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Facility Location Problem (FLP) with Competition

Facility Location Problem (FLP) with Competition

FLP is fundamental for designing
and operating transportation and
logistics systems.

Traditional FLP: Open facilities to

satisfy demand
minimize cost

Competitive FLP:

Source: caliper.com
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Facility Location Problem (FLP) with Competition

Competitive Facility Location and Customer Choices

Competitive Facility Location

Static - locate to maximize market share given others’ existing facilities

Benati and Hansen (2002), Haase and Müller (2014), Ljubić and Moreno (2018), Mai
and Lodi (2020)

Sequential - a leader locates and then follower selects from remaining ones

Eiselt and Laporte (1997), Plastria and Vanhaverbeke (2008), Küçükaydn et al.
(2011, 2012), Kress and Pesch (2012), Drezner et al. (2015), Gentile et al. (2018)

Static CFLP can be viewed as the follower’s problem in sequential CFLP.

Dynamic - competing firms play until a Nash equilibrium (if any) is established

Customer Behavior (utility-based facility choices)

Deterministic choice + sequential CFLP ⇒ mixed-integer linear program (MILP)

Probabilistic choice + static CFLP ⇒ mixed-integer nonlinear program (MINLP)
(well studied)

Probabilistic choice + sequential CFLP ⇒ bilevel program with both levels MINLP
(focus of this paper)
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Facility Location Problem (FLP) with Competition

Literature Review

Studies on solving bilevel integer programs:
Tahernejad et al. (2020), Bolusani and Ralphs (2021), Bolusani et al. (2021)

Studies on cutting plane methods for CFLP:
Ljubić and Moreno (2018), Mai and Lodi (2020)
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Formulations and Algorithms Bilevel Program and Single-level Reformulation
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Formulations and Algorithms Bilevel Program and Single-level Reformulation

Notation I

Sets

JL: Set of existing facilities by the leader;

JF: Set of existing facilities by the follower;

J: Set of candidate facility locations;

Decision Variables

xj : binary variable modeling leader’s decision (j ∈ J)

yj : binary variable modeling the follower’s decision (j ∈ J)

J0: Sets of facilities open by either the leader or the follower.
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Formulations and Algorithms Bilevel Program and Single-level Reformulation

Notation II

Parameter

p: maximum # of facilities that can be located by the leader;

r : maximum # of facilities located by the follower. (p + r ≤ |J|)
hi : demand portion at customer location i ∈ I . (

∑
i∈I hi = 1)

Pij : the probability that customer i patronizes facility j .

We assume that it follows a multinomial logit (MNL) model, and thus

Pij =
exp{αj − βdij}∑

k∈J0 exp{αk − βdik}

wij = exp{αj − βdij} is the utility of customer in i choosing j ; it can depend
on, e.g., distance between i and j .

UL

i :=
∑

j∈JL wij , U
F

i :=
∑

j∈JF wij : utility of the pre-existing facilities already
open by leader and follower, respectively.
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Formulations and Algorithms Bilevel Program and Single-level Reformulation

Bilevel Competition Game

Leader’s market share:

L+(x , y) =
∑
i∈I

hi

(
UL

i +
∑

j∈J wijxj

UL
i + UF

i +
∑

j∈J wij(xj + yj)

)
.

The following bilevel program describes sequential CFLP:

(S-CFLP) max
x

L+(x , y∗) (1a)

s.t.
∑
j∈J

xj ≤ p, xj ∈ {0, 1}, ∀j ∈ J, (1b)

where y∗ ∈ argmax
∑
i∈I

hi

(
UF
i +

∑
j∈J wijyj

UL
i + UF

i +
∑

j∈J wij (xj + yj )

)
(1c)

s.t.
∑
j∈J

yj ≤ r , (1d)

yj ≤ 1− xj , ∀j ∈ J, (1e)

yj ∈ {0, 1}, ∀j ∈ J. (1f)

The leader’s feasible region: X :=
{
x ∈ {0, 1}|J| : (1b)

}
and the follower’s feasible

region Y (x) :=
{
y ∈ {0, 1}|J| : (1d)–(1f)

}
.
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Formulations and Algorithms Bilevel Program and Single-level Reformulation

Max-min Reformulation

The leader’s and the follower’s objective functions sum up to 1 ⇒ for any
x ∈ X , follower finds y∗ ∈ argminy∈Y (x) {L+(x , y)}.

(S-CFLP) is equivalent to (i.e., a robust optimization view):

max
x∈X

min
y∈Y (x)

L+(x , y).

Cannot take dual of the inner problem due to lack of strong duality (binary y).
If applying delayed constraint generation (DCG), cuts will be invalid because
Y (x) depends on specific x .

Key idea: To revise L+(x , y) so that the feasible region for y in the inner
problem can be independent of x .
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Formulations and Algorithms Bilevel Program and Single-level Reformulation

Single-level Reformulation

For any a, b ∈ R, we define a ∨ b := max{a, b}.

Theorem 2 (Qi, Jiang, S. (2021))

Define θ+, θ : {0, 1}|J| → R such that θ+(x) := miny∈Y (x) L
+(x , y) and

θ(x) := miny {L(x , y) : (1d), (1f)}, where

L(x , y) :=
∑
i∈I

hi

(
UL +

∑
j∈J wijxj

UL + UF +
∑

j∈J wij(xj ∨ yj)

)
.

Then, θ+(x) = θ(x) for all x ∈ X .

Therefore, the bilevel (S-CFLP) model is equivalent to

max
x∈X ,θ

θ (2a)

s.t. θ ≤ L(x , y), ∀y ∈ Y =
{
y ∈ {0, 1}|J| :

∑
j∈J

yj ≤ r
}
. (2b)

and can be solved via separation and cutting-plane procedures (i.e., DCG).
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Formulations and Algorithms Branch-and-Cut Framework
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Formulations and Algorithms Branch-and-Cut Framework

DCG algorithm ⇒ Branch-and-Cut

Two challenges for applying DCG:

The violated constraints we incorporate, θ ≤ L(x , ŷ), are nonlinear.

Function L(x , ŷ) is non-concave in x in its current form. That is, the relaxed
formulation remains a non-convex NLP even if integer variables are relaxed.

Solutions:

Two types of linear valid inequalities to generate a tight MILP relaxation of
the nonlinear, non-convex model (2).

Submodular inequalities
Bulge Inequalities

The separation problem miny {L(x̂ , y) : (1d), (1f)} for any given x̂ is MINLP
⇒ apply a fast approximation using single-round sorting.

The valid inequalities and approximate separation are integrated in a
branch-and-cut framework for solving S-CFLP.
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Function L(x , ŷ) is non-concave in x in its current form. That is, the relaxed
formulation remains a non-convex NLP even if integer variables are relaxed.

Solutions:

Two types of linear valid inequalities to generate a tight MILP relaxation of
the nonlinear, non-convex model (2).

Submodular inequalities
Bulge Inequalities

The separation problem miny {L(x̂ , y) : (1d), (1f)} for any given x̂ is MINLP
⇒ apply a fast approximation using single-round sorting.

The valid inequalities and approximate separation are integrated in a
branch-and-cut framework for solving S-CFLP.

14/43



Formulations and Algorithms Two Types of Valid Inequalities
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Formulations and Algorithms Two Types of Valid Inequalities

Submodular Inequalities

Definitions: Submodular Functions (diminishing returns)

A function f : 2J → R is submodular if

f (S ∪ {j})− f (S) ≥ f (R ∪ {j})− f (R)

for all subsets S ⊆ R ⊆ J and all element j ∈ J \ R.

For any fixed y ∈ Y, the function L(x , y) is submodular with respect to the index
set X of x , i.e., X := {j ∈ J : xj = 1} (Proposition 1 in Qi, Jiang, S. (2021)).

Then we can represent the nonlinear constraint θ ≤ L(x , y) as a set of linear
inequalities (Proposition 2; Nemhauser and Wolsey (1981)).

However, the number of submodular cuts can be exponential ⇒ we show that we
can find the most violated submodular cut for any given x̂ efficiently, in polynomial
time (Proposition 3).
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Formulations and Algorithms Two Types of Valid Inequalities

Bulge Inequalities

To develop cuts based on outer approximation, define:

L̃(x , y) :=
∑
i∈I

hi

(
UL

i +
∑

j∈J wijxj

UL
i + UF

i +
∑

j∈J wij

[
(1− yj)xj + yj

]) ,
by replacing xj ∨ yj in L(x , y) with (1− yj)xj + yj .

Note: L(x , y) coincides with L̃(x , y) whenever (x , y) are binary-valued, but L̃(x , y)
is well-defined on [0, 1]2|J|.

So, for fixed y ∈ Y, we can replace θ ≤ L(x , y) with a supporting hyperplane if
L̃(x , y) is concave in x . ⇒ Unfortunately, L̃(x , y) is not concave in x! (Example 1)

We “bulge up” L̃(x , y) to obtain a concave hypograph.

Proposition 4 (Qi, Jiang, S. (2021))

Define:

L̂(x , y) :=
∑
i∈I

hi

(
UL

i +
∑

j∈J wij

[
−yjx2

j + (1 + yj)xj
]

UL
i + UF

i +
∑

j∈J wij

[
(1− yj)xj + yj

]) . (3)

Then, L̂(x , y) is concave in x . In addition, L̂(x , y) = L(x , y) for all x ∈ {0, 1}|J|.
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Formulations and Algorithms Two Types of Valid Inequalities

Illustration

L̂ bulge up L to make it concave while retaining exactness at any binary x .
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(b) L̂(x , y)

In DCG, given (x̂ , ŷ), replace constraints θ ≤ L(x , y) with a supporting hyperplane of L̂(x , y):

θ ≤ L̂(x̂ , ŷ) +
∑
j∈J

gj (x̂ , ŷ)(xj − x̂j ), (4)

where gj (x̂ , ŷ) :=
∂L̂(x , ŷ)

∂xj

∣∣∣
x=x̂

=
∑
i∈I

hi

(
−wik (1− ŷk )Q

P2
+

wik (−2ŷk x̂k + 1 + ŷk )

P

)
,

with P = UL
i + UF

i +
∑

j∈J wij

[
(1− ŷj )x̂j + ŷj

]
, and Q = UL

i +
∑

j∈J wij

[
−ŷj x̂2

j + (1 + ŷj )x̂j
]
.
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Formulations and Algorithms Two Types of Valid Inequalities
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Formulations and Algorithms Model Extensions

S-CFLP: Model Extensions I

Heterogeneous setup costs:

Replace cardinality budget constraints with general 0-1 knapsack constraints.

All the solution approaches remain applicable in this extension.

Co-optimize locations and attractiveness levels:

Replicate each site j , which now consists of a set Nj of potential facilities to
build, and all these facilities share the same distances dij to demand nodes.

The replicated facilities differ in the attractiveness level, denoted by αjn, and
setup cost, denoted by cLjn (for the leader) and cFjn (for the follower), ∀n ∈ Nj .

Accordingly, we extend decision variables (xj , yj) to be (xjn, yjn) to reflect the
attractiveness level choice and add constraints∑

n∈Nj
xjn ≤ 1,

∑
n∈Nj

yjn ≤ 1, ∀j ∈ J.

The bilevel program can still be reformulated as a single level and the B&C
algorithm still works.
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Formulations and Algorithms Model Extensions

S-CFLP: Model Extensions II

Outside competitors:

When introducing > 2 competitors to the model, the leader and the
follower’s total market shares do not add up to 1, and therefore we do not
have a max-min equivalence of the bilevel program.

We can show

max
x∈X

min
y∈Y(x)

L+(x , y) ≤ z◦ ≤ max
x∈X

min
y∈Y(x)

{
1− F+(x , y)

}
.

where

F+(x , y) =
∑
i∈I

hi

(
UF

i +
∑

j∈J wijyj

UL

i + UF

i +
∑

j∈J wij(xj + yj) + U◦i

)
.

The two max-min upper- and lower-bounds can be computed via the B&C
algorithm.
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S-CFLP: Computational Studies Experimental Design
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S-CFLP: Computational Studies Experimental Design

Instances Overview

CPLEX 12.6; C++; PC with Intel CORE (TM) i7-8550 1.8GHz CPU, 16G RAM
running 64-bit Windows 10.

Consider a [0, 50]× [0, 50] square on a planar surface.

locations of demand and candidate facility sites are randomly generated.

MNL model with Euclidean distances, αj = 0 and β = 0.1 in the base setting.

JL = JF = ∅. (No existing facilities built by either leader or follower)

Table: Parameter settings and instant sizes in state-of-the-art literature

Reference | I | | J | p r

Küçükaydn et al. (2011) 30 5 * 0
Küçükaydn et al. (2012) 100 20 * *
Roboredo and Pessoa (2013) 100 50 4 4
Alekseeva et al. (2015) 100 100 20 20
Gentile et al. (2018) 225 225 5 5

Note: except for Küçükaydn et al. (2011) , none of the above can guarantee optimal
solutions. We later challenge to solve up to 100 facilities and 2000 customer locations to
global optimum.
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S-CFLP: Computational Studies Computational Results
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S-CFLP: Computational Studies Computational Results

B&C with Cuts I

Table: Effectiveness of valid inequalities used in the B&C algorithm

Instance
SC BI SCBI Enumeration

Time(s) #Cuts #Nodes Time(s) #Cuts #Nodes Time(s) #Cuts #Nodes Time(s)

20-20-2-2 0.94 38 129 2.14 33 88 0.75 50 110 3.47
20-20-3-2 1.66 76 450 3.09 59 361 0.97 83 311 19.58
20-20-2-3 2.00 58 151 2.42 44 117 1.30 73 120 5.48
40-40-2-2 13.23 220 839 4.06 56 576 3.75 114 514 46.42
40-40-3-2 68.09 1192 6339 15.28 196 2155 11.16 369 2323 496.77
40-40-2-3 64.44 335 964 20.88 60 448 11.02 115 538 146.52
60-60-2-2 69.95 514 1694 29.36 116 1172 9.67 124 1527 220.33
60-60-3-2 777.56 5631 33312 79.88 334 4006 39.33 549 11678 3630.78
60-60-2-3 640.11 755 2290 211.22 121 1268 94.92 156 1462 1399.27
80-80-2-2 353.55 1240 3601 65.49 122 2119 25.75 175 3134 817.75
80-80-3-2 13655.10 15236 93558 147.78 345 10278 146.78 941 24219 LIMIT
80-80-2-3 5181.42 1538 4480 384.99 142 2421 228.08 207 3387 6989.31
100-100-2-2 636.63 1573 5741 57.97 89 2834 44.95 176 3656 2087.59
100-100-3-2 13418.00 22628 155384 233.02 323 7972 190.53 772 33046 LIMIT
100-100-2-3 5469.91 2143 6943 384.00 105 3124 273.86 194 4066 LIMIT
Average 2690.17 3545 21058 109.44 143 2596 72.19 273 6006 N/A
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S-CFLP: Computational Studies Computational Results

B&C with Cuts II

“Gap1”, “Gap3”, “Gap10”: the gaps between the final optimal obj and the best integer solution’s
obj found after the 1st, 3rd and 10th lazy callbacks in CPLEX.
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Solid line: average of the gaps of all instances solved by different valid inequality combinations.
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S-CFLP: Computational Studies Computational Results

Sensitivity Analysis: Effects of β and |I | I
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(b) β = 0.08
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(c) β = 0.1
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(d) β = 0.2

Leader's facility Follower's facilityCustomer

The optimal locations are clustered when β is small (i.e., lower spatial impedance effect) and
spread out when β increases. The follower tends to locate its facilities near the leader’s (see
(a)-(c)), demonstrating the economies of agglomeration.
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S-CFLP: Computational Studies Computational Results

Sensitivity Analysis: Effects of β and |I | II

Table: Computational results of instances |I |-100-2-2 with varying |I |

|I | 20 40 60 80 100 200 400 800 1200 1600 2000

Time(s) 19.00 49.52 29.23 54.80 44.95 65.69 85.70 130.50 284.80 254.91 279.97
Obj 0.5021 0.5004 0.5013 0.5003 0.5014 0.5011 0.5007 0.5009 0.5001 0.5002 0.5072
#Cuts 161 224 135 225 176 197 184 176 228 187 164
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FLP with Endogenous Demand Problem Description
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FLP with Endogenous Demand Problem Description

Motivation: Location-dependent demand

Customers rent cars for a certain amount of time by
picking up and dropping off at certain stations

Customer choice is significantly affected by
station locations in her neighborhood

Increase number of stations ⇒ Increased service availability and
convenience ⇒ Higher customer confidence ⇒ Higher demand
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FLP with Endogenous Demand Problem Description

FLP with Endogenous Demand

Consider FLP where stochastic demand depends on location choices.

How can we model the impact of the facility location decisions on the
customer demand distribution? (Moment Ambiguity Set)

How can we strategically determine the facility locations under
decision-dependent demand uncertainty with partial information?
(Distributionally Robust Optimization)
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FLP with Endogenous Demand Ambiguity Set
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FLP with Endogenous Demand Ambiguity Set

Ways to describe uncertainty under partial information

Distance-based ambiguity sets: φ-divergence (Jiang and Guan, 2015),
Wasserstein distance (Esfahani and Kuhn, 2017; Gao and Kleywegt, 2016)
⇒ Assumes a target distribution

Moment-based ambiguity sets (Popescu, 2007; Delage and Ye, 2010)
⇒ Suitable for representing the effect of location decisions on moment
information

Under facility location decisions y with finite support {d1, · · · , dK}, we define the
ambiguity set for the set of customers J

U(y) = {πj ∈ R|K |+ :
K∑

k=1

πjk = 1 ∀j ∈ J,

∣∣∣∣ K∑
k=1

πjkdk − µj (y)

∣∣∣∣ ≤ εµj ∀j ∈ J,

(σ2
j (y) + (µj (y))2)εσj ≤

K∑
k=1

πjkd
2
k ≤ (σ2

j (y) + (µj (y))2)εσj ∀j ∈ J}

Parameters εµj , εσj , εσj for adjusting the robustness level
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FLP with Endogenous Demand Ambiguity Set

Decision-dependent moment information

How to define the mean µj(y) and variance σ2
j (y)?

Mean increases by the opening of close-by facilities until a market threshold
value µUB

j .
Variance decreases by the opening of close-by facilities until an inherent
uncertainty value of market (σLB

j )2.

µj(y) = min

µ̄j(1 +
∑
j′∈I

λµjj′yj′), µ
UB
j


σ2
j (y) = max

σ̄2
j (1−

∑
j′∈I

λσjj′yj′), (σ
LB
j )2


µ̄j and σ̄2

j can be estimated from historical data.

λj parameters for adjusting the effect of the locations.
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FLP with Endogenous Demand Formulation and Valid Inequalities

Optimization model

Minimize expected total cost − revenue

under any demand distribution in U(y);
with respect to demand satisfaction and capacity constraints.

min
y∈Y⊆{0,1}|I|

{∑
i∈I

fiyi + max
π∈U(y)

Eπ[h(y , d(y))]

}
, (5)

where

h(y , d(y)) = min
x,s

∑
i∈I

∑
j∈J

cijxij +
∑
j∈J

(pjsj − rjdj(y)) (6a)

s.t.
∑
i∈I

xij + sj = dj(y) ∀j ∈ J (6b)

xij ≤ Ciyi ∀i ∈ I , j ∈ J (6c)

si , xij ≥ 0 ∀i ∈ I , j ∈ J. (6d)
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FLP with Endogenous Demand Formulation and Valid Inequalities

Tractable reformulation

Proposition 1 (Basciftci, Ahmed, S. (2021))

The optimal objective function value of the problem (6) can be computed as

h(y , d(y)) =
∑
j∈J

 max
i∗=0,1,··· ,|I |

ci∗jdj (y) +
∑

i∈I :cij<ci∗ j

Ciyi (cij − ci∗j )

− rjdj (y)

 ,

where c0j := pj .

Integrate h(y , d(y)) into the optimization model (5).

Apply duality

⇒ Single stage mixed-integer nonlinear program.

Assume that market capacity is large enough to omit µUB
j and (σLB

j )2.

Still nonlinear due to bilinear and trilinear terms.

Apply McCormick envelopes to obtain exact convex reformulations.
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FLP with Endogenous Demand Formulation and Valid Inequalities

Optimization model reformulation

Theorem 2 (Basciftci, Ahmed, S. (2021))

Problem (5) is equivalent to problem (7).

min f>y +
∑
j∈J

(
αj + δ

1
j (µ̄j + ε

µ
j )− δ2

j (µ̄j − εµj ) + µ̄j

∑
j′∈I

λ
µ

jj′ (∆1
jj′ −∆2

jj′ )+

(σ̄2
j + µ̄

2
j )(εσj γ

1
j − ε

σ
j γ

2
j ) +

∑
j′∈I

Λjj′ (ε
σ
j Γ1

jj′ − ε
σ
j Γ2

jj′ ) + 2µ̄2
j

|I|∑
l=1

l−1∑
m=1

λ
µ
jl λ

µ
jm(εσj Ψ1

jlm − ε
σ
j Ψ2

jlm)

)
(7a)

s.t. αj + (δ1
j − δ

2
j )dk + (γ1

j − γ
2
j )d2

k ≥ (ci∗ j − rj )dk +
∑

i∈I :cij<ci∗ j

Ciyi (cij − ci∗ j )

∀i∗ ∈ I ∪ {0}, j ∈ I , k = 1, · · · ,K (7b)

(∆h
jj′ , δ

h
j , yj′ ) ∈ Mq

(0,δh
j

)
, (Γh

jj′ , γ
h
j , yj′ ) ∈ Mq

(0,γh
j

)
∀j ∈ J, j′ ∈ I , h = 1, 2 (7c)

(Ψh
jlm, γ

h
j , yl , ym) ∈ Mt

(0,γh
j

)
∀j ∈ J, l = 1, . . . , |I |, l > m (7d)

y ∈ Y ⊆ {0, 1}|I|, δ1
j , γ

1
j , δ

2
j , γ

2
j ≥ 0 ∀j ∈ J. (7e)

⇒ Single-stage mixed-integer linear program (MILP)
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FLP with Endogenous Demand Formulation and Valid Inequalities

Valid Inequalities

Can we further improve the formulation?

Proposition 2 (Basciftci, Ahmed, S. (2021))

The following inequalities are valid for the problem (5):

d(1)d(2) − (d(1) + d(2))(µj(y)− εµj ) + (σ2
j (y) + (µj(y))2)εσj ≥ 0 ∀j ∈ J

d(K−1)d(K) − (d(K−1) + d(K))(µj(y)− εµj ) + (σ2
j (y) + (µj(y))2)εσj ≥ 0 ∀j ∈ J

− d(1)d(K) + (d(1) + d(K))(µj(y) + εµj )− (σ2
j (y) + (µj(y))2)εσj ≥ 0 ∀j ∈ J
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FLP with Endogenous Demand Numerical Studies
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FLP with Endogenous Demand Numerical Studies

Numerical Studies

Compare the facility location decisions of three approaches:

1 Decision-Dependent Distributionally Robust (DDDR)

2 Distributionally Robust (DR)

3 Stochastic Programming (SP)*

Average objective function and unmet demand values under 10 instance with different
sizes:

|I | SP (20) SP (100) DR DDDR

average
objective

10 −63281.7 −63337.3 −67084.4 −75164.8
9 −48247.1 −48790.2 −51503.5 −59816.9
8 −40914.9 −39206.7 −35810.4 −48027.2
7 −28201.8 −27810.6 −24911.6 −36608.5
6 −21460.7 −21483.7 −16425.1 −30298.1
5 −12806.7 −12763.3 −7618.55 −22554.2

average
unmet

demand

10 47.0 46.9 11.1 0.4
9 58.1 53.9 38.7 0.2
8 56.8 67.8 82.1 0.1
7 71.7 75.1 86.2 0.0
6 75.7 74.7 110.6 3.9
5 95.4 95.9 128.2 15.1

*SP is trained with Normal distribution. All approaches are evaluated over test scenarios with

Normal distribution.
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FLP with Endogenous Demand Numerical Studies

Thank you!

Questions?
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