Optimizing Infrastructure Design and Recovery Operations Under Stochastic Disruptions

Siqian Shen
Department of Industrial and Operations Engineering University of Michigan

The 13th INFORMS Computing Society Conference January 07, 2013

Outline

Introduction
Model 1: Optimal Design and Operations in a Single Network Problem Description and Formulation
A Decomposition Framework
Modifying Model 1 for Power Systems
Model 2: Optimal Design and Interdependency Disconnections in
Multiple Infrastructures
An Exact Formulation
Feasible solutions to Model 2
Lower bounds for $\mathrm{SP}^{q}(x)$-Model 2
Computational Results
Computing Model 1
Computing Model 2

Critical Infrastructure Analysis: Literature Review

- Considered as networks with supply/demand/transshipment nodes, and service flows.
- Important to applications in energy, transportation, telecommunication, and many other areas.
- The literature includes
- system survivability under malicious attacks, nature disasters, or component failures (e.g., Brown et al. 2006, Murray et al. 2007, San Martin 2007).
- network design against deliberate attacks and the research of network interdiction (see, e.g., Cormican et al. 1998, Wood 1993).
- network vulnerability (e.g., Pinar et al. 2010) and cascading failures (e.g., Crucitti et al. 2004, Nedic et al. 2006).
- particular use in designing power grids (Faria Jr et al. 2005, Yao et al. 2007) and operations against blackouts (Alguacil et al. 2010).

Our Problems

Combine phases of network design and operational planning, to minimize the expected costs of arc construction, flow operation, and service recovery under stochastic arc disruptions.

Motivation:

- The forms of service recovery vary depending on disruption severity, system interdependency, and service priority.
- For small-scale failures, local repairing can be done immediately for fully restoring service.
- During large-scale and severe damages, disconnection operations are used to avoid cascading failures.

Two stochastic model variants:

- Model 1 for repairing small-scale failures in a single network.
- Model 2 for avoiding large-scale cascading failures in multiple interdependent infrastructures.

A Single Network: Notation I

Model 1 considers a single network with

- $G\left(\mathcal{N}, \mathcal{A}^{0} \cup \mathcal{A}\right)$: a directed connected graph with node set $\mathcal{N}=\mathcal{N}_{+} \cup \mathcal{N}=\cup \mathcal{N}_{-}$
- $\mathcal{N}_{+}, \mathcal{N}_{=}$, and \mathcal{N}_{-}: sets of supplies, intermediate transmissions, and demands.
- \mathcal{A}^{0} and \mathcal{A} : the current existing arcs and potential arcs to be constructed ($\mathcal{A}^{0}=\emptyset$ in this paper).

Parameters:

- $a_{i j}, c_{i j}$, and $d_{i j}$: flow capacity, construction cost, and unit flow cost of $\operatorname{arc}(i, j), \forall(i, j) \in \mathcal{A}$.
- h_{i} : unit generation cost of each supply node, $\forall i \in \mathcal{N}_{+}$.
- S_{i} : the maximum capacity of supply node $i \in \mathcal{N}_{+}$.
- D_{i} : consumer's demand at node $i \in \mathcal{N}_{-}$, with

$$
\sum_{i \in \mathcal{N}_{+}} S_{i} \geq \sum_{i \in \mathcal{N}_{-}} D_{i}
$$

A Single Network: Notation II

- Q: a finite set of random disruption scenarios.
- $I_{i j}^{q} \in\{0,1\}$: an effect of a disruptive event on arc (i, j), $\forall(i, j) \in \mathcal{A}, q \in Q$, where $I_{i j}^{q}=0$ if arc (i, j) fails, and 1 otherwise.
- $b_{i j}^{q}$: cost of repairing arc $(i, j), \forall(i, j) \in \mathcal{A}, q \in Q$ with $\max _{q \in Q} b_{i j}^{q}<c_{i j}$ by assumption, $\forall(i, j) \in \mathcal{A}$.
Decision Variables:
- $x_{i j} \in\{0,1\}$: such that $x_{i j}=1$ if we construct arc (i, j), and 0 otherwise.
- $y_{i j}^{q} \in\{0,1\}$, such that $y_{i j}^{q}=1$ if arc (i, j) is repaired in scenario q, and 0 otherwise.
- $f_{i j}^{q} \geq 0$: the amount of flow on $\operatorname{arc}(i, j)$ in a repaired network, $\forall q \in Q$.

Formulation of Model 1

$$
\begin{array}{ll}
\text { min: } & \sum_{(i, j) \in \mathcal{A}} c_{i j} x_{i j}+\frac{1}{|Q|} \sum_{q \in Q}\left(\sum_{i \in \mathcal{N}_{+}} h_{i} g_{i}^{q}+\sum_{(i, j) \in \mathcal{A}} b_{i j}^{q} y_{i j}^{q}+\sum_{(i, j) \in \mathcal{A}} d_{i j} f_{i j}^{q}\right) \\
\text { s.t. } & \sum_{j:(i, j) \in \mathcal{A}} f_{i j}^{q}-\sum_{j:(j, i) \in \mathcal{A}} f_{j i}^{q}-g_{i}^{q}=0 \quad \forall i \in \mathcal{N}_{+}, q \in Q \\
& \sum_{j:(i, j) \in \mathcal{A}} f_{i j}^{q}-\sum_{j:(j, i) \in \mathcal{A}} f_{j i}^{q}=-D_{i} \quad \forall i \in \mathcal{N}_{-}, q \in Q \\
& \sum_{j:(i, j) \in \mathcal{A}} f_{i j}^{q}-\sum_{j:(j, i) \in \mathcal{A}} f_{j i}^{q}=0 \quad \forall i \in \mathcal{N}_{=}, q \in Q \\
& y_{i j}^{q} \leq x_{i j}\left(1-I_{i j}^{q}\right) \quad \forall(i, j) \in \mathcal{A}, \quad q \in Q \\
& f_{i j}^{q} \leq a_{i j}\left(I_{i j}^{q} x_{i j}+y_{i j}^{q}\right) \quad \forall(i, j) \in \mathcal{A}, q \in Q \\
& 0 \leq g_{i}^{q} \leq S_{i} \quad \forall i \in \mathcal{N}_{+}, q \in Q \tag{1g}\\
& x_{i j} \in\{0,1\} \forall(i, j) \in \mathcal{A}, y_{i j}^{q} \in\{0,1\}, \text { and } \quad f_{i j}^{q} \geq 0 \forall(i, j) \in \mathcal{A}, q \in Q(1 \mathrm{~h})
\end{array}
$$

where

- Variables g_{i}^{q} in (1b) provide flow amount generated from supply nodes $i \in \mathcal{N}_{+}$.

A Decomposition Framework

Decompose Model 1 into two stages with binary variables x at the first stage, and $|Q|$ independent subproblems at the second stage.

- A relaxed master problem:

$$
\begin{array}{ll}
\text { min: } & \sum_{(i, j) \in \mathcal{A}} c_{i j} x_{i j}+\frac{1}{|Q|} \sum_{q \in Q} \eta_{q} \\
\text { s.t. } & L_{q}\left(\eta_{q}, x\right) \geq 0 \quad \forall q \in Q \\
& x_{i j} \in\{0,1\} \quad \forall(i, j) \in \mathcal{A}, \quad \eta_{q} \geq \underline{q}^{q} \quad \forall q \in Q .
\end{array}
$$

- Given a solution x, subproblem $\mathbf{S P}^{q}(x)$-Model $\mathbf{1}$ is

$$
\begin{aligned}
\eta_{q}=\mathrm{min}: & \sum_{i \in \mathcal{N}_{+}} h_{i} g_{i}^{q}+\sum_{(i, j) \in \mathcal{A}} b_{i j}^{q} y_{i j}^{q}+\sum_{(i, j) \in \mathcal{A}} d_{i j} f_{i j}^{q} \\
\text { s.t. } & (1 \mathrm{~b})-(1 \mathrm{~g}), \\
& y_{i j}^{q} \in\{0,1\}, \text { and } f_{i j}^{q} \geq 0 \quad \forall(i, j) \in \mathcal{A} .
\end{aligned}
$$

Cutting Plane Generations I

Generate $L_{q}\left(\eta_{q}, x\right) \geq 0$ as LP-based Benders Cuts:

- Relax $y^{q} \geq 0$ in $\operatorname{SP}^{q}(x)$-Model 1, and let $\tilde{\lambda}_{i}^{q}, \tilde{\alpha}_{i j}^{q}$, and $\tilde{\beta}_{i j}^{q}$ be optimal dual solutions associated with (1b)-(1d), (1e) and (1f), respectively.
- Given that $\mathrm{SP}^{q}(x)$-Model 1 has a feasible solution,

$$
\begin{equation*}
\eta_{q} \geq-\sum_{(i, j) \in \mathcal{A}}\left(\left(1-l_{i j}^{q}\right) \tilde{\alpha}_{i j}^{q}+a_{i j} l_{i j}^{q} \tilde{\beta}_{i j}^{q}\right) x_{i j}-\sum_{i \in \mathcal{N}_{+}} \tilde{\lambda}_{i}^{q} S_{i}-\sum_{i \in \mathcal{N}_{-}} \tilde{\lambda}_{i}^{q} D_{i} \tag{2}
\end{equation*}
$$

is valid for all $q \in Q$.

- Proof: Weak duality theorem.

Cutting Plane Generations II

Combine Benders cuts with Laporte-Louveaux (LL) inequalities to enforce convergence:

- Given \hat{x}, denote \hat{X}^{1} as the set of $\operatorname{arcs}\left\{(i, j) \in \mathcal{A}: \hat{x}_{i j}=1\right\}$ and \hat{X}^{0} as the set of $\operatorname{arcs}\left\{(i, j) \in \mathcal{A}: \hat{x}_{i j}=0\right\}$.
- Suppose that the current \hat{x} is not optimal.
- Because at least one x variable will change its current value in next iteration,

$$
\begin{equation*}
\sum_{(i, j) \in \hat{X}^{1}}\left(1-x_{i j}\right)+\sum_{(i, j) \in \hat{X}^{0}} x_{i j} \geq 1 \tag{3}
\end{equation*}
$$

is valid to MP.

Modifying Model 1 for Power Systems

Apply Model 1 for optimizing design and service restoration in power transmission networks.

- Let θ_{i} and θ_{j} be voltages at locations i and j, and $f_{i j}$ be the electricity flow between i and j.
- The Kirchhoff's Voltage Law: $\theta_{i}-\theta_{j}=R_{i j} f_{i j}$, where $R_{i j}$ is the reactance between locations i and j (a DC flow model).
- Add two constraints to $\mathrm{SP}^{q}(x)$-Model 1:

$$
\begin{align*}
& \theta_{i}^{q}-\theta_{j}^{q} \geq R_{i j} f_{i j}^{q}+M^{+}\left(I_{i j}^{q} x_{i j}+y_{i j}^{q}-1\right) \forall(i, j) \in \mathcal{A} \tag{4}\\
& \theta_{i}^{q}-\theta_{j}^{q} \leq R_{i j} f_{i j}^{q}-M^{-}\left(I_{i j}^{q} x_{i j}+y_{i j}^{q}-1\right) \forall(i, j) \in \mathcal{A}, \tag{5}
\end{align*}
$$

where both M^{+}and M^{-}are sufficiently large numbers.

A Penalty-based Subproblem Relaxation

- Develop valid cuts by allowing unsatisfied demands at nodes $i \in \mathcal{N}_{-}$.
- This variant refers to the "load shedding" operation in practice, in which the goal is to minimize costs of arc construction, repair, and the penalties incurred by unmet demands.
- $u_{i}^{q} \geq 0$: unsatisfied demands at nodes $i \in \mathcal{N}_{-}$.
- The new Model 1 imposes a penalty p_{i}^{q} for each unit of unsatisfied demand, and formulate $\mathbf{R}-\mathbf{S P}^{q}(x)$-Model 1:
$\min : \quad \sum_{i \in \mathcal{N}_{+}} h_{i} g_{i}^{q}+\sum_{i \in \mathcal{N}_{-}} p_{i}^{q} u_{i}^{q}+\sum_{(i, j) \in \mathcal{A}} b_{i j}^{q} y_{i j}^{q}+\sum_{(i, j) \in \mathcal{A}} d_{i j} f_{i j}^{q}$
s.t. (1b), (1d)-(1g), (4), (5)

$$
\begin{aligned}
& -\sum_{j:(j, i) \in \mathcal{A}} f_{j i}^{q}-u_{i}^{q}=-D_{i} \quad \forall i \in \mathcal{N}_{-} \\
& u_{i}^{q} \geq 0, \forall i \in \mathcal{N}_{-}, y_{i j}^{q} \in\{0,1\}, \text { and } f_{i j}^{q} \geq 0, \forall(i, j) \in \mathcal{A} .
\end{aligned}
$$

Valid Inequalities Through Branch-and-Cut I

- Given \hat{x}, in subproblem q, branch on arc sets $\mathcal{A}^{+} \subseteq \mathcal{A}$ and $\mathcal{A}^{-} \subseteq \mathcal{A} \backslash \mathcal{A}^{+}$, such that $y_{i j}^{q}=1, \forall(i, j) \in \mathcal{A}^{+}$, and $y_{i j}^{q}=0$, $\forall(i, j) \in \mathcal{A}^{-}$.
- To ensure binary $y_{i j}^{q}$-values for all arcs $(i, j) \in \mathcal{A}^{+} \cup \mathcal{A}^{-}$after branching, add

$$
\begin{align*}
& y_{i j}^{q} \geq 1 \quad \forall(i, j) \in \mathcal{A}^{+} \tag{6}\\
& -y_{i j}^{q} \geq 0 \quad \forall(i, j) \in \mathcal{A}^{-} . \tag{7}
\end{align*}
$$

to subproblems and compute η_{q}.

Valid Inequalities Through Branch-and-Cut II

- Denote $\hat{\lambda}_{i}^{q}, \hat{\alpha}_{i j}^{q}, \hat{\beta}_{i j}^{q}, \hat{\pi}_{i j}^{q+}, \hat{\pi}_{i j}^{q-}, \hat{\omega}_{i j}^{q+}$, and $\hat{\omega}_{i j}^{q-}$ as optimal dual solutions to the corresponding subproblem.
- Let $M^{+}=M^{-}=M$.
- For any \mathcal{A}^{+}and \mathcal{A}^{-}, where $\mathcal{A}^{+} \subseteq \mathcal{A}, \mathcal{A}^{-} \subseteq \mathcal{A} \backslash \mathcal{A}^{+}$,

$$
\begin{align*}
\eta_{q} \geq & -\sum_{(i, j) \in \mathcal{A}}\left(\left(1-I_{i j}^{q}\right) \hat{\alpha}_{i j}^{q}+a_{i j} l_{i j}^{q} \hat{\beta}_{i j}^{q}+M I_{i j}^{q}\left(\hat{\pi}_{i j}^{q+}+\hat{\pi}_{i j}^{q-}\right)\right) x_{i j} \\
& -\sum_{i \in \mathcal{N}_{+}} \hat{\lambda}_{i}^{q} S_{i}-\sum_{i \in \mathcal{N}_{-}} \hat{\lambda}_{i}^{q} D_{i}-M \sum_{(i, j) \in \mathcal{A}}\left(\hat{\pi}_{i j}^{q+}+\hat{\pi}_{i j}^{q-}\right) \\
& +\sum_{(i, j) \in \mathcal{A}^{+}} \hat{\omega}_{i j}^{q+} y_{i j}^{q}-\sum_{(i, j) \in \mathcal{A}^{-}} \hat{\omega}_{i j}^{q-} y_{i j}^{q} \tag{8}
\end{align*}
$$

is valid to the relaxed MP of Model 1. (The proof is omitted.)

Bounding the Big- M in Cut (8)

- Any feasible solutions to (4) and (5) require that $\left|R_{i j} f_{i j}-M^{+}\right|=\left|R_{i j} f_{i j}+M^{-}\right|$(values of both right-hand sides when $I_{i j}^{q} x_{i j}+y_{i j}^{q}-1=-1$) to be the maximum absolute difference between θ_{i}^{q} and θ_{j}^{q}.
- Use

$$
M=(|\mathcal{N}|-1) \max _{(u, v) \in \mathcal{A}}\left\{R_{u v} a_{u v}\right\}
$$

for all node pairs, because any path between i and j contains no more than $|\mathcal{N}|-1$ arcs, and the maximum voltage difference on any arc is bounded by $\max _{(u, v) \in \mathcal{A}}\left\{R_{u v} a_{u v}\right\}$.

Model 2: Multiple Interdependent Infrastructures

Model 2 analyzes multiple infrastructures, being interdependent and possessing risk of cascading failures.

- First stage: Network design and arc construction (x).
- Second stage: Consider two major responses after arcs are randomly destroyed:

1. allowing load shedding at demand nodes.
2. isolating failures by disconnecting pairs of interdependent nodes in different infrastructures.

Notation of Model 2 I

- K: a set of all infrastructures.
- \mathcal{N}^{k} : contains sets of supply, transshipment, and demand nodes, denoted as $\mathcal{N}_{+}^{k}, \mathcal{N}_{=}^{k}$, and \mathcal{N}_{-}^{k} with no common nodes.
- \mathcal{A}^{k} : a set of arcs to be constructed.
- $P\left(k_{1}, k_{2}\right)$: a set of node pairs carrying the interdependency between infrastructures k_{1} and k_{2}, such that pair $(i, j) \in P\left(k_{1}, k_{2}\right)$ implies that node $j \in \mathcal{N}^{k_{2}}$ is dependent on demand node $i \in \mathcal{N}_{-}^{k_{1}}$.

Notation of Model 2 II

Parameters:

- $a_{i j}^{k}, c_{i j}^{k}, d_{i j}^{k}$: the capacity, construction cost, and unit flow cost of $\operatorname{arc}(i, j) \in \mathcal{A}^{k}$.
- S_{i}^{k} and D_{j}^{k} : the maximum supply and required demand at nodes $i \in \mathcal{N}_{+}^{k}$ and $j \in \mathcal{N}_{-}^{k}$.
- h_{i}^{k} : unit generation cost varying at each supply node $i \in \mathcal{N}_{+}^{k}$.
- p_{i}^{k} : a penalty cost incurred for each unit of unsatisfied demand at node $i \in \mathcal{N}_{-}^{k}$.
- $s_{i j}^{k_{1} k_{2}}$: fixed cost for disconnecting two interdependent nodes i and j.
- $l_{i j}^{k q} \in\{0,1\}$: the status of $\operatorname{arc}(i, j) \in \mathcal{A}^{k}$ in scenarios $q \in Q$, where $I_{i j}^{k q}=0$ if arc (i, j) fails, and 1 otherwise.

Notation of Model 2 III

Decision Variables:

- $x_{i j}^{k} \in\{0,1\}$: such that $x_{i j}^{k}=1$ if we construct arc (i, j) in infrastructure k, and 0 otherwise. (No arcs can be constructed between two nodes from different infrastructures.)
- $g_{i}^{k q}$: the amount of flow generated at node $i \in \mathcal{N}_{+}^{k}$.
- $u_{i}^{k q} \geq 0$: unsatisfied demand realized at node $i \in \mathcal{N}_{-}^{k}$.
- $z_{i j q}^{k_{1} k_{2}} \in\{0,1\}$: such that $z_{i j q}^{k_{1} k_{2}}=1$ if we disconnect a parent node $i \in \mathcal{N}_{-}^{k_{1}}$ from its children node $j \in \mathcal{N}^{k_{2}}$, and 0 otherwise.
- $e_{i j q}^{k_{1} k_{2}} \in\{0,1\}$: such that $e_{i j q}^{k_{1} k_{2}}=1$ means demand at node $i \in \mathcal{N}_{-}^{k_{1}}$ is not fully satisfied (i.e., $u_{i}^{k q}>0$), and thus node $j \in \mathcal{N}^{k_{2}}$ becomes dysfunctional if it is still connected to i.
- $f_{i j}^{k q} \geq 0$: an amount of flow on $\operatorname{arc}(i, j) \in \mathcal{A}^{k}, \forall q \in Q$.

$S P^{q}(x)$-Model 2

min: $\quad \sum_{k \in K}\left(\sum_{(i, j) \in \mathcal{A}^{k}} d_{i j}^{k} f_{i j}^{k q}+\sum_{i \in \mathcal{N}_{+}^{k}} h_{i}^{k} g_{i}^{k q}+\sum_{i \in \mathcal{N}_{-}^{k}} p_{i}^{k} u_{i}^{k q}\right)$

$$
\begin{equation*}
+\sum_{k_{1}, k_{2} \in K, k_{1} \neq k_{2}}\left\{\sum_{(i, j) \in P\left(k_{1}, k_{2}\right)} s_{i j}^{k_{1} k_{2}} z_{i j q}^{k_{1} k_{2}}\right\} \tag{9}
\end{equation*}
$$

s.t. flow balance at all nodes in \mathcal{N}^{k} of all infrastructure $k \in K$.

$$
\begin{align*}
& \sum_{j:(i, j) \in \mathcal{A}^{k}} f_{i j}^{k q}+\sum_{j:(j, i) \in \mathcal{A}^{k}} f_{j i}^{k q} \leq 2 \min \left\{\sum_{i \in \mathcal{N}_{+}^{k}} S_{i}^{k}, \sum_{i \in \mathcal{N}_{-}^{k}} D_{i}^{k}\right\}\left(1-e_{l i q}^{k^{\prime} k}\right) \\
& \forall i \in \bar{N}^{k}, k, k^{\prime} \in K, k^{\prime} \neq k,(I, i) \in P\left(k^{\prime}, k\right) \tag{10}\\
& \left.\left.u_{i}^{k_{1} q} \leq D_{i}^{k_{1}}\left(z_{i j q}^{k_{1} k_{2}}+e_{i j q}^{k_{1} k_{2}}\right) \quad \forall k_{1}, k_{2} \in K, k_{1} \neq k_{2},(i, j) \in P\left(k_{1}, k_{2}\right)\right] 11\right) \\
& i_{i j}^{k q} \leq a_{i j}^{k} I_{i j}^{k q} x_{i j}^{k} \quad \forall k \in K,(i, j) \in \mathcal{A}^{k} \tag{12}\\
& z_{i j q}^{k_{1} k_{2}}, e_{i j q}^{k_{1} k_{2}} \in\{0,1\}, \quad \forall k_{1}, k_{2} \in K, k_{1} \neq k_{2},(i, j) \in P\left(k_{1}, k_{2}\right) \\
& g_{i}^{k q} \geq 0, \forall i \in \mathcal{N}_{+}^{k}, u_{i}^{k q} \geq 0, \forall i \in \mathcal{N}_{-}^{k}, f_{i j}^{k q} \geq 0, \quad \forall k \in K,(i, j) \in\left(\mathbb{A}^{k}\right)
\end{align*}
$$

Feasible solutions to Model 2

Solving Model 2 (optimally):

- Combining $\mathrm{SP}^{q}(x)$-Model 2 with the master problem, we obtain an MIP model for Model 2.
- The MIP model is hard to compute due to scales of sets $P\left(k_{1}, k_{2}\right)$ for all combinations of k_{1} and k_{2}.
Approaches for computing lower and upper bounds of Model 2.
- Heuristic 1: generates an upper bound by disconnecting all infrastructure interdependencies a priori and then minimizing demand loss penalties in each infrastructure.
- Heuristic 2: aims to minimize disconnections, but will result in higher potential demand losses.
- A lower bound: by optimizing K individual infrastructure design and recovery problems.

An Example

Infrastructures $K 1, K 2$, and $K 3$, in which $S_{1}^{i}, S_{2}^{i}, D^{i}$ represent two suppliers and one consumer in each infrastructure for $i=1,2,3$.

- The interdependency sets are indicated by dash lines.
- Disconnection costs of $\left(D^{1}, S_{2}^{2}\right),\left(D^{2}, S_{1}^{3}\right)$, and $\left(D^{3}, S_{2}^{1}\right)$ are 1 , 10, and 100.
- Assume zero flow cost, zero generation cost, and $\$ 1$ penalty cost for each unit of demand losses.

Demonstrations of Heuristics 1 and 21

Heuristic 1 for solving the Example:

1. Delete all interdependent $\operatorname{arcs}\left(D^{1}, S_{2}^{2}\right),\left(D^{2}, S_{1}^{3}\right)$, and $\left(D^{3}, S_{2}^{1}\right)$, and the disconnection cost is $1+10+100=111$.
2. By solving a minimum-cost flow problem in each infrastructure, we only lost two units of demand at node D^{2}, yielding a penalty cost as 2 .
3. Demands D^{1} and D^{3} are fully satisfied, we cancel the disconnections $\left(D^{1}, S_{2}^{2}\right)$ and $\left(D^{3}, S_{2}^{1}\right)$, and the total cost of Heuristic 1 is $111+2-1-100=12$.

Demonstrations of Heuristics 1 and 2 II

Heuristic 2 for solving the Example:

1. $\bar{N}^{k} \neq \emptyset$ for all $k=K 1, K 2, K 3$.
2. Select $K 2$ as an initial k^{0} as it is the cheapest to delete $\left(D^{1}, S_{2}^{2}\right)$.
3. By minimizing demand loss penalties in $K 2$, we obtain a solution having 2 units of unsatisfied demand at D^{2}. Given an existing interdependency $\left(D^{2}, S_{1}^{3}\right)$, the loss at D^{2} sets S_{1}^{3} dysfunctional.
4. Because $\bar{N}^{K 3}=\emptyset$, choose $k^{1}=K 3$. However, as S_{1}^{3} becomes dysfunctional, we again lost 2 units of demand at D^{3}, which disables S_{2}^{1}.
5. This further leads to one unit of demand loss at D^{1}, and the total cost is $1+2+2+1=6$.

An Approach to Find an Objective Lower Bound

A lower bound can be found by solving a LP relaxation of Model 2.
Alternatively, we compute a lower bound by optimizing K individual infrastructure design and recovery problems.

1. Set $z=0$ for all node pairs, and minimize the total demand loss within each individual infrastructure $k \in K$.
2. That is, we ignore system interdependency, and only optimize demand losses by assuming that all nodes are functional.
3. The result has two cases:

- If the solution conflicts with $z=0$, it yields a lower bound of the real optimal objective cost.
- Otherwise, i.e., the current solution is also feasible for $z=0$, we attain optimum.

Computations and Results

Model 1 is tested on an IEEE 118-bus system.

- Compare the effectiveness of Benders cuts (2) and cuts (8) (referred to as "BAC cuts") for solving Model 1.
- Test a hybrid method by incorporating Benders and BAC cuts.

Computations and Results

Model 1 is tested on an IEEE 118-bus system.

- Compare the effectiveness of Benders cuts (2) and cuts (8) (referred to as "BAC cuts") for solving Model 1.
- Test a hybrid method by incorporating Benders and BAC cuts.

For Model 2, test two- and three-infrastructure systems.

- Preserve the 118 -bus system, representing a major power grid, whose demand losses might affect node functions in other smaller-scale systems (20- or 50-node networks).
- Compare MIP-Model-2, Heuristic 1, Heuristic 2, and lower-bound approaches.
- Use MIP-Model-2 to solve instances having three infrastructures, and the topology of their interdependencies varies as Tree, Chain, and Cycle.

Computations and Results

Model 1 is tested on an IEEE 118-bus system.

- Compare the effectiveness of Benders cuts (2) and cuts (8) (referred to as "BAC cuts") for solving Model 1.
- Test a hybrid method by incorporating Benders and BAC cuts.

For Model 2, test two- and three-infrastructure systems.

- Preserve the 118 -bus system, representing a major power grid, whose demand losses might affect node functions in other smaller-scale systems (20- or 50-node networks).
- Compare MIP-Model-2, Heuristic 1, Heuristic 2, and lower-bound approaches.
- Use MIP-Model-2 to solve instances having three infrastructures, and the topology of their interdependencies varies as Tree, Chain, and Cycle.
All models and algorithms use default CPLEX 12.3 with $\mathrm{C}++$.

Computing Model 1: Result Analyses

The hybrid approach randomly decides to either generate a Benders or a BAC cut, following Bernoulli trails. Time limit $=600$ seconds.

Instance	Benders (in \$1000)				BAC (in \$1000)			Hybrid (in \$1000)		
	LB	UB	Gap (\%)	LB	UB	Gap (\%)	LB	UB	Gap (\%)	
Ins-2-(-2)	31.915	37.456	17.361	12.855	38.026	195.816	30.693	37.404	21.867	
Ins-2-(-1)	30.184	37.451	24.076	4.278	38.195	792.875	30.337	37.359	23.146	
Ins-2-(0)	29.078	37.521	29.039	13.001	38.291	194.518	29.708	37.468	26.124	
Ins-2-(+1)	27.341	37.930	38.731	22.173	38.263	72.563	27.267	37.860	38.850	
Ins-2-(+2)	26.207	38.064	45.242	30.850	37.952	23.023	28.856	38.033	31.801	
Ins-3-(-2)	39.861	41.556	4.254	7.027	42.369	502.968	40.344	41.612	3.144	
Ins-3-(-1)	40.080	41.567	3.710	8.469	42.419	400.896	40.025	41.660	4.085	
Ins-3-(0)	38.550	41.660	8.068	22.294	42.645	91.282	38.288	42.178	10.160	
Ins-3-(+1)	35.720	42.461	18.870	39.163	42.453	8.399	39.367	42.453	7.838	
Ins-3-(+2)	38.572	42.554	10.324	41.220	44.262	7.379	41.146	44.224	7.481	

- Decomposition becomes more effective as the arc construction cost and the arc repair cost increase as compared to the generation cost and the flow cost.
- Benders and BAC cuts are unstable, while the hybrid cut is stable under various parameter settings.

Computing Model 2: Setup and Parameter Design

For every two-infrastructure system,

- the 118 -bus system is attached with either a 20 -node or a 50-node system each having two different network layouts (i.e., "20-1," "20-2," "50-1," and "50-2").
- Any demand losses in the 118-bus system might dysfunction some nodes in the attached system.
For every three-infrastructure system,
- Attach combinations of (20-1, 20-2), (20-1, 50-1), and (50-1, 50-2) to the 118-bus system.
- Vary the topology of system interdependency as Chain, Tree, and Cycle.

Computing Model 2: Result Analyses I

Optimizing two-infrastructure systems via different approaches:

Instance	CPU seconds				Cost (in \$1000)			
	MIP-Model-2	Heuristic 1	Heuristic 2	LB	MIP-Model-2	Heuristic 1	Heuristic 2	LB
20-1-Ins1	5.086	2.215	1.295	0.999	1048.800	100.663\%	101.101\%	99.953\%
20-1-Ins2	4.774	1.732	1.217	0.858	1059.361	100.657\%	101.102\%	99.984\%
20-1-Ins3	4.664	1.841	1.248	0.952	1044.174	100.666\%	101.170\%	99.977\%
20-1-Ins4	4.477	1.966	1.138	0.952	1058.106	100.656\%	101.093\%	98.661\%
20-2-Ins1	3.823	1.934	5.741	0.952	998.260	100.713\%	100.259\%	99.964\%
20-2-Ins2	3.338	1.716	3.089	0.983	987.793	100.724\%	100.240\%	99.973\%
20-2-Ins3	3.276	1.920	1.550	0.936	1010.901	100.708\%	100.248\%	99.978\%
20-2-Ins4	5.959	2.434	6.427	1.029	1032.633	100.683\%	100.264\%	99.970\%
50-1-Ins1	6.740	3.401	2.917	7.566	1062.289	100.726\%	100.289\%	99.974\%
50-1-Ins2	6.692	3.541	2.949	7.597	1068.586	100.727\%	100.152\%	99.979\%
$50-1-\operatorname{lns} 3$	7.067	3.682	3.058	7.815	1072.775	100.723\%	100.133\%	99.978\%
50-1-Ins4	6.677	3.681	2.949	7.784	1078.481	100.716\%	100.190\%	99.982\%
50-2-Ins1	4.743	2.286	3.916	7.162	1052.067	100.695\%	100.319\%	99.982\%
50-2-Ins2	4.508	2.792	4.087	7.742	1060.748	100.688\%	100.317\%	99.952\%
50-2-Ins3	4.602	2.917	3.666	7.161	1053.092	100.692\%	100.291\%	99.979\%
50-2-Ins4	4.680	2.761	3.276	7.086	1089.856	100.668\%	100.361\%	99.735\%

Computing Model 2: Result Analyses II

Optimizing three-infrastructure Tree, Chain, and Cycle:

	CPU seconds				Cost (in \$1000)			
Tree	MIP-Model-2	Heuristic 1	Heuristic 2	LB	MIP-Model-2	Heuristic 1	Heuristic 2	LB
$(20-1,20-2)$	15.772	3.861	0.818	0.840	1050.067	101.229%	102.331%	99.869%
$(20-1,50-1)$	11.091	5.156	4.852	1.408	1070.717	101.254%	100.624%	99.936%
$(50-1,50-2)$	15.412	7.037	5.352	2.075	1130.676	101.229%	100.261%	99.979%
Chain	MIP-Model-2	Heuristic 1	Heuristic 2	LB	MIP-Model-2	Heuristic 1	Heurisitc2	LB
$(20-1,20-2)$	4.290	1.956	0.742	1.008	1049.434	100.690%	102.393%	99.930%
$(20-1,50-1)$	6.770	3.201	2.345	2.535	1070.645	100.716%	100.365%	99.943%
$(50-1,50-2)$	10.404	4.519	4.279	1.892	1130.626	100.653%	100.190%	99.983%
Cycle	MIP-Model-2	Heuristic 1	Heuristic 2	LB	MIP-Model-2	Heuristic 1	Heurisitc2	LB
$(20-1,20-2)$	5.640	2.175	0.571	0.819	1049.638	100.724%	123.563%	99.910%
$(20-1,50-1)$	6.650	3.565	2.395	1.698	1070.645	100.573%	100.365%	99.943%
$(50-1,50-2)$	11.889	6.004	4.523	2.331	1130.626	101.051%	100.190%	99.983%

Computing Model 2: Result Analyses III

- CPU time of Heuristics 1, 2, and the LB method are much shorter than MIP-Model-2.
- Both (20-1, 50-1) and (50-1,50-2) have the same cost in MIP-Model-2 for Chain and Cycle, indicating that the 118-bus system dominates all three systems, and the feedback interdependency in a Cycle from either $50-1$ or $50-2$ to the 118 -bus system is negligible in our computations.
- Overall, we do not observe much solution difference among Tree, Chain, and Cycle-structured systems.
- Both Heuristic 1 and Heuristic 2 yield slightly worse bounds than testing two-infrastructure systems, because more interdependency variables are pre-fixed or relaxed by the heuristic approaches given more sub-networks.

Conclusions

- Investigate problems of critical infrastructure design and recovery optimization under random network arc disruptions.
- Consider both small-scale failures in a single network, and large-scale cascading failures in multiple interdependent infrastructures.
- Model 1 (small networks): (i) complicated by Big-M constraints yielded by the Kirchhoff's Voltage Law for specifically modeling power transmission networks; (ii) solved by LP-based Benders cuts and a Branch-and-Cut algorithm.
- Model 2 (multiple infrastructures): we develop an MIP and heuristic approaches for bounding the optimal objectives.

Future research:

- Risk variants of Model 1 and Model 2.
- Specially-structured topologies of interdependency among multiple infrastructures.

