Parallel Scenario Decomposition of Risk Averse 0-1 Stochastic Programs

Shabbir Ahmed
ISyE, Georgia Tech
joint work with
Yan Deng, Siqian Shen (IOE, U of Michigan)

2016 ICSP

Outline

- Risk-Averse Stochastic 0-1 Program
- Dual representation of coherent risk measure
- Dual decomposition
- Distributionally robust counterpart
- Parallelization of Decomposition Method
- Motivation
- Parallel Schemes

Risk Averse 0-1 Program

$$
\begin{aligned}
\min & \rho(f(x, \xi)) \\
\text { s.t. } & x \in X \subseteq\{0,1\}^{d}
\end{aligned}
$$

- ξ : a random vector with finite support $\left\{\xi^{1}, \ldots, \xi^{K}\right\}$ and probabilities p_{1}, \ldots, p_{K}.

$$
p \in \mathcal{A}=\left\{\left(p_{1}, \ldots, p_{K}\right): \sum_{k=1}^{K} p_{k}=1, p_{k} \geq 0, \forall k=1, \ldots, K\right\}
$$

- $f(x, \xi)$: cost function, e.g.,

$$
f(x, \xi)=c^{\top} x+\min _{y}\{\theta(y): y \in Y(x, \xi)\}
$$

- $\rho(\cdot)$: coherent risk measure.

Coherent Risk Measure

$$
\begin{aligned}
\min & \rho(f(x, \xi)) \\
\text { s.t. } & x \in X \subseteq\{0,1\}^{d}
\end{aligned}
$$

- Positive homogeneity:

$$
\rho(0)=0, \text { and } \rho(\epsilon w)=\epsilon \rho(w) \text { for any } \epsilon>0
$$

- Sub-additivity:

$$
\rho\left(w^{1}+w^{2}\right) \leq \rho\left(w^{1}\right)+\rho\left(w^{2}\right)
$$

- Monotonicity:

$$
\rho\left(w^{1} \geq w^{2}\right), \text { if } w^{1} \geq w^{2} \text { in all scenarios }
$$

- Translation invariance:

$$
\rho(w+C)=\rho(w)+C, \text { for any constant } C .
$$

Coherent Risk Measure

$$
\begin{aligned}
\min & \rho(f(x, \xi)) \\
\text { s.t. } & x \in X \subseteq\{0,1\}^{d}
\end{aligned}
$$

- Artzner et al. (1999), Shapiro and Ahmed (2004), Shapiro (2013): For some uncertainty set $\mathcal{Q}(p) \subseteq \mathcal{A}$,

$$
\rho(f(x, \xi))=\max _{q \in \mathcal{Q}(p)}\left\{\mathbb{E}_{q}[f(x, \xi)]=\sum_{k=1}^{K} q_{k} f\left(x, \xi^{k}\right)\right\} .
$$

Coherent Risk Measure

$$
\begin{aligned}
\min & \rho(f(x, \xi)) \\
\text { s.t. } & x \in X \subseteq\{0,1\}^{d}
\end{aligned}
$$

- Artzner et al. (1999), Shapiro and Ahmed (2004), Shapiro (2013): For some uncertainty set $\mathcal{Q}(p) \subseteq \mathcal{A}$,

$$
\rho(f(x, \xi))=\max _{q \in \mathcal{Q}(p)}\left\{\mathbb{E}_{q}[f(x, \xi)]=\sum_{k=1}^{K} q_{k} f\left(x, \xi^{k}\right)\right\} .
$$

See, e.g., $\operatorname{CVaR}_{1-\epsilon}(f(x, \xi))$

Coherent Risk Measure

$$
\begin{aligned}
\min & \rho(f(x, \xi)) \\
\text { s.t. } & x \in X \subseteq\{0,1\}^{d}
\end{aligned}
$$

- Artzner et al. (1999), Shapiro and Ahmed (2004), Shapiro (2013): For some uncertainty set $\mathcal{Q}(p) \subseteq \mathcal{A}$,

$$
\rho(f(x, \xi))=\max _{q \in \mathcal{Q}(p)}\left\{\mathbb{E}_{q}[f(x, \xi)]=\sum_{k=1}^{K} q_{k} f\left(x, \xi^{k}\right)\right\} .
$$

See, e.g., $\operatorname{CVaR}_{1-\epsilon}(f(x, \xi))$

$$
=\max \left\{\sum_{k=1}^{K} q_{k} f\left(x, \xi^{k}\right): \sum_{k=1}^{K} q_{k}=1,0 \leq q_{k} \leq p_{k} / \epsilon, \forall k=1, \ldots, K\right\}
$$

Coherent Risk Measure

$$
\begin{aligned}
\min & \rho(f(x, \xi)) \\
\text { s.t. } & x \in X \subseteq\{0,1\}^{d}
\end{aligned}
$$

- Artzner et al. (1999), Shapiro and Ahmed (2004), Shapiro (2013): For some uncertainty set $\mathcal{Q}(p) \subseteq \mathcal{A}$,

$$
\rho(f(x, \xi))=\max _{q \in \mathcal{Q}(p)}\left\{\mathbb{E}_{q}[f(x, \xi)]=\sum_{k=1}^{K} q_{k} f\left(x, \xi^{k}\right)\right\} .
$$

- Minimax Reformulation

$$
\min _{x \in X} \max _{q \in \mathcal{Q}(p)}\left\{\sum_{k=1}^{K} q_{k} f\left(x, \xi^{k}\right)\right\}
$$

- Collado et. al. (2012): risk averse multistage stochastic linear program
- Ahmed (2013): 0-1 stochastic program
- Ahmed et. al. (2015): 0-1 chance constrained program

Dual Decomposition

$$
\min _{x \in X} \max _{q \in \mathcal{Q}(p)}\left\{\sum_{k=1}^{K} q_{k} f\left(x, \xi^{k}\right)\right\}
$$

Dual Decomposition

$$
\min _{x \in X} \max _{q \in \mathcal{Q}(p)}\left\{\sum_{k=1}^{K} q_{k} f\left(x, \xi^{k}\right)\right\}
$$

- Clone x for each scenario $\Rightarrow x^{1}, \ldots, x^{K}$.
- Force $x^{1}=\cdots=x^{K}$ by non-anticipativity constraint:

$$
\begin{equation*}
\sum_{k=1}^{K} \alpha_{k} x^{k}=x^{1} \tag{NAC}
\end{equation*}
$$

where $\alpha_{1}, \ldots, \alpha_{K}$ are positive constants that sum to 1 .

Dual Decomposition

$$
\begin{align*}
\min _{x^{1}, \ldots, x^{K} \in X} \max _{q \in \mathcal{Q}(p)} & \sum_{k=1}^{K} q_{k} f\left(x^{k}, \xi^{k}\right) \\
\text { s.t. } & \sum_{k=1}^{K} \alpha_{k} x^{k}=x^{1} \tag{NAC}
\end{align*}
$$

Dual Decomposition

$$
\begin{align*}
\min _{x^{1}, \ldots, x^{K} \in X} \max _{q \in \mathcal{Q}(p)} & \sum_{k=1}^{K} q_{k} f\left(x^{k}, \xi^{k}\right) \\
\text { s.t. } & \sum_{k=1}^{K} \alpha_{k} x^{k}=x^{1} \tag{NAC}
\end{align*}
$$

- Relax (NAC) and punish violation by $\lambda \in \mathbb{R}^{d}$.

$$
\begin{aligned}
g(\lambda) & =\min _{x^{1}, \ldots, x^{K} \in X} \max _{q \in \mathcal{Q}(p)}\left\{\lambda^{\top}\left(\sum_{k=1}^{K} \alpha_{k} x^{k}-x^{1}\right)+\sum_{k=1}^{K} q_{k} f\left(x^{k}, \xi^{k}\right)\right\} \\
& =\min _{x^{1}, \ldots, x^{K} \in X} \max _{q \in \mathcal{Q}(p)}\left\{\sum_{k=1}^{K}\left(\left(\alpha_{k}-\delta_{k}\right) \lambda^{\top} x^{k}+q_{k} f\left(x^{k}, \xi^{k}\right)\right)\right\}
\end{aligned}
$$

where $\delta_{1}=1$ and $\delta_{k}=0$ for $k=2, \ldots, K$.

Dual Decomposition

$$
\begin{align*}
\min _{x^{1}, \ldots, x^{K} \in X} & \max _{q \in \mathcal{Q}(p)}
\end{align*} \sum_{k=1}^{K} q_{k} f\left(x^{k}, \xi^{k}\right)
$$

- Relax (NAC) and punish violation by $\lambda \in \mathbb{R}^{d}$.

$$
\begin{aligned}
g(\lambda) & =\min _{x^{1}, \ldots, x^{K} \in X} \max _{q \in \mathcal{Q}(p)}\left\{\lambda^{\top}\left(\sum_{k=1}^{K} \alpha_{k} x^{k}-x^{1}\right)+\sum_{k=1}^{K} q_{k} f\left(x^{k}, \xi^{k}\right)\right\} \\
& =\min _{x^{1}, \ldots, x^{K} \in X} \max _{q \in \mathcal{Q}(p)}\left\{\sum_{k=1}^{K}\left(\left(\alpha_{k}-\delta_{k}\right) \lambda^{\top} x^{k}+q_{k} f\left(x^{k}, \xi^{k}\right)\right)\right\} \\
& \geq \max _{q \in \mathcal{Q}(p)} \min _{x^{1}, \ldots, x^{K} \in X}\left\{\sum_{k=1}^{K}\left(\left(\alpha_{k}-\delta_{k}\right) \lambda^{\top} x^{k}+q_{k} f\left(x^{k}, \xi^{k}\right)\right)\right\} \\
& =\max _{q \in \mathcal{Q}(p)}\left\{\sum_{k=1}^{K} \min _{x^{k} \in X}\left\{\left(\alpha_{k}-\delta_{k}\right) \lambda^{\top} x^{k}+q_{k} f\left(x^{k}, \xi^{k}\right)\right\}\right\}=\underline{g}(\lambda)
\end{aligned}
$$

Dual Decomposition

$$
\begin{align*}
\min _{x^{1}, \ldots, x^{K} \in X} & \max _{q \in \mathcal{Q}(p)}
\end{align*} \sum_{k=1}^{K} q_{k} f\left(x^{k}, \xi^{k}\right)
$$

- Relax (NAC) and punish violation by $\lambda \in \mathbb{R}^{d}$.

$$
\begin{align*}
g(\lambda) & =\min _{x^{1}, \ldots, x^{K} \in X} \max _{q \in \mathcal{Q}(p)}\left\{\lambda^{\top}\left(\sum_{k=1}^{K} \alpha_{k} x^{k}-x^{1}\right)+\sum_{k=1}^{K} q_{k} f\left(x^{k}, \xi^{k}\right)\right\} \\
& =\min _{x^{1}, \ldots, x^{K} \in X} \max _{q \in \mathcal{Q}(p)}\left\{\sum_{k=1}^{K}\left(\left(\alpha_{k}-\delta_{k}\right) \lambda^{\top} x^{k}+q_{k} f\left(x^{k}, \xi^{k}\right)\right)\right\} \\
& \geq \max _{q \in \mathcal{Q}(p)} \min _{x^{1}, \ldots, x^{K} \in X}\left\{\sum_{k=1}^{K}\left(\left(\alpha_{k}-\delta_{k}\right) \lambda^{\top} x^{k}+q_{k} f\left(x^{k}, \xi^{k}\right)\right)\right\} \\
& =\max _{q \in \mathcal{Q}(p)}\left\{\sum_{k=1}^{K} \min _{x^{k} \in X}\left\{\left(\alpha_{k}-\delta_{k}\right) \lambda^{\top} x^{k}+q_{k} f\left(x^{k}, \xi^{k}\right)\right\}\right\}=\underline{g}(\lambda)
\end{align*}
$$

LB Computation

$$
\underline{g}(\lambda)=\max _{q \in \mathcal{Q}(p)}\left\{\sum_{k=1}^{K} \min _{x^{k} \in X}\left\{\left(\alpha_{k}-\delta_{k}\right) \lambda^{\top} x^{k}+q_{k} f\left(x^{k}, \xi^{k}\right)\right\}\right\}
$$

LB Computation

$$
\underline{g}(\lambda)=\max _{q \in \mathcal{Q}(p)}\left\{\sum_{k=1}^{K} \min _{x^{k} \in X}\left\{\left(\alpha_{k}-\delta_{k}\right) \lambda^{\top} x^{k}+q_{k} f\left(x^{k}, \xi^{k}\right)\right\}\right\}
$$

- Approach 1: LB $\leftarrow \underline{g}(0)$.

$$
\underline{g}(0)=\max _{q \in \mathcal{Q}(p)}\left\{\sum_{k=1}^{K} q_{k} \min _{x \in X} f\left(x, \xi^{k}\right)\right\}
$$

1: for $k=1, \ldots, K$ do
2: $\quad \beta_{k} \leftarrow \min \left\{f\left(x, \xi^{k}\right): x \in X\right\}$
3: end for
4: $\ell \leftarrow \max \left\{\sum_{k=1}^{K} \beta_{k} q_{k}: q \in \mathcal{Q}(p)\right\}$

LB Computation

$$
\underline{g}(\lambda)=\max _{q \in \mathcal{Q}(p)}\left\{\sum_{k=1}^{K} \min _{x^{k} \in X}\left\{\left(\alpha_{k}-\delta_{k}\right) \lambda^{\top} x^{k}+q_{k} f\left(x^{k}, \xi^{k}\right)\right\}\right\}
$$

- Approach 2: LB $\leftarrow \max _{\lambda} \underline{g}(\lambda)$.

$$
\text { MP: } \max _{q \in \mathcal{Q}(p), \lambda, \phi}\left\{\phi: \phi \leq \sum_{k=1}^{K} \min _{x \in X}\left\{\left(\alpha_{k}-\delta_{k}\right) \lambda^{\top} x+q_{k} f\left(x, \xi^{k}\right)\right\}\right\}
$$

1: repeat

2: $\quad(\hat{\phi}, \hat{\lambda}, \hat{q}) \leftarrow \mathrm{MP}$
3: \quad for $k=1, \ldots, K$ do
4: $\quad \beta_{k} \leftarrow \min \left\{\left(\alpha_{k}-\delta_{k}\right) \hat{\lambda}^{\top} x+\hat{q}_{k} f\left(x, \xi^{k}\right): x \in X\right\}$
5: end for
6: add cut $\phi \leq \sum_{k=1}^{K}\left(\left(\alpha_{k}-\delta_{k}\right) \lambda^{\top} \hat{x}^{k}+q_{k} f\left(\hat{x}^{k}, \xi^{k}\right)\right)$ to MP
7: until $\hat{\phi} \leq \sum_{k=1}^{K} \beta_{k}$
Slow convergence: stop after some iterations and return the best-found $\sum_{k=1}^{K} \beta_{k}$.

LB Computation

$$
\underline{g}(\lambda)=\max _{q \in \mathcal{Q}(p)}\left\{\sum_{k=1}^{K} \min _{x^{k} \in X}\left\{\left(\alpha_{k}-\delta_{k}\right) \lambda^{\top} x^{k}+q_{k} f\left(x^{k}, \xi^{k}\right)\right\}\right\}
$$

- Approach 1 \& 2:

$$
\begin{aligned}
\min _{x^{1}, \ldots, x^{K} \in X} \max _{q \in \mathcal{Q}(p)} & \sum_{k=1}^{K} q_{k} f\left(x^{k}, \xi^{k}\right) \\
\text { s.t. } & \sum_{k=1}^{K} \alpha_{k} x^{k}=x^{1} \quad \sim \lambda \in \mathbb{R}^{d}
\end{aligned}
$$

- Approach 3:

$$
\begin{aligned}
\min _{x^{1}, \ldots, x^{K} \in X} \max _{q \in \mathcal{Q}(p)} & \sum_{k=1}^{K} q_{k} f\left(x^{k}, \xi^{k}\right) \\
\text { s.t. } & \sum_{k=1}^{K} \alpha_{k} x^{k}=x^{i}, \quad \forall i=1, \ldots, K \quad \sim q_{i} \lambda^{i} \in \mathbb{R}^{d}
\end{aligned}
$$

LB Computation

$$
\begin{aligned}
\underline{g}(\lambda)=\max _{q \in \mathcal{Q}(p) x^{1}, \ldots, x^{K} \in X} \min _{\underline{k}}\{ & \sum_{k=1}^{K} q_{k}\left(f\left(x^{k}, \xi^{k}\right)-\left(\lambda^{k}\right)^{\top} x^{k}\right) \\
& \left.+\left(\sum_{k=1}^{K} \alpha_{k} x^{k}\right)^{\top}\left(\sum_{k=1}^{K} q_{k} \lambda^{k}\right)\right\}
\end{aligned}
$$

LB Computation

$$
\begin{aligned}
& \begin{aligned}
& \underline{g}(\lambda)= \max _{q \in \mathcal{Q}(p)} \min _{x^{1}, \ldots, x^{K} \in X}\left\{\sum_{k=1}^{K} q_{k}\left(f\left(x^{k}, \xi^{k}\right)-\left(\lambda^{k}\right)^{\top} x^{k}\right)\right. \\
&\left.+\left(\sum_{k=1}^{K} \alpha_{k} x^{k}\right)^{\top}\left(\sum_{k=1}^{K} q_{k} \lambda^{k}\right)\right\} \\
& \underline{\underline{g}}(\lambda)=\max _{q \in \mathcal{Q}(p) \bigcap Q(\lambda)}\left\{\sum_{k=1}^{K} q_{k} \min _{x \in X}\left\{f\left(x, \xi^{k}\right)-\left(\lambda^{k}\right)^{\top} x\right\}\right\}
\end{aligned} \\
& \text { where } Q(\lambda)=\left\{q: \sum_{k=1}^{K} q_{k} \lambda^{k}=0\right\}
\end{aligned}
$$

- Approach 3: LB $\leftarrow \max _{\lambda} \underline{\underline{g}}(\lambda)$.

1: initialize $\lambda^{1}, \ldots, \lambda^{K}$
2: repeat
3: \quad for $k=1, \ldots, K$ do
4: $\quad \beta_{k} \leftarrow \min \left\{f\left(x, \xi^{k}\right)-\left(\lambda^{k}\right)^{\top} x: x \in X\right\}$
5: end for
6: $\quad \ell \leftarrow \max \left\{\sum_{k=1}^{K} \beta_{k} q_{k}: q \in \mathcal{Q}(p) \bigcap Q(\lambda)\right\}$
7: update $\lambda^{1}, \ldots, \lambda^{K}$
8: until ℓ converges
Slow convergence: stop after some iterations and return the best-found ℓ.

Serial Algorithm

- LB:

	Subproblem of Scenario k
Approach 1	$\min _{x \in X}\left\{f\left(x, \xi^{k}\right)\right\}$
Approach 2	$\min _{x \in X}\left\{\left(\alpha_{k}-\delta_{k}\right) \lambda^{\top} x+q_{k} f\left(x, \xi^{k}\right)\right\}$
Approach 3	$\min _{x \in X}\left\{f\left(x, \xi^{k}\right)-\left(\lambda^{k}\right)^{\top} x\right\}$

- UB: evaluate subproblem solutions.
- Algorithm overview:

1: initialize LB ℓ and UB u
2: repeat
3: compute ℓ and collect subproblem solutions in S, by Approach $1 / 2 / 3$
4: \quad for $\hat{x} \in S$ do
5: $\quad u \leftarrow \min \{u, \rho(f(\hat{x}, \xi))\}$
6: end for
7: $\quad X \leftarrow X \backslash S$
8: until $u-\ell \leq \epsilon$

- No-good Cut to exclude evaluated $\hat{x}: \sum_{j: \hat{x}_{j}=1}\left(1-x_{j}\right)+\sum_{j: \hat{x}_{j}=0} x_{j} \geq 1$.

Distributionally Robust Risk-Averse 0-1 Program

- Known probability distribution p,

$$
\min _{x \in X} \rho(f(x, \xi))=\min _{x \in X} \max _{q \in \mathcal{Q}_{\rho}(p)} \mathbb{E}_{q}[f(x, \xi)]
$$

- If p is not known exactly, but an uncertainty set U is given,

$$
\min _{x \in X} \max _{p \in U} \rho(f(x, \xi))
$$

Distributionally Robust Risk-Averse 0-1 Program

- Known probability distribution p,

$$
\min _{x \in X} \rho(f(x, \xi))=\min _{x \in X} \max _{q \in \mathcal{Q}_{\rho}(p)} \mathbb{E}_{q}[f(x, \xi)]
$$

- If p is not known exactly, but an uncertainty set U is given,

$$
\begin{aligned}
& \min _{x \in X} \max _{p \in U} \rho(f(x, \xi)) \\
= & \min _{x \in X} \max _{p \in U} \max _{q \in \mathcal{Q}_{\rho}(p)} \mathbb{E}_{q}[f(x, \xi)] \\
= & \min _{x \in X} \max _{q \in\left\{q: q \in \mathcal{Q}_{\rho}(p), p \in \mathcal{P}\right\}} \mathbb{E}_{q}[f(x, \xi)]
\end{aligned}
$$

- All the proposed dual decomposition methods are still applicable.

Parallelization

- Parallel jobs, e.g., $\operatorname{Sub}(k), \operatorname{Eva}(x)$.

Parallelization

- Parallel jobs, e.g., $\operatorname{Sub}(k), \operatorname{Eva}(x)$.
- Synchronization and communication in between iterations

Parallelization

- Parallel jobs, e.g., $\operatorname{Sub}(k), \operatorname{Eva}(x)$.
- Synchronization and communication in between iterations

Parallelization

- Parallel jobs, e.g., $\operatorname{Sub}(k), \operatorname{Eva}(x)$.
- Synchronization and communication in between iterations

Parallelization

- Parallel jobs, e.g., Sub(k), Eva(x).
- Synchronization and communication in between iterations
- Similarly-structured methods:
- Dual decomposition [Carøe and Schultz (1999), ...]
- Benders decomposition [Benders (1962), ...]
- Progressive hedging [Rockafellar and Roger (1991), ...]
- Multi-stage decomposition [Slyke and Wets (1969), ...]
- Scenario decomposition [Higle and Sen (1991), ...]

Existing Work

- Synchronous: barriers after job solving and before reiteration.
e.g., Nielsen and Zenios (1997), Ahmed (2013), Lubin et al. (2013), ...

Existing Work

- Synchronous: barriers after job solving and before reiteration.
e.g., Nielsen and Zenios (1997), Ahmed (2013), Lubin et al. (2013), ...

Existing Work

- Synchronous: barriers after job solving and before reiteration.
e.g., Nielsen and Zenios (1997), Ahmed (2013), Lubin et al. (2013), ...
- Master-Worker: dedicate one processor to collect and compile distributed information.
e.g., Ruszczyński (1993), Birge et al. (1996), Ryan, et al. (2015), ...

Existing Work

- Synchronous: barriers after job solving and before reiteration.
e.g., Nielsen and Zenios (1997), Ahmed (2013), Lubin et al. (2013), ...
- Master-Worker: dedicate one processor to collect and compile distributed information.
e.g., Ruszczyński (1993), Birge et al. (1996), Ryan, et al. (2015), ...
- Dynamic assignment: jobs queue for available processors.

Existing Work

- Synchronous: barriers after job solving and before reiteration.
e.g., Nielsen and Zenios (1997), Ahmed (2013), Lubin et al. (2013), ...
- Master-Worker: dedicate one processor to collect and compile distributed information.
e.g., Ruszczyński (1993), Birge et al. (1996), Ryan, et al. (2015), ...
- Dynamic assignment: jobs queue for available processors.
- Force reiteration:
e.g., Linderoth and Wright (2003), ...

Existing Work

- Synchronous: barriers after job solving and before reiteration.
e.g., Nielsen and Zenios (1997), Ahmed (2013), Lubin et al. (2013), ...
- Master-Worker: dedicate one processor to collect and compile distributed information.
e.g., Ruszczyński (1993), Birge et al. (1996), Ryan, et al. (2015), ...
- Dynamic assignment: jobs queue for available processors.
- Force reiteration:
e.g., Linderoth and Wright (2003), ...

Our Approaches

- Basic Parallel (BP): synchronous.
scenario subproblem \Rightarrow evaluation \nRightarrow exchange result

Our Approaches

- Basic Parallel (BP): synchronous.

- Duplicate efforts on evaluation, e.g.,

Processor 1	Processor 2	Processor 3
$\operatorname{Sub}(1) \Rightarrow(0,1,0)$	$\operatorname{Sub}(2) \Rightarrow(1,1,1)$	$\operatorname{Sub}(3) \Rightarrow(0,1,0)$
$\operatorname{Eva}((0,1,0))$	$\operatorname{Eva}((1,1,1))$	$\operatorname{Eva}((0,1,0))$

Our Approaches

- Basic Parallel (BP): synchronous.

- Duplicate efforts on evaluation, e.g.,

Processor 1	Processor 2	Processor 3
$\operatorname{Sub}(1) \Rightarrow(0,1,0)$	$\operatorname{Sub}(2) \Rightarrow(1,1,1)$	$\operatorname{Sub}(3) \Rightarrow(0,1,0)$
$\operatorname{Eva}((0,1,0))$	$\operatorname{Eva}((1,1,1))$	$\operatorname{Eva}((0,1,0))$

Our Approaches

- Basic Parallel (BP): synchronous.

- Duplicate efforts on evaluation, e.g.,

Processor 1	Processor 2	Processor 3
$\operatorname{Sub}(1) \Rightarrow(0,1,0)$	$\operatorname{Sub}(2) \Rightarrow(1,1,1)$	$\operatorname{Sub}(3) \Rightarrow(0,1,0)$
$\operatorname{Eva}((0,1,0))$	$\operatorname{Eva}((1,1,1))$	$\operatorname{Eva}((0,1,0))$

Our Approaches

- Basic Parallel (BP): synchronous.

```
scenario subproblem }=>\mathrm{ evaluation }|>\mathrm{ exchange result
```

- Duplicate efforts on evaluation, e.g.,

Processor 1	Processor 2	Processor 3
$\operatorname{Sub}(1) \Rightarrow(0,1,0)$	$\operatorname{Sub}(2) \Rightarrow(1,1,1)$	$\operatorname{Sub}(3) \Rightarrow(0,1,0)$
$\operatorname{Eva}((0,1,0))$	$\operatorname{Eva}((1,1,1))$	$\operatorname{Eva}((0,1,0))$

- Master-Worker with Barriers (MWB): master keep solutions.

Our Approaches

- Basic Parallel (BP): synchronous.

```
scenario subproblem }=>\mathrm{ evaluation }$>\mathrm{ exchange result
```

- Duplicate efforts on evaluation, e.g.,

Processor 1	Processor 2	Processor 3
$\operatorname{Sub}(1) \Rightarrow(0,1,0)$	$\operatorname{Sub}(2) \Rightarrow(1,1,1)$	$\operatorname{Sub}(3) \Rightarrow(0,1,0)$
$\operatorname{Eva}((0,1,0))$	$\operatorname{Eva}((1,1,1))$	$\operatorname{Eva}((0,1,0))$

- Master-Worker with Barriers (MWB): master keep solutions.

Worker: scenario subproblem
Master:

Our Approaches

- Basic Parallel (BP): synchronous.

```
scenario subproblem }=>\mathrm{ evaluation $> exchange result
```

- Duplicate efforts on evaluation, e.g.,

Processor 1	Processor 2	Processor 3
$\operatorname{Sub}(1) \Rightarrow(0,1,0)$	$\operatorname{Sub}(2) \Rightarrow(1,1,1)$	$\operatorname{Sub}(3) \Rightarrow(0,1,0)$
$\operatorname{Eva}((0,1,0))$	$\operatorname{Eva}((1,1,1))$	$\operatorname{Eva}((0,1,0))$

- Master-Worker with Barriers (MWB): master keep solutions.

- Master-Worker without Barriers (MWN): master creates
 jobs and updates every worker individually with results from the others.

Our Approaches

- Basic Parallel (BP): synchronous.

```
scenario subproblem }=>\mathrm{ evaluation $> exchange result
```

- Duplicate efforts on evaluation, e.g.,

Processor 1	Processor 2	Processor 3
$\operatorname{Sub}(1) \Rightarrow(0,1,0)$	$\operatorname{Sub}(2) \Rightarrow(1,1,1)$	$\operatorname{Sub}(3) \Rightarrow(0,1,0)$
$\operatorname{Eva}((0,1,0))$	$\operatorname{Eva}((1,1,1))$	$\operatorname{Eva}((0,1,0))$

- Master-Worker with Barriers (MWB): master keep solutions.

- Master-Worker without Barriers (MWN): master creates
 jobs and updates every worker individually with results from the others.

Our Approaches

- Basic Parallel (BP): synchronous.

```
scenario subproblem }=>\mathrm{ evaluation $> exchange result
```

- Duplicate efforts on evaluation, e.g.,

Processor 1	Processor 2	Processor 3
$\operatorname{Sub}(1) \Rightarrow(0,1,0)$	$\operatorname{Sub}(2) \Rightarrow(1,1,1)$	$\operatorname{Sub}(3) \Rightarrow(0,1,0)$
$\operatorname{Eva}((0,1,0))$	$\operatorname{Eva}((1,1,1))$	$\operatorname{Eva}((0,1,0))$

- Master-Worker with Barriers (MWB): master keep solutions.

- Master-Worker without Barriers (MWN): master creates jobs and updates every worker individually with results from the others.

Computational Results

- CPLEX 12.6 \& C++ on a Linux workstation with four 3.4 GHz processors and 16GB memory.
- Parallel: OpenMPI, Flux HPC Cluster
- Test risk measure $\rho: \mathrm{CVaR}_{1-0.1}$
- Instances from SIPLIB ${ }^{\dagger}$

	SSLP			SMKP			
	stochastic server location problem			multi 0-1 knapsack problem			
Stage 1	10 binary var			240 binary var			
Stage 2 (per scenario)	500 binary	$\begin{aligned} & \text { ar, } 10 \mathrm{c} \\ & \mathrm{j} 0 \mathrm{cons} \end{aligned}$	nuous var			5 bin	
	SSLP Instances			SMKP Instances			
	_50 _100	_500	_1000	_1	_2	_3	-4
\# scen	50100	50	1000	20	40	80	160

[^0]
Computational Efficiency

- MIP: call solver to solve the LP reformulation of CVaR (Rockafellar et al., 2002):

$$
\min _{x \in X} \operatorname{CVaR}_{\alpha}(f(x, \xi))=\min _{x \in X, \eta}\left\{\eta+\frac{1}{1-\alpha} \sum_{k=1}^{K} p_{k}\left[f\left(x, \xi^{k}\right)-\eta\right]^{+}: \eta \in \mathbb{R}\right\} .
$$

- DD- i : dual decomposition using different methods for computing bounds.

Computational Efficiency

- MIP: call solver to solve the LP reformulation of CVaR (Rockafellar et al., 2002):

$$
\min _{x \in X} \operatorname{CVaR}_{\alpha}(f(x, \xi))=\min _{x \in X, \eta}\left\{\eta+\frac{1}{1-\alpha} \sum_{k=1}^{K} p_{k}\left[f\left(x, \xi^{k}\right)-\eta\right]^{+}: \eta \in \mathbb{R}\right\} .
$$

- DD- i : dual decomposition using different methods for computing bounds.

Table : Solution time in seconds (optimality gap if not solved in 6hrs)

	SSLP						SMKP			
	-50	-100	-500	-1000		-20	-40	-80	-160	
MIP	195	201	(100%)	(100%)		299	(0.09%)	(0.11%)	(0.16%)	
DD-2S	415	602	7231	(9%)		3496	9080	(0.01%)	(0.01%)	
DD-2C	1276	2570	(10%)	(16%)		(0.02%)	(0.01%)	(0.02%)	(0.02%)	
DD-1	248	502	4663	12750		2692	9866	11249	18774	

\#: fastest among the comparison groups.

Computational Efficiency

- MIP: call solver to solve the LP reformulation of CVaR (Rockafellar et al., 2002):

$$
\min _{x \in X} \operatorname{CVaR}_{\alpha}(f(x, \xi))=\min _{x \in X, \eta}\left\{\eta+\frac{1}{1-\alpha} \sum_{k=1}^{K} p_{k}\left[f\left(x, \xi^{k}\right)-\eta\right]^{+}: \eta \in \mathbb{R}\right\} .
$$

- DD- i : dual decomposition using different methods for computing bounds.

Table : Solution time in seconds (optimality gap if not solved in 6hrs)

	SSLP						SMKP			
	-50	-100	-500	-1000		-20	-40	-80	-160	
MIP	195	201	(100%)	(100%)		299	(0.09%)	(0.11%)	(0.16%)	
DD-2S	415	602	7231	(9%)		3496	9080	(0.01%)	(0.01%)	
DD-2C	1276	2570	(10%)	(16%)		(0.02%)	(0.01%)	(0.02%)	(0.02%)	
DD-1	248	502	4663	12750		2692	9866	11249	18774	

\#: fastest among the comparison groups.

- For modest and large instances, the computational efficacy:
$\underset{\text { (1-loop) }}{\mathrm{DD-1}}>\underset{\text { (2-loop, subgradient) })}{\text { DD-2S }}>\underset{\text { (2-loop, cutting-plane) }}{\text { DD-2C }} \gg$ MIP

Parallel DD-1

Speedup = Serial Time / Parallel Time (= \# processors, in perfect parallelism)

Figure : Speedup vs. Num of Processes

- MWB and BP crossover.
- MWN (MWB) scales better under a smaller (larger) num of scenarios.
- Super-linear speedup: smaller total workload in parallel than in serial.

Communication Time Tradeoff

- Communication

Communication Time Tradeoff

- Communication
- Collective vs. Point-to-point

Communication Time Tradeoff

- Communication
- Collective vs. Point-to-point

- computation jobs
\square : collective communication
- BP: collective; MWB: mixed; MWN: point-to-point.

Communication Time Tradeoff

- Communication
- Collective vs. Point-to-point

- computation jobs
\square : collective communication
- BP: collective; MWB: mixed; MWN: point-to-point.

Communication Time Tradeoff

- Communication
- Collective vs. Point-to-point

- computation jobs
: collective communication
\rightarrow : point-to-point communication
- BP: collective; MWB: mixed; MWN: point-to-point.

Communication Time Tradeoff

- Communication
- Collective vs. Point-to-point

\square : computation jobs
: collective communication
\rightarrow : point-to-point communication
- BP: collective; MWB: mixed; MWN: point-to-point.
- Time tradeoff
- Computation time:

$$
\mathrm{BP}>\mathrm{MWB} \approx \mathrm{MWN}
$$

- Collective communication time:

$$
B P>M W B \gg M W N=0
$$

- Point-to-point communication time:

$$
M W N>M W B \gg B P=0
$$

Communication Time Tradeoff

- Communication
- Collective vs. Point-to-point

\square : computation jobs
: collective communication
\rightarrow : point-to-point communication
- BP: collective; MWB: mixed; MWN: point-to-point.
- Time tradeoff
- Computation time:

$$
\mathrm{BP}>\mathrm{MWB} \approx \mathrm{MWN}
$$

- Collective communication time: \nearrow with num of processors

$$
B P>M W B \gg M W N=0
$$

- Point-to-point communication time:

$$
M W N>M W B \gg B P=0
$$

Communication Time Tradeoff

- Communication
- Collective vs. Point-to-point

: collective communication
\rightarrow : point-to-point communication
- BP: collective; MWB: mixed; MWN: point-to-point.
- Time tradeoff
- Computation time:

$$
\mathrm{BP}>\mathrm{MWB} \approx \mathrm{MWN}
$$

- Collective communication time: \nearrow with num of processors

$$
B P>M W B \gg M W N=0
$$

- Point-to-point communication time: \nearrow with num of scenarios

$$
M W N>M W B \gg B P=0
$$

Conclusion

Thank you!
 Questions?

[^0]: ${ }^{\dagger}$: S. Ahmed, R. Garcia, N. Kong, L. Ntaimo, G. Parija, F. Qiu, S. Sen. SIPLIB: A Stochastic Integer Programming Test Problem Library. http://www.isye.gatech.edu/~sahmed/siplib, 2015.

