Stochastic Modeling and Approaches for Managing Energy Footprints in Cloud Computing Service

> Siqian Shen Assistant Professor

Industrial and Operations Engineering University of Michigan

October 8, 2013

Shen, Wang (UMich)

Emerging Trends of Cloud Computing (CC)

Source: www.cloudtweaks.com by David Fletcher

Shen, Wang (UMich)

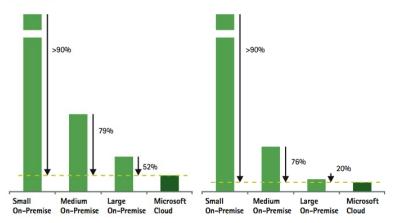
CC Advantages: Reducing Carbon Emission

Microsoft Exchange

On-premise vs. Cloud Comparison, CO2e per user

Microsoft Dynamics CRM

On-premise vs. Cloud Comparison, CO2e per user



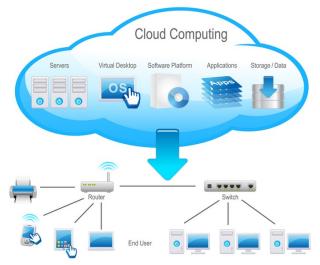
Source: Accenture (2010) "Cloud Computing and Sustainability: Environmental Benefits of Moving to the Cloud"

Shen, Wang (UMich)

Cloud Computing Service Management

3/30

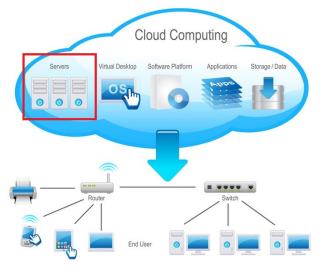
How CC Works...



Source: www.veterangeek.com

Shen, Wang (UMich)

How CC Works...

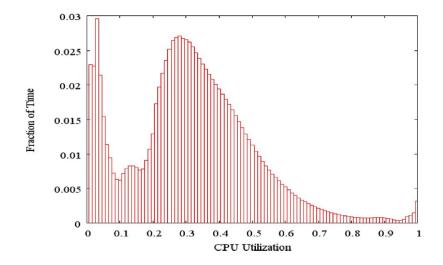


Source: www.veterangeek.com

Shen, Wang (UMich)

Motivation

Server Utilization in Google



• Moreover, an idle server consumes 60%+ energy at full mode. Shen, Wang (UMich) Cloud Computing Service Management 5/30

Virtual Machine Consolidation

Large-scale servers with low utilization

Consolidate the work to fewer Cloud servers

Source: Google's official blog - Energy efficiency in the cloud.

Our data centers use 50% less energy than typical data centers through server (Virtual Machine) consolidation. — Google.

Other benefits:

- more robust operations schedules
- more idle servers reacting to demand surges

Shen, Wang (UMich)

• Stochastic mixed-integer programming models to optimize energy footprints while ensure various Quality of Service (QoS) guarantees for managing servers in Cloud Computing service.

- Stochastic mixed-integer programming models to optimize energy footprints while ensure various Quality of Service (QoS) guarantees for managing servers in Cloud Computing service.
- Estimate demand based on distributions of historical data, and dynamically consolidate or distribute jobs on servers through operational scheduling.

- Stochastic mixed-integer programming models to optimize energy footprints while ensure various Quality of Service (QoS) guarantees for managing servers in Cloud Computing service.
- Estimate demand based on distributions of historical data, and dynamically consolidate or distribute jobs on servers through operational scheduling.
- Vary QoS levels by using joint/multiple chance constraints, to bound chances of job delay and incompleteness.

Shen, Wang (UMich)

- Stochastic mixed-integer programming models to optimize energy footprints while ensure various Quality of Service (QoS) guarantees for managing servers in Cloud Computing service.
- Estimate demand based on distributions of historical data, and dynamically consolidate or distribute jobs on servers through operational scheduling.
- Vary QoS levels by using joint/multiple chance constraints, to bound chances of job delay and incompleteness.

Shen, Wang (UMich)

- Formulations: Stochastic & Chance-Constrained Programs
- Algorithms: the Benders Decomposition and Heuristics
- Computational Design
- Result Analyses
- Conclusions and Future Research

Parameter

 \mathcal{N}_m set of servers in a data center

Shen, Wang (UMich)

- \mathcal{N}_m set of servers in a data center
- Ω set of finite scenarios for realizing uncertain demand

- \mathcal{N}_m set of servers in a data center
- Ω set of finite scenarios for realizing uncertain demand
- T total number of time periods considered
- ℓ^t length of period t (in hours) for all t = 1, ..., T

- \mathcal{N}_m set of servers in a data center
- Ω set of finite scenarios for realizing uncertain demand
- T total number of time periods considered
- ℓ^t length of period t (in hours) for all t = 1, ..., T
- \widetilde{d}^t random job requests (demand) received at period t

Shen, Wang (UMich)

- \mathcal{N}_m set of servers in a data center
- Ω set of finite scenarios for realizing uncertain demand
- T total number of time periods considered
- ℓ^t length of period t (in hours) for all t = 1, ..., T
- \widetilde{d}^t random job requests (demand) received at period t

Shen, Wang (UMich)

Formulation

$$\begin{array}{ll} \text{min:} & \sum_{t=1}^{T} \sum_{i \in \mathcal{N}_m} \left(g_i y_i^t + v_i x_i^t + f_i z_i^t \right) & (1a) \\ \text{s.t.} & \sum_{i \in \mathcal{N}_m} e_i \ell^t x_i^t \geq \widetilde{d}^t \quad \forall 1 \leq t \leq T & (1b) \\ \ell^t x_i^t + s_i y_i^t \leq \ell^t z_i^t \quad \forall i \in \mathcal{N}_m, \ 1 \leq t \leq T & (1c) \\ y_i^1 \geq z_i^1 \quad \forall i \in \mathcal{N}_m & (1d) \\ y_i^t \geq z_i^t - z_i^{t-1} \quad \forall i \in \mathcal{N}_m, \ 2 \leq t \leq T & (1e) \\ 0 \leq x_i^t \leq 1 \quad \forall i \in \mathcal{N}_m, \ 1 \leq t \leq T & (1f) \\ y_i^t, z_i^t \in \{0, 1\} \quad \forall i \in \mathcal{N}_m, \ 1 \leq t \leq T & (1g) \end{array}$$

The basic model consolidates demand on severs to minimize the total energy consumed by all servers over t = 1, ..., T.

Shen, Wang (UMich)

Formulation

$$\begin{array}{ll} \text{min:} & \sum_{t=1}^{T} \sum_{i \in \mathcal{N}_m} \left(g_i y_i^t + v_i x_i^t + f_i z_i^t \right) & (1a) \\ \text{s.t.} & \sum_{i \in \mathcal{N}_m} e_i \ell^t x_i^t \ge \widetilde{d}^t \quad \forall 1 \le t \le T & (1b) \\ \ell^t x_i^t + s_i y_i^t \le \ell^t z_i^t \quad \forall i \in \mathcal{N}_m, \ 1 \le t \le T & (1c) \\ y_i^t \ge z_i^1 \quad \forall i \in \mathcal{N}_m & (1d) \\ y_i^t \ge z_i^t - z_i^{t-1} \quad \forall i \in \mathcal{N}_m, \ 2 \le t \le T & (1e) \\ 0 \le x_i^t \le 1 \quad \forall i \in \mathcal{N}_m, \ 1 \le t \le T & (1f) \\ y_i^t, z_i^t \in \{0, 1\} \quad \forall i \in \mathcal{N}_m, \ 1 \le t \le T & (1g) \end{array}$$

 $\begin{array}{ll} g_i y_i^t \colon & \text{energy used for booting machine } i \text{ at period } t. \\ y_i^t \in \{0,1\} \colon & = 1 \text{ if server } i \text{ is switched to "on" at period } t. \end{array}$

Shen, Wang (UMich)

Formulation

$$\begin{array}{ll} \text{min:} & \sum_{t=1}^{T} \sum_{i \in \mathcal{N}_m} \left(g_i y_i^t + v_i x_i^t + f_i z_i^t \right) & (1a) \\ \text{s.t.} & \sum_{i \in \mathcal{N}_m} e_i \ell^t x_i^t \ge \widetilde{d}^t \quad \forall 1 \le t \le T & (1b) \\ \ell^t x_i^t + s_i y_i^t \le \ell^t z_i^t \quad \forall i \in \mathcal{N}_m, \ 1 \le t \le T & (1c) \\ y_i^t \ge z_i^1 \quad \forall i \in \mathcal{N}_m & (1d) \\ y_i^t \ge z_i^t - z_i^{t-1} \quad \forall i \in \mathcal{N}_m, \ 2 \le t \le T & (1e) \\ 0 \le x_i^t \le 1 \quad \forall i \in \mathcal{N}_m, \ 1 \le t \le T & (1f) \\ y_i^t, z_i^t \in \{0, 1\} \quad \forall i \in \mathcal{N}_m, \ 1 \le t \le T & (1g) \end{array}$$

$$v_i x_i^t:$$
$$x_i^t \ge 0$$

energy for job processing in machine i at period t. percentage of server i's capacity used at period t.

Shen, Wang (UMich)

Formulation

$$\begin{array}{ll} \text{min:} & \sum_{t=1}^{T} \sum_{i \in \mathcal{N}_m} (g_i y_i^t + v_i x_i^t + f_i z_i^t) & (1a) \\ \text{s.t.} & \sum_{i \in \mathcal{N}_m} e_i \ell^t x_i^t \ge \widetilde{d}^t \quad \forall 1 \le t \le T & (1b) \\ \ell^t x_i^t + s_i y_i^t \le \ell^t z_i^t \quad \forall i \in \mathcal{N}_m, \ 1 \le t \le T & (1c) \\ y_i^t \ge z_i^1 \quad \forall i \in \mathcal{N}_m & (1d) \\ y_i^t \ge z_i^t - z_i^{t-1} \quad \forall i \in \mathcal{N}_m, \ 2 \le t \le T & (1e) \\ 0 \le x_i^t \le 1 \quad \forall i \in \mathcal{N}_m, \ 1 \le t \le T & (1f) \\ y_i^t, z_i^t \in \{0, 1\} \quad \forall i \in \mathcal{N}_m, \ 1 \le t \le T & (1g) \end{array}$$

 $\begin{array}{ll} f_i z_i^t \colon & \text{energy used at "idle" of machine } i \text{ at period } t.\\ z_i^t \in \{0,1\} \colon & = 1 \text{ if server } i \text{ is "idle" at period } t. \end{array}$

Shen, Wang (UMich)

Formulation

$$\begin{array}{ll} \text{min:} & \sum_{t=1}^{T} \sum_{i \in \mathcal{N}_m} \left(g_i y_i^t + v_i x_i^t + f_i z_i^t \right) & (1a) \\ \text{s.t.} & \sum_{i \in \mathcal{N}_m} e_i \ell^t x_i^t \geq \widetilde{d}^t \quad \forall 1 \leq t \leq T & (1b) \\ \ell^t x_i^t + s_i y_i^t \leq \ell^t z_i^t \quad \forall i \in \mathcal{N}_m, \ 1 \leq t \leq T & (1c) \\ y_i^1 \geq z_i^1 \quad \forall i \in \mathcal{N}_m & (1d) \\ y_i^t \geq z_i^t - z_i^{t-1} \quad \forall i \in \mathcal{N}_m, \ 2 \leq t \leq T & (1e) \\ 0 \leq x_i^t \leq 1 \quad \forall i \in \mathcal{N}_m, \ 1 \leq t \leq T & (1f) \\ y_i^t, z_i^t \in \{0, 1\} \quad \forall i \in \mathcal{N}_m, \ 1 \leq t \leq T & (1g) \end{array}$$

Computational time allocated to each period t is no less than the random demand $\widetilde{d}^t.$

Shen, Wang (UMich)

Cloud Computing Service Management

10/30

Formulation

$$\min: \qquad \sum_{t=1}^{T} \sum_{i \in \mathcal{N}_m} (g_i y_i^t + v_i x_i^t + f_i z_i^t) \tag{1a}$$

$$\text{s.t.} \qquad \sum_{i \in \mathcal{N}_m} e_i \ell^t x_i^t \ge \widetilde{d}^t \quad \forall 1 \le t \le T \tag{1b}$$

$$\ell^t x_i^t + s_i y_i^t \le \ell^t z_i^t \quad \forall i \in \mathcal{N}_m, \ 1 \le t \le T \qquad (1c)$$

$$y_i^1 \ge z_i^1 \quad \forall i \in \mathcal{N}_m \tag{1d}$$

$$y_i^t \ge z_i^t - z_i^{t-1} \quad \forall i \in \mathcal{N}_m, \ 2 \le t \le T$$
 (1e)

$$0 \le x_i^t \le 1 \quad \forall i \in \mathcal{N}_m, \, 1 \le t \le T \tag{1f}$$

$$y_i^t, z_i^t \in \{0, 1\} \quad \forall i \in \mathcal{N}_m, \ 1 \le t \le T$$
 (1g)

If \widetilde{d}^t is discretely distributed,

Shen, Wang (UMich)

Formulation

$$\begin{array}{ll} \text{min:} & \sum_{t=1}^{T} \sum_{i \in \mathcal{N}_m} \left(g_i y_i^t + v_i x_i^t + f_i z_i^t \right) & (1a) \\ \text{s.t.} & \sum_{i \in \mathcal{N}_m} e_i \ell^t x_i^t \geq \max_{\omega \in \Omega} d^{t\omega} \quad \forall 1 \leq t \leq T & (1b) \\ \ell^t x_i^t + s_i y_i^t \leq \ell^t z_i^t \quad \forall i \in \mathcal{N}_m, \ 1 \leq t \leq T & (1c) \\ y_i^1 \geq z_i^1 \quad \forall i \in \mathcal{N}_m & (1d) \\ y_i^t \geq z_i^t - z_i^{t-1} \quad \forall i \in \mathcal{N}_m, \ 2 \leq t \leq T & (1e) \\ 0 \leq x_i^t \leq 1 \quad \forall i \in \mathcal{N}_m, \ 1 \leq t \leq T & (1f) \\ y_i^t, z_i^t \in \{0, 1\} \quad \forall i \in \mathcal{N}_m, \ 1 \leq t \leq T & (1g) \end{array}$$

If \tilde{d}^t is discretely distributed, and let $d^{t\omega}$ represent a realization of \tilde{d}^t in scenario $\omega \in \Omega$,

• reformulate (1b) as a set of deterministic constraints

Shen, Wang (UMich)

Formulation

$$\begin{array}{ll} \text{min:} & \sum_{t=1}^{T} \sum_{i \in \mathcal{N}_m} \left(g_i y_i^t + v_i x_i^t + f_i z_i^t \right) & (1a) \\ \text{s.t.} & \sum_{i \in \mathcal{N}_m} e_i \ell^t x_i^t \geq \max_{\omega \in \Omega} d^{t\omega} \quad \forall 1 \leq t \leq T & (1b) \\ & \ell^t x_i^t + s_i y_i^t \leq \ell^t z_i^t \quad \forall i \in \mathcal{N}_m, \ 1 \leq t \leq T & (1c) \\ & y_i^1 \geq z_i^1 \quad \forall i \in \mathcal{N}_m & (1d) \\ & y_i^t \geq z_i^t - z_i^{t-1} \quad \forall i \in \mathcal{N}_m, \ 2 \leq t \leq T & (1e) \\ & 0 \leq x_i^t \leq 1 \quad \forall i \in \mathcal{N}_m, \ 1 \leq t \leq T & (1f) \\ & y_i^t, z_i^t \in \{0, 1\} \quad \forall i \in \mathcal{N}_m, \ 1 \leq t \leq T & (1g) \end{array}$$

The total "on" time of server i at period t is no less than computational time plus the time of booting the server (if there is any).

Shen, Wang (UMich)

Formulation

$$\begin{array}{ll} \text{min:} & \sum_{t=1}^{T} \sum_{i \in \mathcal{N}_m} \left(g_i y_i^t + v_i x_i^t + f_i z_i^t \right) & (1a) \\ \text{s.t.} & \sum_{i \in \mathcal{N}_m} e_i \ell^t x_i^t \geq \max_{\omega \in \Omega} d^{t\omega} \quad \forall 1 \leq t \leq T & (1b) \\ \ell^t x_i^t + s_i y_i^t \leq \ell^t z_i^t \quad \forall i \in \mathcal{N}_m, \ 1 \leq t \leq T & (1c) \\ y_i^1 \geq z_i^1 \quad \forall i \in \mathcal{N}_m & (1d) \\ y_i^t \geq z_i^t - z_i^{t-1} \quad \forall i \in \mathcal{N}_m, \ 2 \leq t \leq T & (1e) \\ 0 \leq x_i^t \leq 1 \quad \forall i \in \mathcal{N}_m, \ 1 \leq t \leq T & (1f) \\ y_i^t, z_i^t \in \{0, 1\} \quad \forall i \in \mathcal{N}_m, \ 1 \leq t \leq T & (1g) \end{array}$$

Server i is "on" at period 1 if we switch it to "on."

Shen, Wang (UMich)

Formulation

$$\begin{array}{ll} \text{min:} & \sum_{t=1}^{T} \sum_{i \in \mathcal{N}_m} \left(g_i y_i^t + v_i x_i^t + f_i z_i^t \right) & (1a) \\ \text{s.t.} & \sum_{i \in \mathcal{N}_m} e_i \ell^t x_i^t \geq \max_{\omega \in \Omega} d^{t\omega} \quad \forall 1 \leq t \leq T & (1b) \\ \ell^t x_i^t + s_i y_i^t \leq \ell^t z_i^t \quad \forall i \in \mathcal{N}_m, \ 1 \leq t \leq T & (1c) \\ y_i^1 \geq z_i^1 \quad \forall i \in \mathcal{N}_m & (1d) \\ y_i^t \geq z_i^t - z_i^{t-1} \quad \forall i \in \mathcal{N}_m, \ 2 \leq t \leq T & (1e) \\ 0 \leq x_i^t \leq 1 \quad \forall i \in \mathcal{N}_m, \ 1 \leq t \leq T & (1f) \\ y_i^t, z_i^t \in \{0, 1\} \quad \forall i \in \mathcal{N}_m, \ 1 \leq t \leq T & (1g) \end{array}$$

If server i is "off" at t-1 but "on" at t, then it means that • server i is switched to "on" at period t

Shen, Wang (UMich)

GOAL:

• Minimize energy consumption of all servers over $1, \ldots, T$ + the expected penalty cost of backlogging.

Allow **backlogging** such that

• Job (j, t) can be partitioned and processed on multiple servers, at any time that is no more than L periods after period t ("time of submission").

Model 2: Backlogging with Penalty

Define Sets:

- $B_1(t)$: backlogging periods such that if $t = 1, \ldots, T L$, then $B_1(t) = t, \ldots, t + L$; if $t = T L + 1, \ldots, T$, then $B_1(t) = t, \ldots, T$.
- $B_2(t)$: possible periods for submitting jobs due at t, such that if $t \leq L$, then $B_2(t) = 1, \ldots, t$; if $t = L + 1, \ldots, T$, then $B_2(t) = t L, \ldots, t$.

Additional Parameter:

- \mathcal{N}_c : Set of user groups who submit computational demand.
- \widetilde{d}_j^t : random job (j, t) submitted by user j at period t.
- p_j^{tk} : unit penalty of unfinished job (j, t) at period $k, \forall k \in B_1(t)$.

New Variables:

• u_{ji}^{tk} : percentage of ℓ^t for processing job (j, t) on server i in period k, $\forall i \in \mathcal{N}_m, j \in \mathcal{N}_c, t = 1, \dots, T$, and $k \in B_1(t)$.

• $b_j^{tk\omega}$: unfinished job (j,t) at period k in scenario $\omega, \forall k \in B_1(t)$ and $\omega \in \Omega$

Shen, Wang (UMich)

Model 2: Job-based with Backlogging

Formulation

min:

$$\sum_{t=1}^{T} \sum_{i \in \mathcal{N}_m} (g_i y_i^t + v_i x_i^t + f_i z_i^t) + \sum_{\omega \in \Omega} \boldsymbol{\rho}^{\omega} \left(\sum_{t=1}^{T} \sum_{j \in \mathcal{N}_c} \sum_{k \in B_1(t)} p_j^{tk} b_j^{tk\omega} \right)$$

s.t. $(1c)-(1g) \Rightarrow \text{Constraints from Model}(1)$

$$\sum_{k \in B_1(t)} \sum_{i \in \mathcal{N}_m} e_i \ell^k u_{ji}^{tk} \ge \tilde{d}_j^t \quad \forall j \in \mathcal{N}_c, \ 1 \le t \le T$$
(2a)

$$x_i^t \ge \sum_{k \in B_2(t)} \sum_{j \in \mathcal{N}_c} u_{ji}^{kt} \quad \forall i \in \mathcal{N}_m, \ 1 \le t \le T$$
(2b)

$$b_{j}^{tk\omega} = \max\left\{0, \ d_{j}^{t\omega} - \sum_{l=t}^{k} \sum_{i \in \mathcal{N}_{m}} e_{i} \ell^{l} u_{ji}^{tl}\right\}$$
$$\forall j \in \mathcal{N}_{c}, \ 1 \le t \le T, \ k \in B_{1}(t), \ \omega \in \Omega \qquad (2c)$$
$$0 \le u_{ji}^{tk} \le 1, \ b_{j}^{tk\omega} \ge 0. \qquad (2d)$$

 ρ^{ω} : the probability of scenario $\omega \in \Omega \Rightarrow$ penalize unfinished job requests in the objective, and minimize the expected penalty.

Shen, Wang (UMich)

Model 2: Job-based with Backlogging

 $-\sum_{t=1}^{T}\sum_{i\in\mathcal{N}_{m}}(g_{i}y_{i}^{t}+v_{i}x_{i}^{t}+f_{i}z_{i}^{t})+\sum_{\omega\in\Omega}\rho^{\omega}\left(\sum_{t=1}^{T}\sum_{i\in\mathcal{N}_{e}}\sum_{k\in\mathcal{R}^{*}(t)}p_{j}^{tk}b_{j}^{tk\omega}\right)$ min: $(1c)-(1g) \Rightarrow \text{Constraints from Model}(1)$ s.t. $\sum \sum e_i \ell^k u_{ji}^{tk} \ge \max_{\omega \in \Omega} d_j^{t\omega} \quad \forall 1 \le t \le T$ (2a) $k \in B_1(t) \ i \in \mathcal{N}_m$ $x_i^t \ge \sum \sum u_{ji}^{kt} \quad \forall i \in \mathcal{N}_m, \ 1 \le t \le T$ (2b) $k \in B_2(t)$ $i \in \mathcal{N}_c$ $b_j^{tk\omega} = \max\left\{0, \ d_j^{t\omega} - \sum_{l=t}^k \sum_{i \in \mathcal{N}_{m}} e_i \ell^l u_{ji}^{tl}\right\}$ $\forall i \in \mathcal{N}_c, \ 1 \leq t \leq T, \ k \in B_1(t), \ \omega \in \Omega$ (2c) $0 < u_{ii}^{tk} < 1, \ b_i^{tk\omega} > 0.$ (2d)

 $d_j^{t\omega}$: the realization of \tilde{d}_j^t in scenario $\omega \in \Omega \Rightarrow$ replace stochastic constraints (2a) by equivalent deterministic constraints.

Shen, Wang (UMich)

Relax Model (2) by allowing job incompleteness after L backlogging periods, however, **bounded by a certain risk tolerance**.

That is, replace Constraint (2a)

$$\sum_{k \in B_1(t)} \sum_{i \in \mathcal{N}_m} e_i \ell^k u_{ji}^{tk} \ge \widetilde{d}_j^t \quad \forall j \in \mathcal{N}_c, \ 1 \le t \le T$$

with

$$\mathbb{P}\left(\sum_{k\in B_1(t)}\sum_{i\in\mathcal{N}_m}e_i\ell^k u_{ji}^{tk}\geq \widetilde{d}_j^t, \forall j\in\mathcal{N}_c, 1\leq t\leq T\right)\geq \alpha$$

Shen, Wang (UMich)

Model 3: Backlogging with a Joint Chance Constraint

$$\begin{array}{ll} \text{min:} & \sum_{t=1}^{T} \sum_{i \in \mathcal{N}_m} (g_i y_i^t + v_i x_i^t + f_i z_i^t) + \sum_{\omega \in \Omega} \rho^{\omega} \left(\sum_{t=1}^{T} \sum_{j \in \mathcal{N}_c} \sum_{k \in B_1(t)} p_j^{tk} b_j^{tk\omega} \right) \\ \text{s.t.} & (1c) - (1g) \; \Rightarrow \; \text{Constraints from Model (1)} \\ & (2b) - (2d) \; \Rightarrow \; \text{Constraints from Model (2)} \\ & \mathbb{P} \left(\sum_{k \in B_1(t)} \sum_{i \in \mathcal{N}_m} e_i \ell^k u_{ji}^{tk} \geq \tilde{d}_j^t, \forall j \in \mathcal{N}_c, \, 1 \leq t \leq T \right) \geq \alpha \end{array}$$

Shen, Wang (UMich)

Model 3: Backlogging with a Joint Chance Constraint

$$\begin{array}{ll} \text{min:} & \sum_{t=1}^{T} \sum_{i \in \mathcal{N}_m} (g_i y_i^t + v_i x_i^t + f_i z_i^t) + \sum_{\omega \in \Omega} \rho^{\omega} \left(\sum_{t=1}^{T} \sum_{j \in \mathcal{N}_c} \sum_{k \in B_1(t)} p_j^{tk} b_j^{tk\omega} \right) \\ \text{s.t.} & (1c) - (1g) \; \Rightarrow \; \text{Constraints from Model (1)} \\ & (2b) - (2d) \; \Rightarrow \; \text{Constraints from Model (2)} \\ & \sum_{\omega \in \Omega} \rho^{\omega} \zeta^{\omega} \leq 1 - \alpha \end{array}$$

where, for each $\omega \in \Omega$, binary variables $\zeta^{\omega} = 1$ if $\forall j \in \mathcal{N}_c, \ 1 \leq t \leq T$, there exists at least one

$$\sum_{k \in B_1(t)} \sum_{i \in \mathcal{N}_m} e_i \ell^k u_{ji}^{tk} < d_j^{t\omega},$$

and 0 otherwise.

Shen, Wang (UMich)

Model 3: Backlogging with a Joint Chance Constraint

$$\begin{array}{ll} \text{min:} & \sum_{t=1}^{T} \sum_{i \in \mathcal{N}_m} (g_i y_i^t + v_i x_i^t + f_i z_i^t) + \sum_{\omega \in \Omega} \rho^{\omega} \left(\sum_{t=1}^{T} \sum_{j \in \mathcal{N}_c} \sum_{k \in B_1(t)} p_j^{tk} b_j^{tk\omega} \right) \\ \text{s.t.} & (1c) - (1g) \ \Rightarrow \ \text{Constraints from Model (1)} \\ & (2b) - (2d) \ \Rightarrow \ \text{Constraints from Model (2)} \\ & \sum_{\omega \in \Omega} \rho^{\omega} \zeta^{\omega} \leq 1 - \alpha \\ & \sum_{\omega \in \Omega} \sum_{k \in B_1(t)} \sum_{i \in \mathcal{N}_m} e_i \ell^k u_{ji}^{tk} + M_j^t \zeta^{\omega} \geq d_j^{t\omega} \\ & \quad \forall \omega \in \Omega, \ j \in \mathcal{N}_c, \ 1 \leq t \leq T \\ & \zeta^{\omega} \in \{0, 1\} \quad \forall \omega \in \Omega. \end{array}$$

where M_j^t is set as the maximal standard time for processing job (j, t), e.g., $M_j^t = \max_{\omega \in \Omega} d_j^{t\omega}, \ \forall j \in \mathcal{N}_c, \ 1 \leq t \leq T.$

Shen, Wang (UMich)

Model 4: Backlogging with Multiple Chance Constraints

Instead of a joint chance constraint

$$\mathbb{P}\left(\sum_{k\in B_1(t)}\sum_{i\in\mathcal{N}_m}e_i\ell^k u_{ji}^{tk}\geq \widetilde{d}_j^t,\;\forall j\in\mathcal{N}_c,\,1\leq t\leq T\right)\geq\alpha,$$

we formulate a series of job-based constraints, each of which is associated with a risk tolerance α_j^t , for job (j, t), $\forall j \in \mathcal{N}_c$ and $1 \leq t \leq T$.

$$\mathbb{P}\left(\sum_{k\in B_1(t)}\sum_{i\in\mathcal{N}_m}e_i\ell^k u_{ji}^{tk}\geq \widetilde{d}_j^t\right)\geq \alpha_j^t\quad \forall j\in\mathcal{N}_c,\,1\leq t\leq T$$

Shen, Wang (UMich)

Computational challenges from:

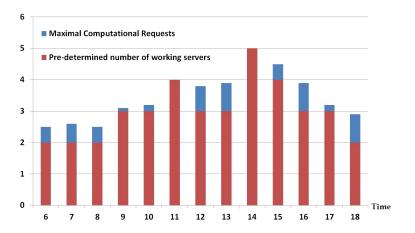
Large-Scale Time Intervals (1, ..., T)Large Number of Users and Servers $(|\mathcal{N}_c| \text{ and } |\mathcal{N}_m|)$ Large Number of Scenarios $(|\Omega|)$ for Describing the Uncertainty (\tilde{d}) Binary Server Operational Decisions (y and z)

Shen, Wang (UMich)

Bei	nders Decomposition	Example: Model 2
min:	$\sum_{t=1}^{T} \sum_{i \in \mathcal{N}_m} (g_i y_i^t + v_i x_i^t + f_i z_i^t) + \sum_{\omega \in \Omega} \operatorname{Prob}^{\omega}$	$^{\omega}\left(\sum_{t=1}^{T}\sum_{j\in\mathcal{N}_{c}}\sum_{k\in\mathcal{B}_{1}(t)}p_{j}^{tk}b_{j}^{tk\omega} ight)$
s.t.	$ \begin{split} \ell^{t} x_{i}^{t} + s_{i} y_{i}^{t} &\leq \ell^{t} z_{i}^{t} \forall i \in \mathcal{N}_{m}, \ 1 \leq t \leq T \\ y_{i}^{1} \geq z_{i}^{1} \forall i \in \mathcal{N}_{m} \\ y_{i}^{t} \geq z_{i}^{t} - z_{i}^{t-1} \forall i \in \mathcal{N}_{m}, \ 2 \leq t \leq T \\ 0 \leq x_{i}^{t} \leq 1 \forall i \in \mathcal{N}_{m}, \ 1 \leq t \leq T \\ y_{i}^{t}, z_{i}^{t} \in \{0, 1\} \forall i \in \mathcal{N}_{m}, \ 1 \leq t \leq T \end{split} $	Major Operations Decisions (Relaxed Master Problem)
	$\begin{split} \sum_{k \in B_1(t)} \sum_{i \in \mathcal{N}_m} e_i \ell^k u_{ji}^{tk} \geq \widetilde{d}_j^t \forall j \in \mathcal{N}_c, 1 \leq t \\ \widehat{\boldsymbol{\chi}}_j^t \geq \sum_{k \in B_2(t)} \sum_{j \in \mathcal{N}_c} u_{ji}^{kt} \forall i \in \mathcal{N}_m, 1 \leq t \leq t \\ b_j^{tk\omega} = \max \left\{ 0, \ d_j^{t\omega} - \sum_{l=t}^k \sum_{i \in \mathcal{N}_m} e_i \ell^l u_{ji}^{tl} \right\} \\ \forall j \in \mathcal{N}_c, \ 1 \leq t \leq T, \ k \in B_1(t), \ \omega \\ 0 \leq u_{ji}^{tk} \leq 1, \ b_j^{tk\omega} \geq 0. \textbf{Continuous!} \end{split}$	T Scenario-based Decisions (Second Stage Subproblem)

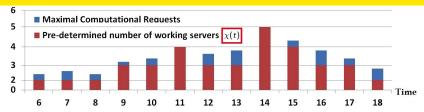
A Heuristic Approach

Idea: fix schedules of a subset of servers. Then optimize schedules for the rest of servers using math modeling.



Shen, Wang (UMich)

A Heuristic Approach



We pre-determine a subset of servers' schedule by setting

$$\begin{aligned} x_i^1 &= 1 - s_i/\ell^t \quad \forall i = 1, \dots, \chi(1), \\ x_i^t &= 1 \quad \forall 2 \le t \le T, \ i = 1, \dots, \chi^-(t), \\ x_i^t &= 1 - s_i/\ell^t \quad \forall 2 \le t \le T, \ i = \chi^-(t) + 1, \dots, \chi^-(t) + \chi^+(t) \quad \text{if } \chi^+(t) > 0, \\ \text{where for } t = 1, \dots, T, \\ \chi(t) &= \bigg[\sum_{j \in \mathcal{N}_c} \max_{\omega \in \Omega} d_j^{t\omega}/\ell^t \bigg], \\ \chi^-(t) &= \min\{\chi(t-1), \chi(t)\}, \text{ and } \chi^+(t) = \max\{\chi(t) - \chi(t-1), 0\}. \end{aligned}$$

Shen, Wang (UMich)

Cloud Computing Service Management

18/30

- $|\mathcal{N}_c| = 2$ (two types of users) and $|\mathcal{N}_m| = 5$, 10, and 20.
- Set T = 24 hours.
- Average energy consumption of Off, Idle, Processing, and Booting for a 3.0 Ghz server to be, respectively, 0W, 150W, 250W, and 250W (i.e., $v_i = 100W$, $f_i = 150W$).

Benchmark

	$\mathcal{I} = 10$	1%	$\mathcal{I} = 30$)%	$\mathcal{I} = 50\%$		
	$E[\sum_{t=1}^{T} \widetilde{d}^t]$ Bk		$E[\sum_{t=1}^{T} \widetilde{d}^t]$	$\mathbb{E}[\sum_{t=1}^{T} \widetilde{d}^t]$ Bk		Bk	
\mathcal{N}_m	(hours)	(kWh)	(hours)	(kWh)	(hours)	(kWh)	
5	12	19.2	36	21.6	60	24	
10	24	38.4	72	43.2	120	48	
20	48	76.8	144	86.4	240	96	

- " \mathcal{I} ": computational intensity
- $E[\sum_{t=1}^{T} \widetilde{d}^t] = \mathcal{I} * |\mathcal{N}_m| * 24$ (hours)
- **Bk**: gives benchmark energy consumption (objective) by having servers first "on" then "idle."

Shen, Wang (UMich)

Benchmark

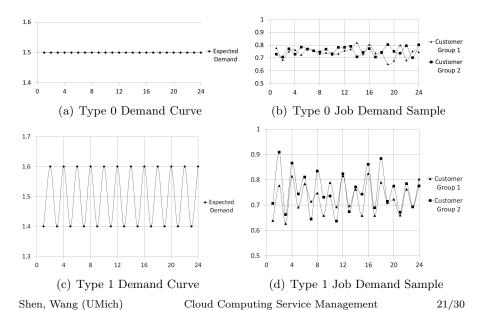
	$\mathcal{I} = 10$	1%	$\mathcal{I} = 30$	0%	$\mathcal{I} = 50\%$		
	$E[\sum_{t=1}^{T} \widetilde{d}^t]$	Bk	$E[\sum_{t=1}^{T} \widetilde{d}^t]$	Bk	$E[\sum_{t=1}^{T} \widetilde{d}^t]$	Bk	
\mathcal{N}_m	(hours)	(kWh)	(hours)	(kWh)	(hours)	(kWh)	
5	12	19.2	36	21.6	60	24	
10	24	38.4	72	43.2	120	48	
20	48	76.8	144	86.4	240	96	

- " \mathcal{I} ": computational intensity
- $E[\sum_{t=1}^{T} \widetilde{d}^t] = \mathcal{I} * |\mathcal{N}_m| * 24$ (hours)
- **Bk**: gives benchmark energy consumption (objective) by having servers first "on" then "idle."

Shen, Wang (UMich)

Computational Design

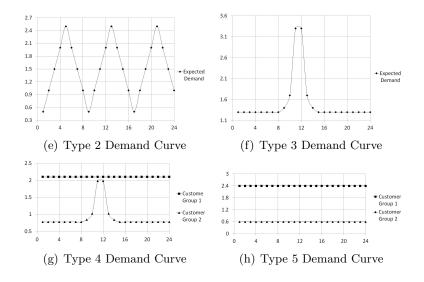
Demand Patterns



Computational Design

Demand Patterns

22/30



Types $0\sim3$: Homogeneous. Types 4 & 5: Heterogeneous.

Shen, Wang (UMich) Cloud Computing Service Management

- CPLEX 12.4 via ILOG Concert Technology with C++
- HP Workstation Z210 with CPU 3.20 GHz and 8GB memory
- CPU time limits =1800 seconds for each instance
- Test five instances for each parameter combination

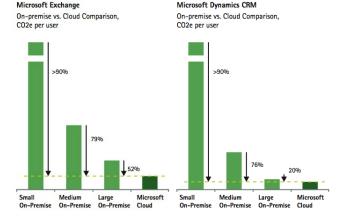
		-	$\mathcal{I} = 10\%$	6	-	$\mathcal{I} = 30\%$	0		$\mathcal{I} = 500$	%
\mathcal{N}_m	Type	Bk	Oper	Save	Bk	Oper	Save	Bk	Oper	Save
	T0	19.2	4.9	75%	21.6	11.0	49%	24	17.1	29%
5	T1	19.2	4.9	75%	21.6	11.0	49%	24	17.1	29%
9	T2	19.2	4.9	74%	21.6	12.0	44%	24	17.3	28%
	T3	19.2	5.2	73%	21.6	11.7	46%	24	-	-
	Τ0	38.4	9.7	75%	43.2	22.0	49%	48	34.2	29%
10	T1	38.4	8.2	79%	43.2	20.4	53%	48	32.7	32%
10	T2	38.4	8.5	78%	43.2	22.2	49%	48	34.4	28%
	T3	38.4	7.3	81%	43.2	20.7	52%	48	-	-
	T0	76.8	15.9	79%	86.4	40.3	53%	96	64.9	32%
20	T1	76.8	14.3	81%	86.4	38.8	55%	96	65.1	32%
20	T2	76.8	14.8	81%	86.4	41.3	52%	96	67.4	30%
	T3	76.8	13.9	82%	86.4	40.9	53%	96	-	-

Shen, Wang (UMich)

		-	$\mathcal{I} = 10\%$	0	-	$\mathcal{I} = 30\%$	0	$\mathcal{I} = 50\%$		
\mathcal{N}_m	Type	Bk	Oper	Save	Bk	Oper	Save	Bk	Oper	Save
	T0	19.2	4.9	75%	21.6	11.0	49%	24	17.1	29%
5	T1	19.2	4.9	75%	21.6	11.0	49%	24	17.1	29%
0	T2	19.2	4.9	74%	21.6	12.0	44%	24	17.3	28%
	T3	19.2	5.2	73%	21.6	11.7	46%	24	-	-
	Τ0	38.4	9.7	75%	43.2	22.0	49%	48	34.2	29%
10	T1	38.4	8.2	79%	43.2	20.4	53%	48	32.7	32%
10	T2	38.4	8.5	78%	43.2	22.2	49%	48	34.4	28%
	T3	38.4	7.3	81%	43.2	20.7	52%	48	-	-
	T0	76.8	15.9	79%	86.4	40.3	53%	96	64.9	32%
20	T1	76.8	14.3	81%	86.4	38.8	55%	96	65.1	32%
20	T2	76.8	14.8	81%	86.4	41.3	52%	96	67.4	30%
	T3	76.8	13.9	82%	86.4	40.9	53%	96	-	-
	Avg.			80%			50%			30%

Shen, Wang (UMich)

Recall...



Shen, Wang (UMich)

		-	$\mathcal{I} = 10\%$	0		$\mathcal{I} = 30\%$	6		$\mathcal{I} = 500$	70
\mathcal{N}_m	Type	Bk	Oper	Save	Bk	Oper	Save	Bk	Oper	Save
	T0	19.2	4.9	75%	21.6	11.0	49%	24	17.1	29%
5	T1	19.2	4.9	75%	21.6	11.0	49%	24	17.1	29%
5	T2	19.2	4.9	74%	21.6	12.0	44%	24	17.3	28%
	T3	19.2	5.2	73%	21.6	11.7	46%	24	-	-
	T0	38.4	9.7	75%	43.2	22.0	49%	48	34.2	29%
10	T1	38.4	8.2	79%	43.2	20.4	53%	48	32.7	32%
10	T2	38.4	8.5	78%	43.2	22.2	49%	48	34.4	28%
	T3	38.4	7.3	81%	43.2	20.7	52%	48	-	-
	T0	76.8	15.9	79%	86.4	40.3	53%	96	64.9	32%
20	T1	76.8	14.3	81%	86.4	38.8	55%	96	65.1	32%
20	T2	76.8	14.8	81%	86.4	41.3	52%	96	67.4	30%
	T3	76.8	13.9	82%	86.4	40.9	53%	96	-	-

Shen, Wang (UMich)

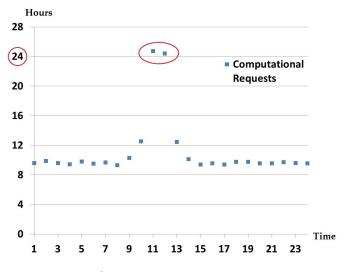


Figure: $\mathcal{N}_m = 20, \mathcal{I} = 50\%$, Type 3 Demand

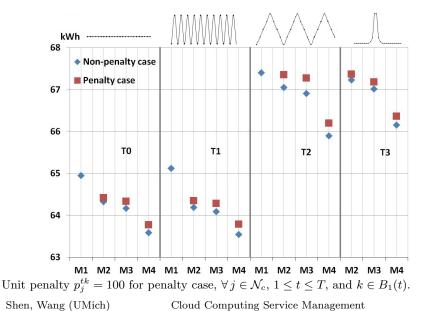
Shen, Wang (UMich)

Cloud Computing Service Management

24/30

$$\begin{aligned} \text{Model (1):} \qquad &\sum_{i \in \mathcal{N}_m} e_i \ell^t x_i^t \ge \max_{\omega \in \Omega} d^{t\omega} \quad \forall 1 \le t \le T. \\ \text{Model (2):} \qquad &\sum_{k \in B_1(t)} \sum_{i \in \mathcal{N}_m} e_i \ell^k u_{ji}^{tk} \ge \max_{\omega \in \Omega} d_j^{t\omega} \quad \forall 1 \le t \le T. \\ \text{Model (3):} \qquad & \mathbb{P}\left(\sum_{k \in B_1(t)} \sum_{i \in \mathcal{N}_m} e_i \ell^k u_{ji}^{tk} \ge \widetilde{d}_j^t, \forall j \in \mathcal{N}_c, 1 \le t \le T\right) \ge \alpha. \\ \text{Model 4:} \qquad & \mathbb{P}\left(\sum_{k \in B_1(t)} \sum_{i \in \mathcal{N}_m} e_i \ell^k u_{ji}^{tk} \ge \widetilde{d}_j^t\right) \ge \alpha_j^t \quad \forall j \in \mathcal{N}_c, 1 \le t \le T. \end{aligned}$$

Energy Use in Models 1-4 ($\mathcal{N}_m = 20, \mathcal{I} = 50\%$)



26/30

				${\rm Model}\ 1$				${\rm Model}\ 2$	
Type	No.	C-Total	B-Time	B -Total	H-Time	H-Total	C-Total	H-Time	H-Total
	1	64.24	17.10	64.24	2.37	64.42	64.56	43.51	64.65
	2	64.21	10.67	64.21	2.36	64.39	64.52	11.84	64.53
T1	3	64.24	949.92	64.24	2.57	64.42	64.57	123.40	64.67
	4	64.41	1827.52	64.41	2.40	64.43	64.62	22.17	64.69
	5	64.21	28.88	64.21	2.59	64.38	64.50	14.35	64.55

Table: $\mathcal{N}_m = 20, \mathcal{I} = 50\%$, and Five Instances

"C-", solving Model (2) by directly solving its MIP.

"B-", employing Benders decomposition.

"H-", using the approximation approach.

Shen, Wang (UMich)

				${\rm Model}\ 1$				${\rm Model}\ 2$	
Type	No.	C-Total	B-Time	B-Total	H-Time	H-Total	C-Total	H-Time	H-Total
	1	64.24	17.10	64.24	2.37	64.42	64.56	43.51	64.65
	2	64.21	10.67	64.21	2.36	64.39	64.52	11.84	64.53
T1	3	64.24	949.92	64.24	2.57	64.42	64.57	123.40	64.67
	4	64.41	1827.52	64.41	2.40	64.43	64.62	22.17	64.69
	5	64.21	28.88	64.21	2.59	64.38	64.50	14.35	64.55

Table: $\mathcal{N}_m = 20, \mathcal{I} = 50\%$, and Five Instances

The performance of the Benders approach varies among instances and is unstable.

Shen, Wang (UMich)

				${\rm Model}\ 1$				${\rm Model}\ 2$	
Type	No.	C-Total	B-Time	B-Total	H-Time	H-Total	C-Total	H-Time	H-Total
	1	64.24	17.10	64.24	2.37	64.42	64.56	43.51	64.65
	2	64.21	10.67	64.21	2.36	64.39	64.52	11.84	64.53
T1	3	64.24	949.92	64.24	2.57	64.42	64.57	123.40	64.67
	4	64.41	1827.52	64.41	2.40	64.43	64.62	22.17	64.69
	5	64.21	28.88	64.21	2.59	64.38	64.50	14.35	64.55

Table: $\mathcal{N}_m = 20, \mathcal{I} = 50\%$, and Five Instances

For Model 2, the differences between H-Total and C-Total are within 0.3% gaps for all instances.

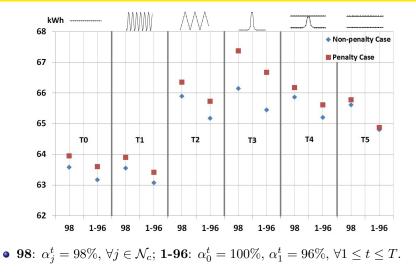
Shen, Wang (UMich)

				${\rm Model}\ 1$				${\rm Model}\ 2$	
Type	No.	C-Total	B-Time	B-Total	H-Time	H-Total	C-Total	H-Time	H-Total
	1	64.24	17.10	64.24	2.37	64.42	64.56	43.51	64.65
	2	64.21	10.67	64.21	2.36	64.39	64.52	11.84	64.53
T1	3	64.24	949.92	64.24	2.57	64.42	64.57	123.40	64.67
	4	64.41	1827.52	64.41	2.40	64.43	64.62	22.17	64.69
	5	64.21	28.88	64.21	2.59	64.38	64.50	14.35	64.55

Table: $\mathcal{N}_m = 20, \, \mathcal{I} = 50\%$, and Five Instances

Shen, Wang (UMich)

Effects of Use Prioritization (Model 4)



Shen, Wang (UMich)

- Effectively managing energy footprints and QoS via stochastic optimization models.
- Yield respective 80%, 50%, and 30% of energy savings for 10%, 30%, and 50% demand intensity regardless of demand patterns.
- Backlogging and chance constraints provide additional flexibility in server scheduling and reduce energy use.
- The Benders decomposition and the heuristic approach are faster and yield good results.
- User prioritization via multiple chance constraints can effectively reduce consumed energy.

Questions?

Shen, Wang (UMich)

Cloud Computing Service Management

30/30