𝛿+(𝑛𝑖𝑡) 𝑦𝑎𝑗 − σ𝑎𝜖𝛿−(𝑛𝑖𝑡) 𝑦𝑎𝑗 = ቊ
𝑥𝑖𝑗 if 𝑡 = 0

0 if 𝑡 𝜖 {1, … , 𝑇 − 1}
∀ 𝑛𝑖𝑡 𝜖 N, 𝑗 𝜖 𝐽

σ𝑎𝜖𝐴 σ𝑗𝜖𝐽 𝑒𝑎𝑗𝑦𝑎𝑗 ≤ ℋ

σ𝑖𝜖𝐼 σ𝑗𝜖𝐽 𝑚𝑗𝑥𝑖𝑗 ≤ ℱ

𝑦𝑎𝑗 ≤ 𝑢𝑎𝑗 ∀ a 𝜖 A,   j 𝜖 J

𝑥𝑖𝑗 𝜖 ℤ+, 𝑦𝑎𝑗 𝜖 ℤ+ ∀ a 𝜖 A,   j 𝜖 J
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Integer restriction



Extension to Model 1 (Model 2)

• First-come first-serve (FCFS) principle:

If there is a car available (idle) at that node when a customer 
comes in, you must serve the customer

• Model 2 (M2) enforces FCFS 

• Denied trip percentage serves as metric

• New binary variable introduced at each node
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Extension to Model 1 (Model 2)

29

Add the following constraints to M1:

𝑦(𝑛𝑖𝑡 ,𝑛𝑖,𝑡+1),𝑗 ≤ 𝑣𝑗
𝑚𝑎𝑥𝑧𝑖𝑡

𝑗
∀ i 𝜖 I,   t = 0, 1, …, T – 1,   j 𝜖 J

σ
𝑎𝜖𝛿+(𝑛𝑖𝑡)∪(𝐴𝑂∩𝐴𝑈)(𝑢𝑎𝑗 − 𝑦𝑎𝑗) ≤ 𝑣𝑗

𝑚𝑎𝑥(1 − 𝑧𝑖𝑡
𝑗

) ∀ i 𝜖 I,   t = 0, 1, …, T – 1,   j 𝜖 J

𝑧𝑖𝑡
𝑗

𝜖 {0, 1} ∀ i 𝜖 I,   t = 0, 1, …, T – 1,  j 𝜖 J



Extension to Model 1 (Model 2)
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Add the following constraints to M1:

𝑦(𝑛𝑖𝑡 ,𝑛𝑖,𝑡+1),𝑗 ≤ 𝑣𝑗
𝑚𝑎𝑥𝑧𝑖𝑡

𝑗
∀ i 𝜖 I,   t = 0, 1, …, T – 1,   j 𝜖 J

σ
𝑎𝜖𝛿+(𝑛𝑖𝑡)∪(𝐴𝑂∩𝐴𝑈)(𝑢𝑎𝑗 − 𝑦𝑎𝑗) ≤ 𝑣𝑗

𝑚𝑎𝑥(1 − 𝑧𝑖𝑡
𝑗

) ∀ i 𝜖 I,   t = 0, 1, …, T – 1,   j 𝜖 J

𝑧𝑖𝑡
𝑗

𝜖 {0, 1} ∀ i 𝜖 I,   t = 0, 1, …, T – 1,  j 𝜖 J

If 𝑧𝑖𝑡
𝑗

is 1, then idle cars can flow from that node.

Else, no idle cars can flow from that node.



Extension to Model 1 (Model 2)
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Add the following constraints to M1:

𝑦(𝑛𝑖𝑡 ,𝑛𝑖,𝑡+1),𝑗 ≤ 𝑣𝑗
𝑚𝑎𝑥𝑧𝑖𝑡

𝑗
∀ i 𝜖 I,   t = 0, 1, …, T – 1,   j 𝜖 J

σ
𝑎𝜖𝛿+(𝑛𝑖𝑡)∪(𝐴𝑂∩𝐴𝑈)(𝑢𝑎𝑗 − 𝑦𝑎𝑗) ≤ 𝑣𝑗

𝑚𝑎𝑥(1 − 𝑧𝑖𝑡
𝑗

) ∀ i 𝜖 I,   t = 0, 1, …, T – 1,   j 𝜖 J

𝑧𝑖𝑡
𝑗

𝜖 {0, 1} ∀ i 𝜖 I,   t = 0, 1, …, T – 1,  j 𝜖 J

If 𝑧𝑖𝑡
𝑗

is 1 (idle cars can flow from that node), then all capacity must be 
fulfilled.



Extension to Model 1 (Model 2)
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Add the following constraints to M1:

𝑦(𝑛𝑖𝑡 ,𝑛𝑖,𝑡+1),𝑗 ≤ 𝑣𝑗
𝑚𝑎𝑥𝑧𝑖𝑡

𝑗
∀ i 𝜖 I,   t = 0, 1, …, T – 1,   j 𝜖 J

σ
𝑎𝜖𝛿+(𝑛𝑖𝑡)∪(𝐴𝑂∩𝐴𝑈)(𝑢𝑎𝑗 − 𝑦𝑎𝑗) ≤ 𝑣𝑗

𝑚𝑎𝑥(1 − 𝑧𝑖𝑡
𝑗

) ∀ i 𝜖 I,   t = 0, 1, …, T – 1,   j 𝜖 J

𝑧𝑖𝑡
𝑗

𝜖 {0, 1} ∀ i 𝜖 I,   t = 0, 1, …, T – 1,  j 𝜖 J

All capacity must be fulfilled to have idle cars flow from the node. 
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Data description
• Zipcar operations for Greater Boston

• Timeframe from Oct. 1 to Nov. 30, 2014

• # of reservations made each hour for 60 zip codes
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Car type description

• 4 sedan types 

• Gasoline powered, electric, hybrid, plug-in hybrid electric
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Computational efficiency

• Tests run for M1 and M2

• Vary one-way demand  

• M1 significantly faster than M2
*Use Python + Gurobi 6.0.3, Intel(R) Core(TM) i5-4200U CPU with 6GM RAM
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Carbon emissions constraint
• Vary carbon emission constraint between 3 x 106 and 6 x 106 grams

• Demand: 40% LX, 20% Hybrid, 20% PHEV, 20% EV
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Gasoline-
powered



Carbon emissions constraint
• Vary carbon emission constraint between 3 x 106 and 6 x 106 grams

• Demand: 40% LX, 20% Hybrid, 20% PHEV, 20% EV

38

Non-
gasoline
powered



Quality of Service (QoS)

• Vary one-way proportion between 0%, 40%, 80%, 100%

• M1 enforces high QoS and FCFS principle

• Deny trip percentage between 0.1% and 1%
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Quality of Service (QoS)

• Vary one-way proportion between 0%, 40%, 80%, 100%

• M1 enforces high QoS and FCFS principle

• Deny trip percentage between 0.1% and 1%
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Quality of Service (QoS)

• Vary one-way proportion between 0%, 40%, 80%, 100%

• M1 enforces high QoS and FCFS principle

• Deny trip percentage between 0.1% and 1%
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Trip fulfillment for 40% one-way setting
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Capacity



Trip fulfillment for 40% one-way setting

43

Capacity

Trips taken
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Conclusions

Carsharing companies want to
• Expand market demographic

• Provide reliable service 

• Benefit environment by lowering carbon emissions

Our model 
• Determines diverse vehicle portfolio

• Enforces high QoS and first-come first-serve principle

• Enforces carbon emissions constraints while still maximizing profit
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The future: service-based transportation

• Ford’s expanded business plan is to be “both an auto and a mobility 
company”

• General Motors invested $500 million in Lyft, a ridesharing service

• Future work:

Developing more strategies to expand ridesharing services

Integrating shared autonomous vehicles into daily life
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Questions?
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