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Two Common Problems in Service Operations
P1: Server Allocation
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Generic Problem Settings

Common issues: 1) service time uncertainty; 2) unknown
distributions with limited data.

Allocation phase: Given a set of servers and jobs:

I Decisions: Which servers to open and how to allocate jobs.

I Objective: Minimize the total operational cost.

I Constraint: Low overtime probability in each open server.

Scheduling phase: Given appointments assigned to a server:

I Decisions: Arrival time of each appointment

I Objective: Minimize the total waiting (+ idleness)

I Constraint: Low overtime probability
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Literature Review
Allocation:

I Deterministic: Blake and Donald (2002), Jebali et al. (2006)

I Stochastic multi-OR allocation: Denton et al. (2010)

I Chance-constrained multi-OR allocation: Shylo et al. (2012)

Scheduling:

I Under random service durations: Weiss (1990), Van den Bosch and
Dietz (2000), Denton and Gupta (2003), Gupta and Denton (2008),
Pinedo (2012), Erdogan and Denton (2013)

I Near-optimal scheduling policy: Mittal et al. (2014), Begen and
Queyranne (2011), Begen et al. (2012), Ge et al. (2013)

I Simulation and queuing theories: Bailey (1952); Brahimi and
Worthington (1991); Ho and Lau (1992); Rohleder and Klassen
(2002); Hassin and Mendel (2008); Zeng et al. (2010)

I Distributionally Robust (DR) appointment scheduling: Mak et al.
(2014) and Kong et al. (2014)
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In this Talk...

Under random service time, we consider

I Problem 1: Multiple Server Allocation;

I Problem 2: Single Server Appointment Scheduling

We study their Distributionally Robust (DR) variants, and employ

I Moment ambiguity sets of the unknown distribution

We reformulate the DR models as

I Allocation: 0-1 SDP (cross-moment), 0-1 SOCP (exact 1st &
2nd-moment matching), 0-1 SOCP (Gaussian Approximation)

I Scheduling: SDP (cross-moment ambiguity set)

We optimize the 0-1 SDP via a cutting-plane algorithm, and
directly compute the rest in off-the-shelf solvers.
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Notation

I Set of Servers: I (operating cost τi and time limit Ti )

I Set of Jobs: J (ρij = 1 if job j can be operated on server i)

I Random service durations: s = [sij , i ∈ I , j ∈ J]T

I Decision Variable
I zi ∈ {0, 1}: whether or not to operate server i , such that

zi =

{
1 operate server i
0 o.w.

I yij ∈ {0, 1}: whether to assign job j to server i , with

yij =

{
1 allocate job j to server i
0 o.w.
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0-1 Chance-Constrained Formulation

Let αi be the risk tolerance of having overtime on server i , ∀i ∈ I .

min
z,y

∑
i∈I

τizi

s.t. yij ≤ ρijzi , ∀i ∈ I , j ∈ J∑
i∈I (j)

yij = 1, ∀j ∈ J

P

∑
j∈J(i)

sijyij ≤ Ti

 ≥ 1− αi , ∀i ∈ I

yij , zi ∈ {0, 1}, ∀i ∈ I , j ∈ J.

A variant of chance-constrained binary packing (see, e.g., Song,
Luedtke, and Küçükyavuz (2014))
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Moment-based Ambiguity Sets

Consider si = [sij , j ∈ J]T as random service time of server i . Due to
limited data, we may not know the exact distributions of si , and thus

cannot accurately evaluate P
{∑

j∈J(i) sijyij ≤ Ti

}
. Thus, we consider

I Cross-moment Ambiguity Set (Delage and Ye (2010)):

Di
M(µi

0,Σ
i
0, γ1, γ2) =

f (si ) :

∫
si∈Ξi

f (si )dsi = 1

(E[si ]− µi
0)T(Σi

0)−1(E[si ]− µi
0) ≤ γ1

E[(si − µi
0)(si − µi

0)T] � γ2Σi
0


I Special Case Ambiguity Set (Exact Mean and Covariance

Matching):

Di
C (µi

0,Σ
i
0) =

{
f (si ) :

∫
si∈Ξi

f (si )dsi = 1, E[si ] = µi
0

E[(si − µi
0)(si − µi

0)T] = Σi
0

}
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DR Chance Constraint

I A DR Allocation Model: Replace

P

∑
j∈J(i)

sijyij ≤ Ti

 ≥ 1− αi , ∀i ∈ I

with

inf
f (si )∈D

P

∑
j∈J

sijyij ≤ Ti

 ≥ 1− αi , ∀i ∈ I .

where D is either Di
M or Di

C .
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Allocation ⇒ 0-1 SDP when D = Di
M

To reformulate inff (si )∈D P
{∑

j∈J sijyij ≤ Ti

}
≥ 1− αi , define

I

[
H i pi

(pi )T qi

]
: dual of (E[si ]− µi0)T(Σi

0)−1(E[si ]− µi0) ≤ γ1

I G i : dual variables with E[(si − µi0)(si − µi0)T] � γ2Σi
0

I r i : dual variables with
∫
si∈Ξi

f (si )dsi = 1.

Following Jiang and Guan (2015),

I the DR chance constraint is equivalent to SDP constraints.

I the DR server allocation model then becomes a 0-1 SDP.

Thus, we propose a cutting-plane algorithm that decomposes the
0-1 SDP into two stages.
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Master Problem: 0-1 Integer Linear Program

A Master Problem (MP) without enforced DR chance constraints:

min
z,y

∑
i∈I

τizi

s.t. yij ≤ ρijzi , ∀i ∈ I , j ∈ J∑
i∈I (j)

yij = 1, ∀j ∈ J

Ci (yi ) ≤ 0, i ∈ I

yij , zi ∈ {0, 1}, ∀i ∈ I , j ∈ J,

where Ci (yi ) ≤ 0 include linear cuts from solving server-based
subproblems that evaluate whether y can satisfy the server-based
DR chance constraints.
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Subproblem Dual and Valid Cuts

Given y from MP, we formulate a subproblem for each i ∈ I as the
equivalent SDP of the DR chance constraint by letting D = Di

M .

Take the dual of the SDP subproblem (also an SDP):

SUBi (yi )-Dual: max
Q i ,d i ,ui

yT
i d

i + (yT
i µ

i
0 − Ti )u

i ≤ 0[
γ2Σi

0 0
0 1

]
−
[

Q i d i

(d i )T ui

]
� 0[

0 0
0 −αi

]
+

[
Q i d i

(d i )T ui

]
� 0[

Q i d i

(d i )T ui

]
∈ S

(|J(i)|+1)×(|J(i)|+1)
+ .

Consider optimal (d̃ i , ũi ). If yT
i d̃

i + (yT
i µ

i
0 − Ti )ũ

i > 0, then
generate a valid cut (linear in yi ).
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A Cutting-Plane Approach

1. Initial MP without Ci (yi ) ≤ 0, i ∈ I .

2. Iterate the following steps until no cuts are needed:

i. Solve MP and obtain (z , y). If fail, claim infeasible, exit.

ii. Otherwise, for i ∈ I do
I Solve SUBi (yi )-Dual and obtain optimal dual (Q i , d i , ui ).
I If ((d i )T + d i (µi

0)T)yi − uiTi > 0, generate a cut

((d i )T + ui (µi
0)T)yi − uiTi ≤ 0

into cut set Ci (yi ) ≤ 0 of MP.

iii. If no cut generated from SUBi (yi )-Dual for ∀i ∈ I , then (z , y)
is optimal; exit.
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Allocation ⇒ 0-1 SOCP when D = Di
C

We replace inff (si )∈D P
{∑

j∈J sijyij ≤ Ti

}
≥ 1− αi by an SOCP

constraint given:

Theorem (Wagner, 2008)

Given the first and second order information µi0 and Σi
0 of the

service duration vector si , given the ambiguity set Di
C and

probability αi , then an equivalent formulation for
inff (si )∈Di

C
P[sT

i yi ≤ Ti ] ≥ 1− αi is

√
yT
i Σi

0yi ≤
√

αi

1− αi
(Ti − (µi0)Tyi ), ∀i ∈ I .

Alternatively, the DR allocation model is a 0-1 SOCP and is
directly optimized by CVX 2.1 + Gurobi solver.
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Appointment Scheduling: Notation

Parameters:
I One server and m appt. arriving in a fixed order
I Service durations: sj
I Unit waiting penalty: hj

Decision variables:
I xj : time interval between appt. j and j + 1.
I wj : waiting time of appt. j
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Scheduling: Chance-Constrained Linear Program

min
x

Es:f (s)

min
w

m∑
j=2

hjwj


s.t. P


m−1∑
j=1

xj + wm + sm ≤ T

 ≥ 1− α

wj + xj−1 ≥ sj−1 + wj−1, ∀j = 2, . . . ,m

xj ≥ 0, ∀j = 1, . . . ,m − 1

w1 = 0, wj ≥ 0, ∀j = 2, . . . ,m,

I Balance waiting of appointments and server overtime.

I Remain the same complexity if adding idle-time penalty.
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A DR Variant

We employ the cross-moment ambiguity set

Ds
M =

{
f (s) :

∫
s∈Ξs f (s)ds = 1, (E[s]− µs

0)T(Σs
0)−1(E[s]− µs

0) ≤ γ1

E[(s − µs
0)(s − µs

0)T] � γ2Σs
0

}
.

I Worst Case Expected Waiting Penalty:

min
x

max
f (s)∈Ds

M

Ef (s)

min
w

m∑
j=2

hjwj


I DR Chance Constraint on Overtime:

inf
f (s)∈Ds

M

P


m−1∑
j=1

xj + wm + sm ≤ T

 ≥ 1− α
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Reformulation: Key Ideas

Following similar procedures in the DR allocation:

I DR Chance Constraint ⇒ multiple # of SDP

I Worst Case Expectation ⇒ semi-infinite SDP with infinite #
of constraints

I Use the extreme-point representation of the dual of the linear
scheduling constraints (special structure in Mak et al. (2014))

I Reformulate the SDP with semi-infinite constraints as SDP

The overall DR scheduling problem with cross-moment ambiguity
set is an SDP and optimized directly in CVX 2.1 + Gurobi.
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Allocation Setup

Gaussian distributed sij ⇒ a benchmark 0-1 SOCP model.
Solver: Matlab-based CVX 2.1 + gurobi solver

Experimental setup:

I 32 jobs, 6 servers

I Each server: time limit = 8 hrs, operating cost = 1.
I 4 combinations of

I High mean (20min–30min) or Low mean (10min–15min)
I High variance (CoV = 1) or Low variance (CoV = 0.3)

I 5 sets of tests:
I eq: 32 jobs with equally mixed types; 8 each.
I ll, lh, hl, hh: a certain type of jobs dominate. (The first

letter refers to “mean” and the second refers to “variance”).

I Training samples follow Gamma distributions

I Training data size = 20 for each type
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Average CPU Time

We report the CPU seconds for computing each type instance with
different methods by letting α = 0.05 and α = 0.10.

α Approach eq ll hl lh hh

0.05 Gaussian 1.62 1.78 1.70 1.59 170.68
0-1 SOCP 23.56 6.22 57.10 6.68 1096.92

Cutting-Plane 47.41 29.78 49.76 30.61 233.22
0.10 Gaussian 1.65 1.79 1.78 1.34 2.15

0-1 SOCP 14.76 7.85 8.72 7.46 18.42
Cutting-Plane 23.96 33.20 45.10 28.44 174.85
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Solution Performance

Table: # of servers opened by each method

α Gaussian 0-1 SOCP Cutting-Plane

0.05 2 3 3
0.1 2 2 2

Taking the setting eq:

I Follow “Lognormal” to generate 10, 000 data for simulation.

I Fix solutions to the three models in the simulation sample and
evaluate how many scenarios are satisfied.

I Report the results of “training sample” = gamma, and
“simulation sample” (i.e., true distribution) = lognormal.
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Probability of No Overtime in Simulation Sample
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I Both 0-1 SDP and 0-1 SOCP provide highly reliable DR solutions.
I The opt. solution of the benchmark model based on Gaussian approximation

performs slightly worse on Server #2.
I The performance is not sensitive to distribution change.
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Scheduling Setup

I 10 appointments, 1 server (can be a DR allocation solution)

I Server time limit: 8 hours

I Unit waiting penalty with all appointments

I Tolerable overtime risk α = 0.1
I Appointments arrive in the following two orders

I Order 1: 4 hh → 3 hl → 3 ll appointments
I Order 2: 3 ll → 3 hl → 4 hh appointments
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Solution Pattern
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I A more robust model intend to increase the time interval in between the
first two appointments.

I As more ll appointments appear at the beginning, we intend to
distribute time intervals more evenly.
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Waiting Time and Overtime 99% Quantiles

Table: 99 % quantiles of waiting and overtime (in min)

Appt. Waiting (min) eq ll hh lh hl

1 (hh) w1 0.00 0.00 0.00 0.00 0.00
2 (hh) w2 0.00 0.00 0.00 0.00 0.00
3 (hh) w3 35.68 0.00 37.65 0.00 0.00
4 (hh) w4 74.19 0.00 78.35 1.31 14.89
5 (hl) w5 99.60 0.00 92.18 18.86 30.13
6 (hl) w6 30.43 7.03 107.82 31.26 44.08
7 (hl) w7 39.20 15.76 117.83 38.93 50.65
8 (ll) w8 46.81 23.51 120.11 47.98 62.96
9 (ll) w9 23.34 23.92 124.24 47.92 60.03

10 (ll) w10 23.77 23.65 119.23 47.22 58.46

Overtime (min) 0.00 0.00 22.73 0.00 0.00
Recall that the total time = 480 min.
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Conclusions

Conclusions:

I Consider DR server allocation and DR appointment
scheduling models and algorithms.

I Employ diverse moment-based ambiguity sets of distributions
⇒ 0-1 SDP / 0-1 SOCP for allocation and SDP for
scheduling.

I Develop cutting-plane algorithm for 0-1 SDP.

Future Research:

I Investigate other ambiguity sets.

I Study data-driven aspects of different sets.

I Implement in practice.
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