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Carsharing

I Short term car rental

I Consumer benefits
I Private vehicle
I No ownership responsibility

I Societal & environmental benefits
I Reduced congestion (6 cars replaced per shared vehicle)
I Reduced fuel consumption (vehicle mileage ↘ 44% per

carshare user)
I Reduced greenhouse gas emissions

I Becoming more popular
I Over 1,000 cities worldwide have adopted carsharing
I Over 1 million individuals sharing over 20,000 vehicles in the

U.S.
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Types of carshare

I Reservation-based vs. free-floating
I Contracted paid parking lots for reservation-based users
I Free-float parking permits for free float users

I One-way vs. round-trip rentals
I One-way more desirable for consumers

I Flexibility of using vehicles
I Potentially save on rental fees by splitting trips

I One-way trips problematic for companies
I Management complexities
I Unbalanced demand requires redistribution of fleet
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Carshare design and optimization

I Strategic decisions to consider, e.g.
I Implement one-way or not?
I Offset cost with price differentiation?

(Zipcar charges $7.50-$8.50 per hour round-trip and $12 per
hour one-way in Boston)

I Evaluate the impact
I Field testing (Zipcar’s ONE>WAY beta program)
I Mathematical modeling (focus of this talk)

I Optimize profitability and quality of service via models that
I Incorporate round-trip & one-way uncertain demands
I Understand customer behavior in response to decisions
I Optimize & evaluate strategic decisions
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Framing the problem

How does the proportion of one-way demand vs round-trip demand
affect profitability and QoS?

Assumptions:

I A set of service zones and a finite number of service periods
I Serve random one-way and round-trip rentals

I Vehicle movement and demand aggregated by zone
I Vehicles travel between zones at different periods
I Demand uncertainty with known distribution

I Cars can be relocated, to balance vehicle distributions

I Unsatisfied demand is immediately lost
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A two-stage stochastic programming framework

I Strategic decisions:
I zone-based # of parking lots to buy (for reservation-based)
I zone-based # of free-float permits to buy (for free float)
I # of cars initially allocated in each zone (for both)

I Recourse decisions:
I Movement of cars (from car users and also relocation)

I Objective: To minimize
I costs of allocating cars and purchasing parking lots/permits
I (uncertain) costs of operating and relocating cars
I (uncertain) penalty of undesirable quality of service (related to

unsatisfied demand and denied trips)
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1st-stage master problem

min
w,x

∑
i∈I

(
c lot
i wi +

(
cffp + c loc

i

)
xi

)
+ Q(w , x)

s.t. (w , x) ∈ X =

w ∈ Z|I |
+ , x ∈ Z|I |

+ :
∑
i∈I

xi ≤ S, xi ≤ wi , ∀i ∈ I


I I : Set of zones

I S : Maximum # cars

I c lot
i , ∀i ∈ I : cost for locating one car in zone i .

I cffp = 0 for reservation-based, and c lot
i = 0, ∀i ∈ I for free-float.

I w ∈ Z|I |: # parking lots to purchase in each zone

I x ∈ Z|I |: # cars to initially allocate to each zone

I Q(w , x) models the 2st-stage recourse problem by using spatial-temporal
networks to model realized one-way & round-trip demands.
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Building spatial-temporal network

I Example:
I Zones A, B
I Time periods, 0, 1, 2, 3
I Travel times between zones, A↔B = 2
I nit : Zone i at time t

Type Volume Origin Destination Start End
One-way 4 A B 0 –

Round-trip 2 B – 1 3

nA0

nB0

nA1

nB1

nA2

nB2

nA3

nB3

Figure: Spatial-temporal nodes
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Spatial-temporal network

I Random demand
I done

ijts : # of one-way rentals from zone i starting at period t
and returned to zone j at period s.

I d two
its : # of round-trip rentals from zone i starting at period t

and returned to zone i at period s.

I Original cost parameters
I rone: Revenue per one-way rental per period
I r two: Revenue per round-trip rental per period
I cmnt: Maintenance cost per car per period
I c rel: Relocation cost per car per period

I Network arc parameters

Type of arc Cost per unit flow fa Capacity ua
One-way arc (nit , njs) −(rone − cmnt)(s − t) done

ijts

Round-trip arc (nit , nis) −(r two − cmnt)(s − t) d two
its

Relocation arc (nit , nj,t+`ij ) (c rel + cmnt)`ij +∞
Idle arc (nit , ni,t+1) c idle wi
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2nd-stage minimum cost flow problem

Q(w , x) =

min
y1,...,y|K|

∑
k∈K

pk
∑
a∈A

fay
k
a + g(y1, . . . , y |K |)

s.t. yk ∈ Y (w , x , uk ) = {yk ∈ R|A|
+ :

∑
a∈δ+(nit )

yk
a −

∑
a∈δ−(nit )

yk
a =


xi if t = 0

0 if t = 1, 2, ...,T − 1

−xi if t = T

∀i ∈ I

yk
a ≤ uka ∀a ∈ Aone ∪ Atwo

yk
a ≤ wi ∀i ∈ I , a = (nit , ni,t+1) ∈ Aidle} ∀k ∈ K

I K : Set of demand scenarios (sampled from known distribution)

I A: Set of spatial-temporal arcs

I y k : Flows on spatial-temporal network

I Y (w , x , uk): Flow balance & capacity constraints

I Q(w , x) is a large-scale linear program given fixed x and w .
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QoS penalty g(x , y 1, . . . , yK )

I Penalize # of unserved customers
I i.e., unused capacity on rental arcs (uka − yk

a ), ∀a ∈ Aone ∪Atwo

I Risk-neutral model
I g(x , y1, . . . , yK ) =

∑
k∈K pk

∑
a∈Aone∪Atwo Ga(uka − yk

a )

I Risk-averse model
I Ha(w , x): denotes the unused capacity on arc a given w and x
I g(x , y1, . . . , yK ) = G0CVaR1−ε

(∑
a∈Aone∪Atwo Ha(w , x)

)

I G0 penalizes the expected value of the worst 100ε% scenarios.
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2nd-stage linear program when penalizing CVaR

Qc(w , x) = min
y ,z,v≥0

∑
k∈K

pk
∑
a∈A

fay
k
a + G0

(
v +

1

ε

∑
k∈K

pkzk

)
s.t. yk ∈ Y (w , x , uk), zk ≥ 0 ∀k ∈ K

zk ≥
∑

a∈Aone∪Atwo

(uka − yka )− v ∀k ∈ K ,

where

I v : VaR1−ε
(∑

a∈Aone∪Atwo Ha(w , x)
)

I zk = max
{∑

a∈Aone∪Atwo(uka − yka )− v , 0
}
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Branch-and-cut and parallelization

I There can be many 2nd-stage subproblems
⇒ many spatial-temporal networks with huge sizes due to

I Fine division into zones
I Fine granularity of time

I Branch-and-cut algorithm
I Branch on integer variables in the 1st stage
I Use Benders decomposition to generate Benders cuts
I Lift Benders cuts with mixed-integer rounding (MIR)

I Follow similar ideas in Bodur and Luedtke (2014) for a
two-stage stochastic integer program for call-center staffing

I Use parallel computing to speed up subproblem computation
I Master-Worker scheme by OpenMPI 1.6
I UM Flux HPC cluster, 20 cores each with 48GB RAM.
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Branch-and-cut

Master problem

Subproblems

Solution

Master problem

Subproblems

Solution Valid cut

Valid cut
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Branch-and-cut with MIR (Bodur & Luedtke 2014)

Master problem

Subproblems

Solution

Master problem

Subproblems

Solution

MIR cut

Cut list
MIR cut

Valid cut

Valid cut
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Data description

I Boston-Cambridge Zipcar; Data from Oct 1 to Dec 1, 2014

I Zipcar cost parameters; c rel = $22 or $10 per hour for car relocation

I 1-hour periods, over 24 hours

I ε = 0.1 and 0.05 for the CVaR risk-averse model

I Use Java + Gurobi 6.0.3; Intel dual-core CPU with 8GB RAM.

Demand data follows Gamma distributions
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Computational efficiency

I Tests run for |K | = 100, 200, 500, 1000
I Across all sets of results

I Branch-and-cut slower if subproblems solved in series, faster if
solved in parallel

I # iterations fairly constant with |K |
I Using MIR can improve parallel solve time

Model Series Parallel # iterations

solve time solve time

Stoch 236,207 236,207 -

Stoch-Branch 291,389 34,430 39

Stoch-MIR 160,272 27,175 37

CVaR 190,072 190,072 -

CVaR-Branch 254,038 35,301 30

CVaR-MIR 343,550 34,544 39

Table: Computational time (in second) for |K | = 1000
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Computational results

Question: How does the proportion of one-way demand vs
round-trip demand affect profitability and QoS?

I Vary proportion of one-way trips
I 0%, 20%, 40%, 60%, 80%, and 100%

I Vary carshare systems:
I Reservation based: c lot

i = $9.6 per hour in zones i = 1, 2, 5, 6, 9
and c lot

i = $7.4 per hour in other zones; cffp = 0

I Free-float: cffp = $9.6 per hour; c lot
i = 0, ∀i = 1, . . . , 9

I Reduce relocation cost from $22 per hour to $10
I U.S. average wage in 2014 ⇒ minimum hour-pay requirement
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Some general remarks of the results

I Similar risk neutral and CVaR penalty model results

I Similar reservation-based and free-floating system results

I Because similar costs of parking lot and free-float permit per year

I Vehicle allocation cannot be directly inferred from demand concentration

(a) Demand heatmap (b) Vehicle allocation

Figure: Demand concentration (by starting location) vs vehicle allocation
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Recommending Changes

I We tried to increase the revenue of one-way to improve
profitability and quality of service (QoS)

I Does not help when one-way proportion is high

I Effective approach: Decrease unit cost for car relocation
c rel = $22 ⇒ c rel = $10

I Effects of change
I Slight increase in profitability
I Major improvement in QoS
I Major reduction in trips denied

I More willing to relocate cars to meet demand
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Change in profitability

One-way Setup One-way trip Round-trip Relocation Profit

proportion cost ($) revenue ($) revenue ($) cost ($) ($)

60% 1,770 4,804 7,475 333 10,176

80% 1,682 6,625 3,572 454 8,061

100% 1,496 8,359 0 549 6,315

Table: Profitability before change (c rel = $22)

One-way Setup One-way trip Round-trip Relocation Profit

proportion cost ($) revenue ($) revenue ($) cost ($) ($)

60% 1,749 6,761 7,491 1,986 10,517

80% 1,635 9,282 3,570 2,696 8,521

100% 1,418 11,700 0 3,389 6,894

Table: Profitability after change (c rel = $10)
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Change in QoS (unsatisfied demand)
In general, we observe expected unserved customers ↗ as one-way
proportion ↗ for both c rel = $22 and c rel = $10.

One-way Proportion of Idle

proportion trips unfulfilled vehicle-hours

60% 18.50% 3,209

80% 23.40% 3,433

100% 29.10% 3,264

Table: QoS before change (c rel = $22)

One-way Proportion of Idle

proportion trips unfulfilled vehicle-hours

60% 1.20% 2,871

80% 0.20% 2,981

100% 0.00% 2,711

Table: QoS after change (c rel = $10)
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Change in QoS (denied trips)
Definition: Trips disallowed despite there being a car to serve
demand. Expected denied trips ↗ as one-way proportion ↗.

One-way Mean 99th

proportion percentile

60% 11.64% 15.47%

80% 15.30% 20.40%

100% 19.71% 25.03%

Table: Denied trips before change (c rel = $22)

One-way Mean 99th

proportion percentile

60% 0.08% 0.82%

80% 0.00% 0.21%

100% 0.00% 0.21%

Table: Denied trips after change (c rel = $10)
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Extensions of for-profit carshare

I Not-for-profit car sharing

I City Carshare (Carma): nonprofit carsharing program in Bay
Area since 2001

I Function: provide last-miles solutions for public transit
I Mission: Reduce cars; improve traffic; reduce emissions

I > 80% of Carma’s vehicles are electric powered ⇒
I Project 1: Composition of shared car fleet design for meeting

not-for-profit goals and encouraging carsharing

I Project 2: Locating charging stations for shared electric
vehicles (EVs)

I Project 3: Joint management of shared EVs in coupled power
and transportation networks
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Carshare for underserved communities

Underserved communities: Disabled, elderly, and low-income

I limited access to personal vehicles

I limited access to high techs used for booking vehicles

I limited access to services other than transportation need

A vehicle-and-service-sharing system (V3S):

I allocate vehicles to communities shared by households

I match vehicle sharing with service sharing needs

I encourage service sharing by waiving/decreasing drivers’
vehicle usage fee

I periodically relocates vehicles across multiple communities by
learning service sharing behavior

Shen (U of Michigan) 31/33



Carshare for underserved communities

Underserved communities: Disabled, elderly, and low-income

I limited access to personal vehicles

I limited access to high techs used for booking vehicles

I limited access to services other than transportation need

A vehicle-and-service-sharing system (V3S):

I allocate vehicles to communities shared by households

I match vehicle sharing with service sharing needs

I encourage service sharing by waiving/decreasing drivers’
vehicle usage fee

I periodically relocates vehicles across multiple communities by
learning service sharing behavior

Shen (U of Michigan) 31/33



Take a bigger step?

Next: Autonomous vehicle (AV) sharing?

I Obtain data about AV speed and connectivity from M-city.

I Design AV-based carshare system and V3S.

I Develop stochastic dynamic program for AV control.
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Thank you!

Questions?
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