Distributionally Robust Approaches for Optimal Power Flow with Uncertain Reserves from Load Control

Siqian Shen Industrial and Operations Engineering University of Michigan

Joint work with Yiling Zhang (IOE) and Johanna Mathieu (EECS)

June, 2015

- Why Chance-Constrained Optimal Power Flow (CC-OPF) Problem?
- How to Solve CC-OPF?
- Notation
- Joint and Individual CC-OPF Models
- Solution Approaches
 - Mixed-integer Linear programming (MILP) Approach (A1)
 - Gaussian Approximation Approach (A2)
 - Scenario Approximation Approach (A3)
 - Distributionally Robust Optimization Approach (A4)
- Computational Results
 - IEEE 9-Bus System
 - IEEE 39-Bus System

- Why Chance-Constrained Optimal Power Flow (CC-OPF) Problem?
- How to Solve CC-OPF?
- Notation
- Joint and Individual CC-OPF Models
- Solution Approaches
 - Mixed-integer Linear programming (MILP) Approach (A1)
 - Gaussian Approximation Approach (A2)
 - Scenario Approximation Approach (A3)
 - Distributionally Robust Optimization Approach (A4)
- Computational Results
 - IEEE 9-Bus System
 - IEEE 39-Bus System

Why Chance-Constrained Optimal Power Flow (CC-OPF) Problem?

- The Optimal Power Flow (OPF): minimize system-wide energy and reserve costs subject to the physical constraints of the system.
- More reserve needed: an increase in intermittent and uncertain power generation, i.e., wind and solar capacity
- Large amount of uncertainty in power systems motivates stochastic optimization approaches, i.e., CC-OPF.
 - Past work: Focused on managing uncertainty stemming from renewable energy production and load consumption
 - Our work: also the **uncertain balancing reserves** provided by load control

- Why Chance-Constrained Optimal Power Flow (CC-OPF) Problem?
- How to Solve CC-OPF?
- Notation
- Joint and Individual CC-OPF Models
- Solution Approaches
 - Mixed-integer Linear programming (MILP) Approach (A1)
 - Gaussian Approximation Approach (A2)
 - Scenario Approximation Approach (A3)
 - Distributionally Robust Optimization Approach (A4)
- Computational Results
 - IEEE 9-Bus System
 - IEEE 39-Bus System

- A robust reformulation of the scenario approach
 - requires no knowledge of uncertain distributions
 - but significant number of "uncertain scenarios" data!
- Such data may be unavailable in practice.
 - our goal: investigate the performance of a variety of methods to solve CC-OPF problems given **limited information of uncertain distribution.**

- Why Chance-Constrained Optimal Power Flow (CC-OPF) Problem?
- How to Solve CC-OPF?
- Notation
- Joint and Individual CC-OPF Models
- Solution Approaches
 - Mixed-integer Linear programming (MILP) Approach (A1)
 - Gaussian Approximation Approach (A2)
 - Scenario Approximation Approach (A3)
 - Distributionally Robust Optimization Approach (A4)
- Computational Results
 - IEEE 9-Bus System
 - IEEE 39-Bus System

Notation

- Decision variables:
 - energy production at generators P_G
 - generators' up- and down-reserve capacities \overline{R}_G , \underline{R}_G
 - loads' up- and down-reserve capacities $\overline{R}_L, \underline{R}_L$
 - "distribution vectors" $\overline{d}_G, \underline{d}_G$ and $\overline{d}_L, \underline{d}_L$
- Other variables:
 - actual generator reserves R_G and load reserves R_L
 - real-time supply/demand mismatch ${\cal P}_m$
- Cost parameters:
 - $c = [c_0, c_1, c_2, \overline{c}_G, \underline{c}_G, \overline{c}_L, \underline{c}_L]^\mathsf{T}$
- Given data:
 - $\bullet\,$ loads forecast $P_L^{\rm f}$ and wind forecast $P_W^{\rm f}$
 - actual wind power \widetilde{P}_W , actual load \widetilde{P}_L
 - actual minimum and maximum load $[\underline{\widetilde{P}}_L, \overline{P}_L]$
 - min/max generator production $\underline{P}_G, \overline{P}_G$

- Why Chance-Constrained Optimal Power Flow (CC-OPF) Problem?
- How to Solve CC-OPF?
- Notation
- Joint and Individual CC-OPF Models
- Solution Approaches
 - Mixed-integer Linear programming (MILP) Approach (A1)
 - Gaussian Approximation Approach (A2)
 - Scenario Approximation Approach (A3)
 - Distributionally Robust Optimization Approach (A4)
- Computational Results
 - IEEE 9-Bus System
 - IEEE 39-Bus System

Joint and Individual CC-OPF Models

• [J-CC-OPF]:

min
$$c^{\mathsf{T}}[1, P_G, P_G^2, \overline{R}_G, \underline{R}_G, \overline{R}_L, \underline{R}_L]$$
 (1)

s.t.
$$P_m = \sum_{i=1}^{N_W} (\widetilde{P}_{W,i} - P_{W,i}^f) - \sum_{i=1}^{N_L} (\widetilde{P}_{L,i} - P_{L,i}^f)$$
 (2)

$$\sum_{i=1}^{N_G} \underline{d}_{G,i} + \sum_{i=1}^{N_L} \overline{d}_{L,i} = 1 \tag{3}$$

$$\sum_{i=1}^{N_G} \overline{d}_{G,i} + \sum_{i=1}^{N_L} \underline{d}_{L,i} = 1 \tag{4}$$

$$R_G = \overline{d}_G \max\{-P_m, 0\} - \underline{d}_G \max\{P_m, 0\}$$
(5)

$$R_L = \overline{d}_L \max\{P_m, 0\} - \underline{d}_L \max\{-P_m, 0\}$$
(6)

$$\mathbb{P}\left(\widetilde{A}x \ge \widetilde{b}\right) \ge 1 - \epsilon \tag{7}$$

$$x = [P_G, \overline{R}_G, \underline{R}_G, \overline{R}_L, \underline{R}_L, \underline{d}_G, \overline{d}_G, \underline{d}_L, \overline{d}_L] \ge \mathbf{0}.$$
(8)

Joint and Individual CC-OPF Models

• Constraints inside (7)

$$\widetilde{A}x \geq \widetilde{b} = \{ \underline{P}_{G} \leq P_{G} + R_{G} \leq \overline{P}_{G}, \\
\widetilde{\underline{P}}_{L} \leq \widetilde{P}_{L} + R_{L} \leq \widetilde{\overline{P}}_{L}, \\
-\underline{R}_{G} \leq R_{G} \leq \overline{R}_{G}, \\
-\underline{R}_{L} \leq R_{L} \leq \overline{R}_{L}, \\
-P_{\text{line}} \leq B_{\text{flow}} \begin{bmatrix} 0 \\ B_{\text{bus}}^{-1} \hat{P}_{\text{inj}} \end{bmatrix} \leq P_{\text{line}} \}.$$
(9)

• [I-CC-OPF]:

min (1)
s.t. (2)-(6), (8)
$$\mathbb{P}\left(\widetilde{A}_{i}x \geq \widetilde{b}_{i}\right) \geq 1 - \epsilon_{i} \quad i = 1, \dots, m.$$
(10)

- Why Chance-Constrained Optimal Power Flow (CC-OPF) Problem?
- How to Solve CC-OPF?
- Notation
- Joint and Individual CC-OPF Models
- Solution Approaches
 - Mixed-integer Linear programming (MILP) Approach (A1)
 - Gaussian Approximation Approach (A2)
 - Scenario Approximation Approach (A3)
 - Distributionally Robust Optimization Approach (A4)
- Computational Results
 - IEEE 9-Bus System
 - IEEE 39-Bus System

Solution Approaches: Mixed-Integer Linear programming (MILP) Approach (A1)

- Known as Sample Average Approximation (SAA) approach
- Reformulate individual chance constraints (10) $\mathbb{P}\left(\widetilde{A}_i x \geq \widetilde{b}_i\right) \geq 1 - \epsilon_i \quad i = 1, \dots, m \text{ as}$

$$A_i^s x \ge b_i^s - M y_s^i \ \forall s \in \Omega, \ i = 1, \dots, m$$

$$\tag{11}$$

$$\sum_{s\in\Omega} p^s y_s^i \le \epsilon_i, \ \forall i, \ \text{and} \ y_s^i \in \{0,1\} \ \forall s, \ i,$$
(12)

where M is a large scalar coefficient.

• Associate each $s \in \Omega$ with a binary logic variable y_s^i such that

Solution Approaches: Gaussian Approximation Approach (A2)

- Consider an equivalent of individual chance constraints (10) $\mathbb{P}\left(\widetilde{A}_{i}x \geq \widetilde{b}_{i}\right) \geq 1 - \epsilon_{i} \quad i = 1, \dots, m$ $\mathbb{P}\left(\widetilde{A}'_{i}\bar{x} \leq b'_{i}\right) \geq 1 - \epsilon_{i} \quad i = 1, \dots, m,$
- Assume the uncertainty is Gaussian distributed:

$$\widetilde{A}'_i \sim N(\mu_i, \Sigma_i).$$

Then,

$$\widetilde{A}'_i \bar{x} - b'_i \sim N(\mu_i^\mathsf{T} \bar{x} - b', \bar{x}^\mathsf{T} \Sigma_i \bar{x}).$$

• We rewrite (13) as

$$b'_i - \mu_i^{\mathsf{T}} \bar{x} \ge \Phi^{-1} (1 - \epsilon_i) \sqrt{\bar{x}^{\mathsf{T}} \Sigma_i \bar{x}} \quad i = 1, \dots, m.$$
(14)

The above are second-order cone constraints if $\Phi^{-1}(1-\epsilon_i) \ge 0$, i.e., $1-\epsilon_i \ge 0.5$.

(13)

Solution Approaches: Scenario Approximation Approach (A3)

• Replace each chance constraint in (10) $\mathbb{P}\left(\widetilde{A}_{i}x \geq \widetilde{b}_{i}\right) \geq 1 - \epsilon_{i} \quad i = 1, \dots, m \text{ with}$

$$A_i^s x \ge b_i^s \ \forall s \in \Omega_{\rm ap}. \tag{15}$$

• Both A1 and A2 require full distributional knowledge, while A3 requires large sample sizes and significant computation.

Solution Approaches: Distributionally Robust Optimization Approach (A4)

• The DR variant of (10):

$$\inf_{f(\xi)\in\mathcal{D}} \mathbb{P}_{\xi}(\widetilde{A}_{i}^{\xi}x \ge \widetilde{b}_{i}^{\xi}) \ge 1 - \epsilon_{i} \ \forall i = 1, \dots, m.$$
(16)

• The confidence set (description in a general way) Given samples $\{\xi^i\}_{i=1}^N$ of ξ , we first calculate the empirical mean and covariance matrix as $\mu_0 = \frac{1}{N} \sum_{i=1}^N \xi^i$ and $\Sigma_0 = \frac{1}{N} \sum_{i=1}^N (\xi - \mu_0^i) (\xi - \mu_0^i)^{\mathsf{T}}$, and then build a confidence set

$$\mathcal{D} = \left\{ \begin{aligned} & \int_{\xi \in \mathcal{S}} f(\xi) d\xi = 1 \\ f(\xi) : & (\mathbb{E}[\xi] - \mu_0)^{\mathsf{T}} (\Sigma_0)^{-1} (\mathbb{E}[\xi] - \mu_0) \leq \gamma_1 \\ & \mathbb{E}[(\xi - \mu_0)(\xi - \mu_0)^{\mathsf{T}}] \leq \gamma_2 \Sigma_0 \end{aligned} \right\}.$$

Solution Approaches: Distributionally Robust Optimization Approach (A4)

• (Duality theory) Let r_i , $\begin{bmatrix} H_i & p_i \\ p_i^{\mathsf{T}} & q_i \end{bmatrix}$, and G_i be the dual variables associated with the three constraints in the above confidence set \mathcal{D} , respectively. The individual chance constraints (16) are equivalent to

$$\gamma_2 \Sigma_0 \cdot G_i + 1 - r_i + \Sigma_0 \cdot H_i + \gamma_1 q_i \le \epsilon_i y_i \tag{17}$$

$$\begin{bmatrix} G_i & -p_i \\ -p_i^{\mathsf{T}} & 1-r_i \end{bmatrix} \succeq \begin{bmatrix} 0 & \frac{1}{2}\bar{A}_i^x \\ \frac{1}{2}(\bar{A}_i^x)^{\mathsf{T}} & y_i + (\bar{A}_i^x)^{\mathsf{T}}\mu_0 - \bar{b}_i^x \end{bmatrix}$$
(18)

$$\begin{bmatrix} G_i & -p_i \\ -p_i^{\mathsf{T}} & 1-r_i \end{bmatrix} \succeq 0, \begin{bmatrix} H_i & p_i \\ p_i^{\mathsf{T}} & q_i \end{bmatrix} \succeq 0, y_i \ge 0, \ i = 1, \dots, m,$$
(19)

where operator "·" in constraint (17) represents Frobenius inner product of two matrices (i.e., $A \cdot B = tr(A^{\mathsf{T}}B)$). This is a semi-definite program and can be solved by commercial solvers.

• Importantly, note that the above approaches for bounding the unknown $f(\xi)$ are general and allow the uncertainty ξ to be **time-varying**, correlated, and endogenous.

- Why Chance-Constrained Optimal Power Flow (CC-OPF) Problem?
- How to Solve CC-OPF?
- Notation
- Joint and Individual CC-OPF Models
- Solution Approaches
 - Mixed-integer Linear programming (MILP) Approach (A1)
 - Gaussian Approximation Approach (A2)
 - Scenario Approximation Approach (A3)
 - Distributionally Robust Optimization Approach (A4)
- Computational Results
 - IEEE 9-Bus System
 - IEEE 39-Bus System

Figure: IEEE 9-bus system, with added wind generation.

Table: Results to IEEE 9-Bus system with $1 - \epsilon_i = 95\%$

			Obj.			$\operatorname{Rel}(\%)$			CPU	
		avg	\min	\max	avg	\min	\max	avg	\min	\max
A1	J-CC-OPF	1349	1328	1363	77	8	95	2	1	4
	$\operatorname{I-CC-OPF}$	1346	1336	1357	72	46	90	5876	131	32817
A2	I-CC-OPF	1349	1340	1358	82	65	94	1	1	1
A3	I-CC-OPF	1408	1371	1525	100	99	100	55	54	57
A4	I-CC-OPF	1393	1365	1458	100	98	100	5	4	6

Figure: Average reliability to IEEE 9-Bus system with $1 - \epsilon_i = 95\%$

The highest/lowest value of the err bar is the largest/smallest realized probability.

Table: Results of I-CC-OPF solved by the DR approach A4

		$1 - \epsilon_i =$	95.00%	90.00%	85.00%
		avg	1392.64	1369.23	1359.97
Individual	Objective cost	\min	1352.46	1346.62	1346.62
		\max	1457.81	1385.24	1372.75
		avg	99.50	97.97	94.51
	Reliability (%)	\min	91.40	91.40	83.29
		\max	99.96	99.70	99.18
		avg	6.63	6.98	6.95
	CPU seconds	\min	6.13	4.73	6.27
		\max	8.19	8.44	7.83

Table: Solutions from A1–A4 of I-CC-OPF with $1 - \epsilon_i = 95\%$

	$(P_G)_1$	$(P_G)_2$	$(P_G)_3$	$(\overline{R}_G)_1$	$(\overline{R}_G)_2$	$(\overline{R}_G)_3$	$(\underline{R}_G)_1$	$(\underline{R}_G)_2$	$(\underline{R}_G)_3$	$(\overline{R}_L)_1$	$(\overline{R}_L)_2$
A1	10.00	28.84	20.94	0.00	0.00	0.00	0.00	0.00	0.00	4.44	1.21
A2	10.00	28.89	20.97	0.00	0.00	0.00	0.00	0.00	0.00	3.88	1.88
A3	10.03	29.32	21.27	0.03	2.35	0.00	0.03	2.79	0.00	10.49	9.73
A4	10.00	29.22	21.20	0.00	0.25	0.00	0.00	0.34	0.00	10.97	7.34
	$(\overline{R}_L)_3$	$(\underline{R}_L)_1$	$(\underline{R}_L)_2$	$(\underline{R}_L)_3$	$(d_G)_1$	$(d_G)_2$	$(d_G)_3$	$(d_L)_1$	$(d_L)_2$	$(d_L)_3$	
A1	8.05	1.86	0.63	3.41	0.00	0.00	0.00	0.32	0.09	0.58	
A2	9.45	2.03	1.08	4.21	0.00	0.00	0.00	0.25	0.12	0.62	
A3	4.74	8.55	7.85	4.00	0.00	0.10	0.00	0.38	0.35	0.17	
A4	15.17	8.46	5.68	11.59	0.00	0.01	0.00	0.32	0.21	0.46	

		R_G	R_G	R_G	R_L	R_L	R_L	Active lines
	95%	0.00	0.00	0.00	0.00	0.76	3.22	2.0E-04
A1	90%	0.00	0.00	0.00	3.00	0.98	0.00	2.0E-04
	85%	0.00	0.00	0.00	0.00	0.00	3.98	1.0E-04
	95%	0.00	0.00	0.00	0.00	0.00	0.00	$0.0E{+}00$
A2	90%	0.00	0.00	0.00	0.86	0.09	3.03	$0.0E{+}00$
	85%	0.00	0.00	0.00	0.00	0.00	3.98	$0.0E{+}00$
	95%	0.00	0.00	0.00	2.00	1.51	0.47	1.0E-04
A3	90%	0.00	0.00	0.00	1.57	1.19	1.22	1.0E-04
	85%	0.00	0.00	0.00	1.78	1.54	0.66	1.0E-04
	95%	0.00	0.00	0.00	1.39	0.81	1.78	$0.0E{+}00$
A4	90%	0.00	0.00	0.00	1.18	0.71	2.10	$0.0E{+}00$
	85%	0.00	0.00	0.00	1.16	0.61	2.22	$0.0E{+}00$

Table: Realization Results to the 9-bus system

Table: Simulated satisfaction rate (%) with $1 - \epsilon_i = 95\%$, $\forall i$

Constraint	1	2	3	4	5	6	7	8	9	10
A5	95.89	88.88	31.57	95.29	94.98	94.97	94.86	99.87	99.79	94.62
A2	96.01	89.12	91.60	91.60	91.60	91.60	91.60	91.60	91.60	91.60
A3	99.97	99.91	100	100	100	100	100	100	100	100
Constraint	11	12	13	14	15	16	17	18	19	20
A5	98.38	94.85	94.56	94.56	99.46	94.58	92.06	93.12	93.66	93.05
A2	91.60	91.60	91.60	91.60	91.60	91.60	91.60	91.60	91.60	91.60
A3	100	100	100	100	100	100	100	100	100	100
Constraint	21	22	23	24	25	26	27	28	29	30
A5	92.99	88.35	97.68	97.50	97.50	97.46	99.91	99.86	97.31	99.15
A2	91.60	95.85	95.85	95.85	95.85	95.85	95.85	95.85	95.85	95.85
A3	100	99.98	99.98	99.98	99.98	99.98	99.98	99.98	99.98	99.98
Constraint	31	32	33	34	35	36	37	38	39	40
A5	97.44	97.25	97.25	99.65	97.27	96.11	96.68	96.91	96.56	96.54
A2	95.85	95.85	95.85	95.85	95.85	95.85	95.85	95.85	95.85	95.85
1 9	00.00	00.00	00.00	00.00	00 00	00.00	100	00.00	00.00	00.00

25 / 28

Table: Average Realization Results to the 39-bus system

	R_G		R	R_L	# of Active line
	avg	std	avg	std	
A5	-0.02	0.00	1.12	2.15	0.0000%
A2	0.00	0.00	1.41	1.59	0.0000%
A3	0.00	0.00	1.41	1.92	0.0300%

the negativeness of R_G in A5 is due to the inaccuracy of our results.

Table: Average performance (out of 37 Constraints) to IEEE 39-Bus system with $1 - \epsilon_i = 95\%$

	CPU seconds	Objective cost	Reliability (%)
A5	3015.98	25670.07	96.47
A2	4.10	25632.72	93.79
A3	6893.96	26129.16	99.99

Figure: Average reliability (out of 37 Constraints) to IEEE 39-Bus system with $1-\epsilon_i=95\%$