Solving 0-1 Semidefinite Programs for Distributionally Robust Allocation of Surgery Blocks

Yiling Zhang ${ }^{1}$
Joint work with Prof. Siqian Shen ${ }^{1}$,
Prof. S. Ayca Erdogan²

1 Industrial and Operations Engineering, University of Michigan
2 Industrial and Systems Engineering, San Jose State University

Supporeted by NSF grant \#1433066.

Outline

Introduction
DR Chance-Constrained Model
Formulation
Ambiguity Set
0-1 SDP Reformulation
Solving Approaches
Cutting-Plane Method
0-1 SOCP Approximation
Computational Studies
Setup
Results
Conclusion

Allocation of Surgery Blocks

Operating rooms (ORs):

- 40% of a hospital's total revenues; BUT, a similarly large proportion of its total expenses ${ }^{1}$
- Average OR runs at only 68% capacity ${ }^{1}$
- Uncertain service duration of surgical procedure

Allocation of Surgery Blocks

Operating rooms (ORs):

- 40% of a hospital's total revenues; BUT, a similarly large proportion of its total expenses ${ }^{1}$
- Average OR runs at only 68% capacity ${ }^{1}$
- Uncertain service duration of surgical procedure

Works on allocation of surgery blocks:

- Blake and Donald (2002): MILP
- Denton, Miller, Balasubramanian, and Huschka (2010): two-stage stochastic integer program
- Shylo, Prokopyev, and Schaefer (2012): chance-constrained formulation
- Deng, Shen, and Denton (2016): distributionally robust formulation
- ...

[^0]
Applications

Applications with similar settings (bin packing structure):

- Cloud computing server planning: uncertain job hours requested
- Shen and Wang (2014)
- Machine scheduling: uncertain task duration
- Skutella and Uetz (2005)

cloudcomputingcafe.com

theideasmith.net

Stochastic OR Allocation Problem

```
\(S_{1}\)
```


S_{3}

Surgeries
ORs

Stochastic OR Allocation Problem

```
\(S_{1}\)
```


S_{3}

ORs

Stochastic OR Allocation Problem

Stochastic OR Allocation Problem

Decisions:
o $z_{i} \in\{0,1\}: z_{i}=1$ if we open OR i, and $=0$ if not.

Stochastic OR Allocation Problem

Decisions:

- $z_{i} \in\{0,1\}: z_{i}=1$ if we open OR i, and $=0$ if not.
o $y_{i j} \in\{0,1\}: y_{i j}=1$ if allocate surgery j to OR i

A Chance-Constrained Formulation

$$
\begin{aligned}
& \text { Let } s_{i}=\left[s_{i j}, j \in J\right]^{\top}, y_{i}=\left[y_{i j}, j \in J\right]^{\top} \\
& \qquad \min _{z, y} \quad \sum_{i \in I} c_{i}^{2} z_{i}+\sum_{i \in I} \sum_{j \in J} c_{i j}^{y} y_{i j}
\end{aligned}
$$

- Objective: Minimize the cost of opening ORs

A Chance-Constrained Formulation

$$
\begin{aligned}
& \text { Let } s_{i}=\left[s_{i j}, j \in J\right]^{\top}, y_{i}=\left[y_{i j}, j \in J\right]^{\top} \\
& \qquad \begin{aligned}
\min _{z, y} & \sum_{i \in I} c_{i}^{z} z_{i}+\sum_{i \in I} \sum_{j \in J} c_{i j}^{y} y_{i j} \\
\text { s.t. } & y_{i j} \leq \rho_{i j} z_{i} \quad \forall i \in I, j \in J \\
& \sum_{i \in I} y_{i j}=1 \quad \forall j \in J \\
& y_{i j}, z_{i} \in\{0,1\} \quad \forall i \in I, j \in J
\end{aligned}
\end{aligned}
$$

- Objective: Minimize the cost of opening ORs
- Deterministic constraints: Feasible surgery allocation

A Chance-Constrained Formulation

$$
\begin{aligned}
& \text { Let } s_{i}=\left[s_{i j}, j \in J\right]^{\top}, y_{i}=\left[y_{i j}, j \in J\right]^{\top} \\
& \qquad \begin{aligned}
\min _{z, y} & \sum_{i \in I} c_{i}^{\tau} z_{i}+\sum_{i \in I} \sum_{j \in J} c_{i j}^{y} y_{i j} \\
\text { s.t. } & y_{i j} \leq \rho_{i j} z_{i} \quad \forall i \in I, j \in J \\
& \sum_{i \in I} y_{i j}=1 \quad \forall j \in J \\
& y_{i j}, z_{i} \in\{0,1\} \quad \forall i \in I, j \in J \\
& \mathbb{P}_{f_{s}}\left\{s_{i}^{\top} y_{i} \leq T_{i}\right\} \geq 1-\alpha_{i}, \forall i \in I
\end{aligned}
\end{aligned}
$$

- Objective: Minimize the cost of opening ORs
- Deterministic constraints: Feasible surgery allocation
- Chance constraint: "Total operating time \leq time available in OR i " at $1-\alpha_{i}$ probability, given the distribution f_{s}

Outline

Introduction

DR Chance-Constrained Model
Formulation
Ambiguity Set
0-1 SDP Reformulation
Solving Approaches
Cutting-Plane Method
0-1 SOCP Approximation
Computational Studies
Setup
Results
Conclusion

Distributionally Robust (DR) Model

$$
\begin{array}{ll}
\min _{z, y} & \sum_{i \in I} c_{i}^{2} z_{i}+\sum_{i \in I} \sum_{j \in J} c_{i j}^{y} y_{i j} \\
\text { s.t. } & y_{i j} \leq \rho_{i j} z_{i} \quad \forall i \in I, j \in J \\
& \sum_{i \in I} y_{i j}=1 \quad \forall j \in J \\
& y_{i j}, z_{i} \in\{0,1\} \quad \forall i \in I, j \in J \\
& \inf _{f_{s} \in \mathcal{D}_{i}} \mathbb{P}_{f}\left\{s_{i}^{\top} y_{i} \leq T_{i}\right\} \geq 1-\alpha_{i}, \forall i \in I \tag{6}
\end{array}
$$

- (6): The worst-case probability given by any $f_{s} \in D_{i}$ is guaranteed at least $1-\alpha_{i}$ (a DR chance constraint).

Literature Review

Distributionally robust optimization

- Scarf, Arrow, and Karlin (1958); Delage and Ye (2010); Bertsimas, Doan, Natarajan, and Teo (2010); Goh and Sim (2010), Wiesemann, Kuhn, and Sim (2014), Esfahani and Kuhn (2016)...

Distributionally robust chance-constrained programming

- Zymler, Kuhn, and Rustem (2013); Jiang and Guan (2015)

Jointly chance-constrained binary packing

- Song, Luedtke, and Küçükyavuz (2014)

DR chance-constrained knapsack/bin packing

- Zhang, Denton, and Xie (2015): mean + variance
- Wagner (2008): mean + covariance
- Cheng, Delage, and Lisser (2014): mean + covariance

Outline

Introduction

DR Chance-Constrained Model Formulation
Ambiguity Set
0-1 SDP Reformulation
Solving Approaches
Cutting-Plane Method
0-1 SOCP Approximation
Computational Studies
Setup
Results
Conclusion

Moment-based Ambiguity Set

- Ambiguity set (Delage and Ye, 2010):

$$
\begin{aligned}
\mathcal{D}_{i} & =\mathcal{D}_{i}^{M}\left(\mu_{i}^{0}, \Sigma_{i}^{0}, \gamma_{1}, \gamma_{2}\right)=\left\{f\left(s_{i}\right):\right. \\
& \left.\begin{array}{l}
\int_{s_{i} \in \Xi_{i}^{*}} f\left(s_{i}\right) d s_{i}=1 \\
\left(\mathbb{E}\left[s_{i}\right]-\mu_{i}^{0}\right)^{\top}\left(\Sigma_{i}^{0}\right)^{-1}\left(\mathbb{E}\left[s_{i}\right]-\mu_{i}^{0}\right) \leq \gamma_{1} \\
\\
{ }^{*}\left[\left(s_{i}-\mu_{i}^{0}\right)\left(s_{i}-\mu_{i}^{0}\right)^{\top}\right] \preceq \mathbb{R}_{2}|J|
\end{array}\right\}
\end{aligned}
$$

Moment-based Ambiguity Set

- Ambiguity set (Delage and Ye, 2010):
$\mathcal{D}_{i}=\mathcal{D}_{i}^{M}\left(\mu_{i}^{0}, \Sigma_{i}^{0}, \gamma_{1}, \gamma_{2}\right)= \begin{cases} & \left.\left.\begin{array}{l}\int_{s_{i} \in E_{i}^{*}} f\left(s_{i}\right) d s_{i}=1 \\ \\ \left(\mathbb{E}\left[s_{i}\right]-\mu_{i}^{0}\right)^{\top}\left(\Sigma_{i}^{0}\right)^{-1}\left(\mathbb{E}\left[s_{i}\right]-\mu_{i}^{0}\right) \leq \gamma_{1} \\ \\ \mathbb{E}\left[\left(s_{i}-\mu_{i}^{0}\right)\left(s_{i}-\mu_{i}^{0}\right)^{\top}\right] \preceq \gamma_{2} \Sigma_{i}^{0}\end{array}\right\} .\right\} .\end{cases}$
${ }^{*} \Xi_{i}=\mathbb{R}^{|J|}$
- decrease γ_{1} with fixed γ_{2}

$$
\gamma_{1}=5
$$

- decrease γ_{2} with fixed γ_{1}

$$
\gamma_{2}=5
$$

* (μ, Σ) : True mean and covariance pair

Moment-based Ambiguity Set

- Ambiguity set (Delage and Ye, 2010):

$$
\mathcal{D}_{i}=\mathcal{D}_{i}^{M}\left(\mu_{i}^{0}, \Sigma_{i}^{0}, \gamma_{1}, \gamma_{2}\right)= \begin{cases} & \int_{s_{i} \in E_{i}^{*}} f\left(s_{i}\right) d s_{i}=1 \\ \left(\mathbb{E}\left[s_{i}\right): \mu_{i}^{0}\right)^{\top}\left(\Sigma_{i}^{0}\right)^{-1}\left(\mathbb{E}\left[s_{i}\right]-\mu_{i}^{0}\right) \leq \gamma_{1} \\ & \mathbb{E}\left[\left(s_{i}-\mu_{i}^{0}\right)\left(s_{i}-\mu_{i}^{0}\right)^{\top}\right] \preceq \gamma_{2} \Sigma_{i}^{0}\end{cases}
$$

$$
{ }^{*} \Xi_{i}=\mathbb{R}^{|J|}
$$

- decrease γ_{1} with fixed γ_{2}

$$
\gamma_{1}=2
$$

- decrease γ_{2} with fixed γ_{1}

$$
\gamma_{2}=2
$$

${ }^{*}(\mu, \Sigma)$: True mean and covariance pair

Moment-based Ambiguity Set

- Ambiguity set (Delage and Ye, 2010):

$$
\mathcal{D}_{i}=\mathcal{D}_{i}^{M}\left(\mu_{i}^{0}, \Sigma_{i}^{0}, \gamma_{1}, \gamma_{2}\right)= \begin{cases}\int_{s_{i} \in E_{i}^{*}} f\left(s_{i}\right) d s_{i}=1 \\ f\left(s_{i}\right): & \left(\mathbb{E}\left[s_{i}\right]-\mu_{i}^{0}\right)^{\top}\left(\Sigma_{i}^{0}\right)^{-1}\left(\mathbb{E}\left[s_{i}\right]-\mu_{i}^{0}\right) \leq \gamma_{1} \\ & \mathbb{E}\left[\left(s_{i}-\mu_{i}^{0}\right)\left(s_{i}-\mu_{i}^{0}\right)^{\top}\right] \preceq \gamma_{2} \Sigma_{i}^{0}\end{cases}
$$

$$
{ }^{*} \bar{\Xi}_{i}=\mathbb{R}^{|J|}
$$

- decrease γ_{1} with fixed γ_{2}

$$
\gamma_{1}=1
$$

- decrease γ_{2} with fixed γ_{1}

$$
\gamma_{2}=1
$$

* (μ, Σ) : True mean and covariance pair

Outline

Introduction

DR Chance-Constrained Model
Formulation
Ambiguity Set
0-1 SDP Reformulation
Solving Approaches
Cutting-Plane Method
0-1 SOCP Approximation
Computational Studies
Setup
Results
Conclusion

0-1 SDP Reformulation with $\mathcal{D}_{i}=\mathcal{D}_{i}^{M}$

Jiang and Guan (2015) show that

- By introducing the dual variables, the DR chance constraints (6) \Leftrightarrow SDP constraints (exact):

$$
\begin{align*}
& \gamma_{2} \Sigma_{i}^{0} \cdot G_{i}+1-r_{i}+\Sigma_{i}^{0} \cdot H_{i}+\gamma_{1} q_{i}-\alpha_{i} \lambda_{i} \leq 0 \tag{7a}\\
& {\left[\begin{array}{cc}
G_{i} & -p_{i} \\
-p_{i}^{\top} & 1-r_{i}
\end{array}\right]-\left[\begin{array}{cc}
0 & \frac{1}{2} y_{i} \\
\frac{1}{2} y_{i}^{\top} & \lambda_{i}+y_{i}^{\top} \mu_{i}^{0}-T_{i} z_{i}
\end{array}\right] \succeq 0} \tag{7b}\\
& {\left[\begin{array}{cc}
G_{i} & -p_{i} \\
-p_{i}^{\top} & 1-r_{i}
\end{array}\right] \in \mathbb{S}_{+}^{(|J|+1) \times(|J|+1)},\left[\begin{array}{cc}
H_{i} & p_{i} \\
p_{i}^{\top} & q_{i}
\end{array}\right] \in \mathbb{S}_{+}^{(|J|+1) \times(|J|+1)}} \\
& \lambda_{i} \geq 0 . \tag{7c}
\end{align*}
$$

0-1 SDP Reformulation with $\mathcal{D}_{i}=\mathcal{D}_{i}^{M}$

Jiang and Guan (2015) show that

- By introducing the dual variables, the DR chance constraints (6) \Leftrightarrow SDP constraints (exact):

$$
\begin{align*}
& \gamma_{2} \Sigma_{i}^{0} \cdot G_{i}+1-r_{i}+\Sigma_{i}^{0} \cdot H_{i}+\gamma_{1} q_{i}-\alpha_{i} \lambda_{i} \leq 0 \tag{7a}\\
& {\left[\begin{array}{cc}
G_{i} & -p_{i} \\
-p_{i}^{\top} & 1-r_{i}
\end{array}\right]-\left[\begin{array}{cc}
0 & \frac{1}{2} y_{i} \\
\frac{1}{2} y_{i}^{\top} & \lambda_{i}+y_{i}^{\top} \mu_{i}^{0}-T_{i} z_{i}
\end{array}\right] \succeq 0} \tag{7b}\\
& {\left[\begin{array}{cc}
G_{i} & -p_{i} \\
-p_{i}^{\top} & 1-r_{i}
\end{array}\right] \in \mathbb{S}_{+}^{(|J|+1) \times(|J|+1)},\left[\begin{array}{cc}
H_{i} & p_{i} \\
p_{i}^{\top} & q_{i}
\end{array}\right] \in \mathbb{S}_{+}^{(|J|+1) \times(|J|+1)}} \\
& \lambda_{i} \geq 0 . \tag{7c}
\end{align*}
$$

However, 0-1 SDP CANNOT be directly solved in solvers.

Outline

Introduction

DR Chance-Constrained Model
Formulation
Ambiguity Set
0-1 SDP Reformulation
Solving Approaches
Cutting-Plane Method
0-1 SOCP Approximation
Computational Studies
Setup
Results
Conclusion

Master Problem

Recall the DR model:

$$
\begin{array}{ll}
\min _{\mathbf{z}, \mathbf{y}} & \sum_{i \in I} c_{i}^{z} z_{i}+\sum_{i \in I} \sum_{j \in J} c_{i j}^{y} y_{i j} \\
\text { s.t. } & y_{i j} \leq \rho_{i j} z_{i} \quad \forall i \in I, j \in J \\
& \sum_{i \in I} y_{i j}=1 \quad \forall j \in J \\
& y_{i j}, z_{i} \in\{0,1\} \quad \forall i \in I, j \in J \\
& \inf _{f_{s} \in \mathcal{D}_{i}} \mathbb{P}_{f_{s}}\left\{s_{i}^{\top} y_{i} \leq T_{i}\right\} \geq 1-\alpha_{i}, \forall i \in I
\end{array}
$$

Master Problem

Master problem:

$$
\begin{array}{ll}
\min _{\mathrm{z}, \mathrm{y}} & \sum_{i \in I} c_{i}^{z} z_{i}+\sum_{i \in I} \sum_{j \in J} c_{i j}^{y} y_{i j} \\
\text { s.t. } & y_{i j} \leq \rho_{i j} z_{i} \quad \forall i \in I, j \in J \\
& \sum_{i \in I} y_{i j}=1 \quad \forall j \in J \\
& y_{i j}, z_{i} \in\{0,1\} \quad \forall i \in I, j \in J \\
& \mathcal{C}_{i}^{\ell} y_{i} \leq c_{i}^{\ell} z_{i}, \quad \ell=1, \ldots, k_{i}, \quad i \in I \tag{8}
\end{array}
$$

- (8): set of linear cuts with OR $i, i \in I$

Subproblem

- Given a solution $\left(\hat{y}_{i}, \hat{z}_{i}\right)$ from the master problem

$$
\begin{aligned}
& \gamma_{2} \Sigma_{i}^{0} \cdot G_{i}+1-r_{i}+\Sigma_{i}^{0} \cdot H_{i}+\gamma_{1} q_{i}-\alpha_{i} \lambda_{i} \leq 0 \\
& {\left[\begin{array}{cc}
G_{i} & -p_{i} \\
-p_{i}^{\top} & 1-r_{i}
\end{array}\right]-\left[\begin{array}{cc}
0 & \frac{1}{2} \hat{y}_{i} \\
\frac{1}{2} \hat{y}_{i}^{\top} & \lambda_{i}+\hat{y}_{i}^{\top} \mu_{i}^{0}-T_{i} \hat{z}_{i}
\end{array}\right] \succeq 0} \\
& {\left[\begin{array}{cc}
G_{i} & -p_{i} \\
-p_{i}^{\top} & 1-r_{i}
\end{array}\right] \in \mathbb{S}_{+}^{(|J|+1) \times(|J|+1)},\left[\begin{array}{cc}
H_{i} & p_{i} \\
p_{i}^{\top} & q_{i}
\end{array}\right] \in \mathbb{S}_{+}^{(|J|+1) \times(|J|+1)},} \\
& \lambda_{i} \geq 0 .
\end{aligned}
$$

Subproblem

- Given a solution $\left(\hat{y}_{i}, \hat{z}_{i}\right)$ from the master problem

$$
\begin{aligned}
& \gamma_{2} \Sigma_{i}^{0} \cdot G_{i}+1-r_{i}+\Sigma_{i}^{0} \cdot H_{i}+\gamma_{1} q_{i}-\alpha_{i} \lambda_{i} \leq 0 \\
& {\left[\begin{array}{cc}
G_{i} & -p_{i} \\
-p_{i}^{\top} & 1-r_{i}
\end{array}\right]-\left[\begin{array}{cc}
0 & \frac{1}{2} \hat{y}_{i} \\
\frac{1}{2} \hat{y}_{i}^{\top} & \lambda_{i}+\hat{y}_{i}^{\top} \mu_{i}^{0}-T_{i} \hat{z}_{i}
\end{array}\right] \succeq 0} \\
& {\left[\begin{array}{cc}
G_{i} & -p_{i} \\
-p_{i}^{\top} & 1-r_{i}
\end{array}\right] \in \mathbb{S}_{+}^{(|J|+1) \times(|J|+1)},\left[\begin{array}{cc}
H_{i} & p_{i} \\
p_{i}^{\top} & q_{i}
\end{array}\right] \in \mathbb{S}_{+}^{(|J|+1) \times(|J|+1)},} \\
& \lambda_{i} \geq 0 .
\end{aligned}
$$

Is it feasible for the SDP constraints?

Subproblem

- Given a solution $\left(\hat{y}_{i}, \hat{z}_{i}\right)$ from the master problem

$$
\begin{aligned}
V_{P}=\min & \gamma_{2} \Sigma_{i}^{0} \cdot G_{i}+1-r_{i}+\Sigma_{i}^{0} \cdot H_{i}+\gamma_{1} q_{i}-\alpha_{i} \lambda_{i} \leq 0 \\
\text { s.t. } & {\left[\begin{array}{cc}
G_{i} & -p_{i} \\
-p_{i}^{\top} & 1-r_{i}
\end{array}\right]-\left[\begin{array}{cc}
0 & \frac{1}{2} \hat{y}_{i} \\
\frac{1}{2} \hat{y}_{i}^{\top} & \lambda_{i}+\hat{y}_{i}^{\top} \mu_{i}^{0}-T_{i} \hat{z}_{i}
\end{array}\right] \succeq 0 } \\
& {\left[\begin{array}{cc}
G_{i} & -p_{i} \\
-p_{i}^{\top} & 1-r_{i}
\end{array}\right] \in \mathbb{S}_{+}^{(|J|+1) \times(|J|+1)}, } \\
& {\left[\begin{array}{cc}
H_{i} & p_{i} \\
p_{i}^{\top} & q_{i}
\end{array}\right] \in \mathbb{S}_{+}^{(|J|+1) \times(|J|+1)}, \lambda_{i} \geq 0 . }
\end{aligned}
$$

Subproblem

- The dual of the SDP problem:

$$
\begin{align*}
V_{D}=\max _{Q_{i}, d_{i}, u_{i}, v_{i}} & \hat{y}_{i}^{\top} d_{i}+\left(\hat{y}_{i}^{\top} \mu_{i}^{0}-T_{i} \hat{z}_{i}\right) u_{i} \leq 0 \tag{9a}\\
\text { s.t. } & {\left[\begin{array}{cc}
\gamma_{2} \sum_{i}^{0} & v_{i} \\
v_{i}^{\top} & 1
\end{array}\right]-\left[\begin{array}{cc}
Q_{i} & d_{i} \\
d_{i}^{\top} & u_{i}
\end{array}\right] \succeq 0 } \tag{9b}\\
& u_{i}-\alpha_{i} \geq 0 \tag{9c}\\
& {\left[\begin{array}{cc}
\Sigma_{i}^{0} & -v_{i} \\
-v_{i}^{\top} & \gamma_{1}
\end{array}\right] \succeq 0 } \tag{9d}\\
& v_{i} \in \mathbb{R}^{|J|},\left[\begin{array}{cc}
Q_{i} & d_{i} \\
d_{i}^{\top} & u_{i}
\end{array}\right] \in \mathbb{S}_{+}^{(|J|+1) \times(|J|+1)} \tag{9e}
\end{align*}
$$

- Strong duality holds: $V_{D}=V_{P} \leq 0$

Subproblem

- The dual of the SDP problem:

$$
\begin{align*}
V_{D}=\max _{Q_{i}, d_{i}, u_{i}, v_{i}} & \hat{y}_{i}^{\top} d_{i}+\left(\hat{y}_{i}^{\top} \mu_{i}^{0}-T_{i} \hat{z}_{i}\right) u_{i} \leq 0 \tag{9a}\\
\text { s.t. } & {\left[\begin{array}{cc}
\gamma_{2} \sum_{i}^{0} & v_{i} \\
v_{i}^{\top} & 1
\end{array}\right]-\left[\begin{array}{cc}
Q_{i} & d_{i} \\
d_{i}^{\top} & u_{i}
\end{array}\right] \succeq 0 } \tag{9b}\\
& u_{i}-\alpha_{i} \geq 0 \tag{9c}\\
& {\left[\begin{array}{cc}
\Sigma_{i}^{0} & -v_{i} \\
-v_{i}^{\top} & \gamma_{1}
\end{array}\right] \succeq 0 } \tag{9d}\\
& v_{i} \in \mathbb{R}^{|J|},\left[\begin{array}{cc}
Q_{i} & d_{i} \\
d_{i}^{\top} & u_{i}
\end{array}\right] \in \mathbb{S}_{+}^{(|J|+1) \times(|J|+1)} \tag{9e}
\end{align*}
$$

- Strong duality holds: $V_{D}=V_{P} \leq 0$
- The linear CUT: $y_{i}^{\top} \hat{d}_{i}+\left(y_{i}^{\top} \mu_{i}^{0}-T_{i} z_{i}\right) \hat{u}_{i} \leq 0$

The dual solution: \hat{d}_{i}, \hat{u}_{i}

Outline

Introduction

DR Chance-Constrained Model
Formulation
Ambiguity Set
0-1 SDP Reformulation
Solving Approaches
Cutting-Plane Method
0-1 SOCP Approximation
Computational Studies
Setup
Results
Conclusion

0-1 SOCP Reformulation with $\mathcal{D}_{i}=\mathcal{D}_{i}^{C}$

- Exactly match the given μ_{i}^{0} and Σ_{i}^{0} :
$\mathcal{D}_{i}=\mathcal{D}_{i}^{C}\left(\mu_{i}^{0}, \Sigma_{i}^{0}\right)=\left\{\begin{array}{ll} & \int_{s_{i} \in \Xi_{i}} f\left(s_{i}\right) d s_{i}=1, \\ & \mathbb{E}\left[s_{i}\right]=\mu_{i}^{0} \\ & \mathbb{E}\left[\left(s_{i}-\mu_{i}^{0}\right)\left(s_{i}-\mu_{i}^{0}\right)^{\top}\right]=\Sigma_{i}^{0}\end{array}\right\}$

0-1 SOCP Reformulation with $\mathcal{D}_{i}=\mathcal{D}_{i}^{C}$

- Exactly match the given μ_{i}^{0} and Σ_{i}^{0} :

$$
\mathcal{D}_{i}=\mathcal{D}_{i}^{C}\left(\mu_{i}^{0}, \Sigma_{i}^{0}\right)=\left\{\begin{array}{ll}
& \int_{s_{i} \in \Xi_{i}} f\left(s_{i}\right) d s_{i}=1, \\
f\left(s_{i}\right): & \mathbb{E}\left[s_{i}\right]=\mu_{i}^{0} \\
& \mathbb{E}\left[\left(s_{i}-\mu_{i}^{0}\right)\left(s_{i}-\mu_{i}^{0}\right)^{\mathrm{T}}\right]=\Sigma_{i}^{0}
\end{array}\right\}
$$

0-1 SOCP Reformulation with $\mathcal{D}_{i}=\mathcal{D}_{i}^{C}$

- Exactly match the given μ_{i}^{0} and Σ_{i}^{0} :
$\mathcal{D}_{i}=\mathcal{D}_{i}^{C}\left(\mu_{i}^{0}, \Sigma_{i}^{0}\right)=\left\{\begin{array}{ll} & \int_{s_{i} \in \Xi_{i}} f\left(s_{i}\right) d s_{i}=1, \\ \mathbb{E}\left[s_{i}\right]=\mu_{i}^{0} \\ & \mathbb{E}\left[\left(s_{i}-\mu_{i}^{0}\right)\left(s_{i}-\mu_{i}^{0}\right)^{\top}\right]=\Sigma_{i}^{0}\end{array}\right\}$

0-1 SOCP Reformulation with $\mathcal{D}_{i}=\mathcal{D}_{i}^{C}$

Following a variant of Chebyshev's inequality (Wagner, 2008), the DR chance constraint (6) is equivalent to

$$
\begin{equation*}
\sqrt{y_{i}^{\top} \Sigma_{i}^{0} y_{i}} \leq \sqrt{\frac{\alpha_{i}}{1-\alpha_{i}}}\left(T_{i}-\left(\mu_{i}^{0}\right)^{\top} y_{i}\right), \forall i \in 1 \tag{10}
\end{equation*}
$$

That is, the DR model is equivalent to a $0-1$ SOCP.

0-1 SOCP Reformulation with $\mathcal{D}_{i}=\mathcal{D}_{i}^{C}$

Following a variant of Chebyshev's inequality (Wagner, 2008), the DR chance constraint (6) is equivalent to

$$
\begin{equation*}
\sqrt{y_{i}^{\top} \Sigma_{i}^{0} y_{i}} \leq \sqrt{\frac{\alpha_{i}}{1-\alpha_{i}}}\left(T_{i}-\left(\mu_{i}^{0}\right)^{\top} y_{i}\right), \forall i \in I \tag{10}
\end{equation*}
$$

That is, the DR model is equivalent to a $0-1$ SOCP.

0-1 SOCP Reformulation with $\mathcal{D}_{i}=\mathcal{D}_{i}^{C}$

Following a variant of Chebyshev's inequality (Wagner, 2008), the DR chance constraint (6) is equivalent to

$$
\begin{equation*}
\sqrt{y_{i}^{\top} \Sigma_{i}^{0} y_{i}} \leq \sqrt{\frac{\alpha_{i}}{1-\alpha_{i}}}\left(T_{i}-\left(\mu_{i}^{0}\right)^{\top} y_{i}\right), \forall i \in I \tag{10}
\end{equation*}
$$

That is, the DR model is equivalent to a $\mathbf{0 - 1}$ SOCP.

0-1 SOCP Approximation with $\mathcal{D}_{i}=\mathcal{D}_{i}^{M}$

0-1 SOCP Approximation with $\mathcal{D}_{i}=\mathcal{D}_{i}^{M}$

- Given sufficiently large sample size, the mean μ_{i} and covariance matrix Σ_{i} of any $f\left(s_{i}\right)$ in \mathcal{D}_{i}^{M} lie in set \mathcal{A}_{i} with probability 1. (Adopted from Delage and Ye, 2010)

$$
\mathcal{A}_{i}\left(\mu_{i}^{0}, \Sigma_{i}^{0}, a, b\right)=\left\{\begin{array}{ll}
\left(\mu_{i}, \Sigma_{i}\right): & \left(\mu_{i}^{0}-\mu_{i}\right)^{\top}\left(\Sigma_{i}\right)^{-1}\left(\mu_{i}^{0}-\mu_{i}\right) \leq b \\
\Sigma_{i} \preceq \frac{1}{1-a-b} \Sigma_{i}^{0}
\end{array}\right\}
$$

- $a, b: \gamma_{1}=\frac{b}{1-a-b}, \gamma_{2}=\frac{1+b}{1-a-b}$

0-1 SOCP Approximation with $\mathcal{D}_{i}=\mathcal{D}_{i}^{M}$

- Given sufficiently large sample size, the mean μ_{i} and covariance matrix Σ_{i} of any $f\left(s_{i}\right)$ in \mathcal{D}_{i}^{M} lie in set \mathcal{A}_{i} with probability 1. (Adopted from Delage and Ye, 2010)

$$
\mathcal{A}_{i}\left(\mu_{i}^{0}, \Sigma_{i}^{0}, a, b\right)=\left\{\begin{array}{ll}
\left(\mu_{i}, \Sigma_{i}\right): & \left(\mu_{i}^{0}-\mu_{i}\right)^{\top}\left(\Sigma_{i}\right)^{-1}\left(\mu_{i}^{0}-\mu_{i}\right) \leq b \\
\Sigma_{i} \preceq \frac{1}{1-a-b} \Sigma_{i}^{0}
\end{array}\right\}
$$

- $a, b: \gamma_{1}=\frac{b}{1-a-b}, \gamma_{2}=\frac{1+b}{1-a-b}$
- 0-1 SOC constraint:
$\sqrt{\frac{1}{1-a-b}}\left(1+\sqrt{\frac{\alpha_{i} b}{1-\alpha_{i}}}\right) \sqrt{y_{i}^{\top} \Sigma_{i}^{0} y_{i}} \leq \sqrt{\frac{\alpha_{i}}{1-\alpha_{i}}}\left(T_{i} z_{i}-\left(\mu_{i}^{0}\right)^{\top} y_{i}\right)$

Outline

Introduction

DR Chance-Constrained Model

Formulation
Ambiguity Set
0-1 SDP Reformulation
Solving Approaches
Cutting-Plane Method
0-1 SOCP Approximation
Computational Studies
Setup
Results
Conclusion

Computational Setup

Approaches $\left(\gamma_{1}, \gamma_{2}\right)=(0,1)$

- "Cutting-plane" approach
- "0-1 SOCP" approximation approach
- "MILP" -Sample Average Approximation approach

[^1]
Computational Setup

Approaches $\left(\gamma_{1}, \gamma_{2}\right)=(0,1)$

- "Cutting-plane" approach
- "0-1 SOCP" approximation approach
- "MILP" -Sample Average Approximation approach

ORs

- $|I|=6, T_{i}=8 \mathrm{hrs}, c_{i}^{z}=1$

[^2]
Computational Setup

Approaches $\left(\gamma_{1}, \gamma_{2}\right)=(0,1)$

- "Cutting-plane" approach
- "0-1 SOCP" approximation approach
- "MILP" -Sample Average Approximation approach

ORs

- $|I|=6, T_{i}=8 \mathrm{hrs}, c_{i}^{z}=1$

Surgeries

- $|J|=32, c_{i j}^{y} \sim$ Uniform $[0,0.1]$
- Surgery service duration $s_{i j}$

[^3]
Computational Setup

Approaches $\left(\gamma_{1}, \gamma_{2}\right)=(0,1)$

- "Cutting-plane" approach
- "0-1 SOCP" approximation approach
- "MILP" -Sample Average Approximation approach

ORs

- $|I|=6, T_{i}=8 \mathrm{hrs}, c_{i}^{z}=1$

Surgeries

- $|J|=32, c_{i j}^{y} \sim$ Uniform $[0,0.1]$
- Surgery service duration $s_{i j}$
- Log-Normal distribution ${ }^{2}$

[^4]
Computational Setup

Approaches $\left(\gamma_{1}, \gamma_{2}\right)=(0,1)$

- "Cutting-plane" approach
- "0-1 SOCP" approximation approach
- "MILP" -Sample Average Approximation approach

ORs

- $|I|=6, T_{i}=8 \mathrm{hrs}, c_{i}^{z}=1$

Surgeries

- $|J|=32, c_{i j}^{y} \sim$ Uniform $[0,0.1]$
- Surgery service duration $s_{i j}$
- Log-Normal distribution ${ }^{2}$
- high mean: 25 min, low mean: 12.5 min
- high variance: $\operatorname{std} /$ mean $=1.0$, low variance: $s t d /$ mean $=0.3$

[^5]
Computational Setup

Approaches $\left(\gamma_{1}, \gamma_{2}\right)=(0,1)$

- "Cutting-plane" approach
- "0-1 SOCP" approximation approach
- "MILP" -Sample Average Approximation approach

ORs

- $|I|=6, T_{i}=8 \mathrm{hrs}, c_{i}^{z}=1$

Surgeries

- $|J|=32, c_{i j}^{y} \sim$ Uniform $[0,0.1]$
- Surgery service duration $s_{i j}$
- Log-Normal distribution ${ }^{2}$
- high mean: 25 min, low mean: 12.5 min
- high variance: $\operatorname{std} /$ mean $=1.0$, low variance: $s t d /$ mean $=0.3$
- In-sample: mix ($8 \mathrm{hMhV}, 8 \mathrm{hM} \ell \mathrm{V}, 8$ €M $\mathrm{CV}, 8$ €MhV)
- Out-of-sample: hMhV

[^6] Production and Operations Management, 20(3):406417.

Outline

Introduction

DR Chance-Constrained Model

Formulation
Ambiguity Set
0-1 SDP Reformulation
Solving Approaches
Cutting-Plane Method
0-1 SOCP Approximation
Computational Studies
Setup
Results
Conclusion

Computational Results I

Table: CPU time (in second) and optimal solutions

$1-\alpha_{i}$	Approach	CPU (sec)	Obj. Cost	\# of open ORs
95%	Cutting-plane	10.86	4.50	4
	$0-1$ SOCP	124.50	3.66	3
	MILP	107.47	2.95	2
90%	Cutting-plane	7.77	3.65	3
	$0-1$ SOCP	40.95	3.00	2
	MILP	109.04	2.95	2

*Sample size: DR approaches -20, MILP -1000

Computational Results I

Table: CPU time (in second) and optimal solutions

$1-\alpha_{i}$	Approach	CPU (sec)	Obj. Cost	\# of open ORs
95%	Cutting-plane	$\mathbf{1 0 . 8 6}$	4.50	4
	0-1 SOCP	124.50	3.66	3
	MILP	107.47	2.95	2
90%	Cutting-plane	7.77	3.65	3
	0-1 SOCP	40.95	3.00	2
	MILP	109.04	2.95	2

*Sample size: DR approaches -20, MILP -1000

Computational Results I

Table: CPU time (in second) and optimal solutions

$1-\alpha_{i}$	Approach	CPU (sec)	Obj. Cost	\# of open ORs
95%	Cutting-plane	$\mathbf{1 0 . 8 6}$	$\mathbf{4 . 5 0}$	$\mathbf{4}$
	0-1 SOCP	124.50	3.66	3
	MILP	107.47	2.95	2
90%	Cutting-plane	$\mathbf{7 . 7 7}$	$\mathbf{3 . 6 5}$	$\mathbf{3}$
	0-1 SOCP	40.95	3.00	2
	MILP	109.04	2.95	2

*Sample size: DR approaches -20, MILP -1000

Computational Results II

- Reliability of each open OR $i=$

$$
\frac{\# \text { scenarios with } s_{i}^{\top} y_{i} \leq T_{i}}{N=10,000}
$$

Table: Average reliability performance in out-of-sample data with only "hMhV" surgeries

$1-\alpha_{i}$	Approach	OR \#1	OR \#2	OR \#3	OR \#4
	Cutting-plane	$\mathbf{0 . 9 9}$	$\mathbf{0 . 9 9}$	$\mathbf{1 . 0 0}$	$\mathbf{0 . 9 9}$
95%	$0-1$ SOCP	$\mathbf{0 . 9 8}$	$\mathbf{0 . 9 8}$	N/A	$\mathbf{0 . 9 9}$
	MILP	0.81	N/A	N/A	0.82
90%	Cutting-plane	0.96	0.98	N/A	0.99
	$0-1$ SOCP	0.81	0.81	N/A	N/A
	MILP	0.81	N/A	N/A	0.82

*N/A: the corresponding OR is not open and thus no reliability result.

Computational Results II

- Reliability of each open OR $i=$

$$
\frac{\# \text { scenarios with } s_{i}^{\top} y_{i} \leq T_{i}}{N=10,000}
$$

Table: Average reliability performance in out-of-sample data with only "hMhV" surgeries

$1-\alpha_{i}$	Approach	OR \#1	OR \#2	OR \#3	OR \#4
	Cutting-plane	$\mathbf{0 . 9 9}$	$\mathbf{0 . 9 9}$	$\mathbf{1 . 0 0}$	$\mathbf{0 . 9 9}$
95%	$0-1$ SOCP	$\mathbf{0 . 9 8}$	$\mathbf{0 . 9 8}$	N/A	$\mathbf{0 . 9 9}$
	MILP	0.81	N/A	N/A	0.82
90%	Cutting-plane	$\mathbf{0 . 9 6}$	$\mathbf{0 . 9 8}$	N/A	$\mathbf{0 . 9 9}$
	$0-1$ SOCP	0.81	0.81	N/A	N/A
	MILP	0.81	N/A	N/A	0.82

*N/A: the corresponding OR is not open and thus no reliability result.

Conclusions

In this talk,

- Cutting-plane approach for 0-1 SDP reformulations
- 0-1 SOCP approximation for 0-1 SDP reformulations
${ }^{3}$ Zhang, Y., Jiang, R., and Shen, S. (2016). Distributionally Robust Chance-Constrained Bin Packing. Available on Optimization Online https://arxiv.org/pdf/1610.00035.pdf

Conclusions

In this talk,

- Cutting-plane approach for 0-1 SDP reformulations
- 0-1 SOCP approximation for 0-1 SDP reformulations

Future research

- Derive exact reformulations when $s_{i j}$'s have arbitrary correlations ${ }^{3}$
- Develop cuts to improve the computation ${ }^{3}$
- Apply to practical problems with bin packing structure

[^7]
Conclusions

In this talk,

- Cutting-plane approach for 0-1 SDP reformulations
- 0-1 SOCP approximation for 0-1 SDP reformulations

Future research

- Derive exact reformulations when $s_{i j}$'s have arbitrary correlations ${ }^{3}$
- Develop cuts to improve the computation ${ }^{3}$
- Apply to practical problems with bin packing structure

Thank you!

[^8]
[^0]: ${ }^{1}$ Healthcare Financial Management Association 2003

[^1]: ${ }^{2}$ Gul, S., Denton, B. T., Fowler, J. W., and Huschka, T. R. (2011).
 Bi-criteria scheduling of surgical services for an outpatient procedure center. Production and Operations Management, 20(3):406417.

[^2]: ${ }^{2}$ Gul, S., Denton, B. T., Fowler, J. W., and Huschka, T. R. (2011).
 Bi-criteria scheduling of surgical services for an outpatient procedure center. Production and Operations Management, 20(3):406417.

[^3]: ${ }^{2}$ Gul, S., Denton, B. T., Fowler, J. W., and Huschka, T. R. (2011).
 Bi-criteria scheduling of surgical services for an outpatient procedure center. Production and Operations Management, 20(3):406417.

[^4]: ${ }^{2}$ Gul, S., Denton, B. T., Fowler, J. W., and Huschka, T. R. (2011).
 Bi-criteria scheduling of surgical services for an outpatient procedure center. Production and Operations Management, 20(3):406417.

[^5]: ${ }^{2}$ Gul, S., Denton, B. T., Fowler, J. W., and Huschka, T. R. (2011).
 Bi-criteria scheduling of surgical services for an outpatient procedure center. Production and Operations Management, 20(3):406417.

[^6]: ${ }^{2}$ Gul, S., Denton, B. T., Fowler, J. W., and Huschka, T. R. (2011).
 Bi-criteria scheduling of surgical services for an outpatient procedure center.

[^7]: ${ }^{3}$ Zhang, Y., Jiang, R., and Shen, S. (2016). Distributionally Robust Chance-Constrained Bin Packing. Available on Optimization Online https://arxiv.org/pdf/1610.00035.pdf

[^8]: ${ }^{3}$ Zhang, Y., Jiang, R., and Shen, S. (2016). Distributionally Robust Chance-Constrained Bin Packing. Available on Optimization Online https://arxiv.org/pdf/1610.00035.pdf

