Optimizing the Profitability and Quality of Service in Carshare Systems

Siqian Shen

joint work with Zhihao Chen (U of Michigan) and Mengshi Lu (Purdue)

> Seminar in IE Department Clemson University

> > September 23, 2016

Outline

Introduction

Problem formulation

Solution algorithm

Computational results

Applications and extensions

Outline

Introduction

Problem formulation

Solution algorithm

Computational results

Applications and extensions

Carsharing

- Short term car rental
- Consumer benefits
 - Private vehicle
 - No ownership responsibility
- Societal & environmental benefits
 - Reduced congestion (6 cars replaced per shared vehicle)
 - Reduced fuel consumption (vehicle mileage > 44% per carshare user)
 - Reduced greenhouse gas emissions
- Becoming more popular
 - Over 1,000 cities worldwide have adopted carsharing
 - Over 1 million individuals sharing over 20,000 vehicles in the U.S.

Types of carshare

Reservation-based vs. free-floating

- Contracted paid parking lots for reservation-based users
- Free-float parking permits for free float users
- One-way vs. round-trip rentals
 - One-way more desirable for consumers
 - Flexibility of using vehicles
 - Potentially save on rental fees by splitting trips
 - One-way trips problematic for companies
 - Management complexities
 - Unbalanced demand requires redistribution of fleet

Carshare design and optimization

- Strategic decisions to consider, e.g.
 - Implement one-way or not?
 - Offset cost with price differentiation? (Zipcar charges \$7.50-\$8.50 per hour round-trip and \$12 per hour one-way in Boston)
- Evaluate the impact
 - Field testing (Zipcar's ONE>WAY beta program)
 - Mathematical modeling (focus of this talk)
- Optimize profitability and quality of service via models that
 - Incorporate round-trip & one-way uncertain demands
 - Understand customer behavior in response to decisions
 - Optimize & evaluate strategic decisions

Outline

Introduction

Problem formulation

Solution algorithm

Computational results

Applications and extensions

Framing the problem

How does the proportion of one-way demand vs round-trip demand affect profitability and QoS?

Assumptions:

- A set of service zones and a finite number of service periods
- Serve random one-way and round-trip rentals
 - Vehicle movement and demand aggregated by zone
 - Vehicles travel between zones at different periods
 - Demand uncertainty with known distribution
- Cars can be relocated, to balance vehicle distributions
- Unsatisfied demand is immediately lost

A two-stage stochastic programming framework

Strategic decisions:

- zone-based # of parking lots to buy (for reservation-based)
- zone-based # of free-float permits to buy (for free float)
- # of cars initially allocated in each zone (for both)
- Recourse decisions:
 - Movement of cars (from car users and also relocation)
- Objective: To minimize
 - costs of allocating cars and purchasing parking lots/permits
 - (uncertain) costs of operating and relocating cars
 - (uncertain) penalty of undesirable quality of service (related to unsatisfied demand and denied trips)

1st-stage master problem

$$\begin{split} \min_{w,x} & \sum_{i \in I} \left(c_i^{\mathsf{lot}} w_i + \left(c^{\mathsf{ffp}} + c_i^{\mathsf{loc}} \right) x_i \right) + Q(w,x) \\ \text{s.t.} & (w,x) \in X = \left\{ w \in \mathbb{Z}_+^{|I|}, x \in \mathbb{Z}_+^{|I|} : \sum_{i \in I} x_i \leq S, \quad x_i \leq w_i, \ \forall i \in I \right\} \end{split}$$

I: Set of zones

- ► S: Maximum # cars
- ▶ c_i^{lot} , $\forall i \in I$: cost for locating one car in zone *i*.
- $c^{\text{ffp}} = 0$ for reservation-based, and $c_i^{\text{lot}} = 0$, $\forall i \in I$ for free-float.
- $w \in \mathbb{Z}^{|I|}$: # parking lots to purchase in each zone
- $x \in \mathbb{Z}^{|I|}$: # cars to initially allocate to each zone
- Q(w, x) models the 2st-stage recourse problem by using spatial-temporal networks to model realized one-way & round-trip demands.

- Example:
 - Zones A, B
 - ▶ Time periods, 0, 1, 2, 3
 - Travel times between zones, $A \leftrightarrow B = 2$
 - *n_{it}*: Zone *i* at time *t*

Туре	Volume	Origin	Destination	Start	End
One-way	4	A	В	0	-
Round-trip	2	В	-	1	3

Figure: Spatial-temporal nodes

- Example:
 - Zones A, B
 - ▶ Time periods, 0, 1, 2, 3
 - Travel times between zones, $A \leftrightarrow B = 2$
 - *n_{it}*: Zone *i* at time *t*

Туре	Volume	Origin	Destination	Start	End
One-way	4	A	В	0	-
Round-trip	2	В	-	1	3

Figure: One-way arcs

- Example:
 - Zones A, B
 - ▶ Time periods, 0, 1, 2, 3
 - Travel times between zones, $A \leftrightarrow B = 2$
 - *n_{it}*: Zone *i* at time *t*

Туре	Volume	Origin	Destination	Start	End
One-way	4	А	В	0	-
Round-trip	2	В	-	1	3

Figure: Round-trip arcs

- Example:
 - Zones A, B
 - ▶ Time periods, 0, 1, 2, 3
 - Travel times between zones, $A \leftrightarrow B = 2$
 - *n_{it}*: Zone *i* at time *t*

Туре	Volume	Origin	Destination	Start	End
One-way	4	А	В	0	-
Round-trip	2	В	-	1	3

Figure: Relocation arcs

- Example:
 - Zones A, B
 - ▶ Time periods, 0, 1, 2, 3
 - Travel times between zones, $A \leftrightarrow B = 2$
 - *n_{it}*: Zone *i* at time *t*

Туре	Volume	Origin	Destination	Start	End
One-way	4	А	В	0	-
Round-trip	2	В	-	1	3

Figure: Idling arcs

- Example:
 - Zones A, B
 - ▶ Time periods, 0, 1, 2, 3
 - Travel times between zones, $A \leftrightarrow B = 2$
 - *n_{it}*: Zone *i* at time *t*

Туре	Volume	Origin	Destination	Start	End
One-way	4	А	В	0	-
Round-trip	2	В	-	1	3

Figure: Spatial-temporal network

- Example:
 - Zones A, B
 - ▶ Time periods, 0, 1, 2, 3
 - Travel times between zones, $A \leftrightarrow B = 2$
 - *n_{it}*: Zone *i* at time *t*

Туре	Volume	Origin	Destination	Start	End
One-way	4	А	В	0	-
Round-trip	2	В	-	1	3

Figure: Spatial-temporal network

Spatial-temporal network

- Random demand
 - d^{one}_{ijts}: # of one-way rentals from zone i starting at period t and returned to zone j at period s.
 - d^{two}: # of round-trip rentals from zone i starting at period t and returned to zone i at period s.
- Original cost parameters
 - r^{one}: Revenue per one-way rental per period
 - ▶ *r*^{two}: Revenue per round-trip rental per period
 - ► *c*^{mnt}: Maintenance cost per car per period
 - c^{rel}: Relocation cost per car per period
- Network arc parameters

Type of arc	Cost per unit flow f_a	Capacity <i>u</i> a
One-way arc (n_{it}, n_{js})	$-(r^{one}-c^{mnt})(s-t)$	d_{ijts}^{one}
Round-trip arc (n_{it}, n_{is})	$-(r^{two}-c^{mnt})(s-t)$	d_{its}^{two}
Relocation arc $(n_{it}, n_{j,t+\ell_{ii}})$	$(c^{rel}+c^{mnt})\ell_{ij}$	$+\infty$
Idle arc $(n_{it}, n_{i,t+1})$	c ^{idle}	Wi

2nd-stage minimum cost flow problem

$$Q(w, x) = \min_{y^1, ..., y^{|K|}} \sum_{k \in K} p^k \sum_{a \in A} f_a y_a^k + g(y^1, ..., y^{|K|})$$

s.t. $y^k \in Y(w, x, u^k) = \{y^k \in \mathbb{R}^{|A|}_+ :$
$$\sum_{a \in \delta^+(n_{it})} y_a^k - \sum_{a \in \delta^-(n_{it})} y_a^k = \begin{cases} x_i & \text{if } t = 0\\ 0 & \text{if } t = 1, 2, ..., T - 1 \end{cases} \quad \forall i \in I$$

 $-x_i & \text{if } t = T \end{cases}$
 $y_a^k \le u_a^k \quad \forall a \in A^{\text{one}} \cup A^{\text{two}}$
 $y_a^k \le w_i \quad \forall i \in I, a = (n_{it}, n_{i,t+1}) \in A^{\text{idle}}\} \quad \forall k \in K$

- K: Set of demand scenarios (sampled from known distribution)
- A: Set of spatial-temporal arcs
- ▶ *y^k*: Flows on spatial-temporal network
- ▶ Y(w, x, u^k): Flow balance & capacity constraints
- Q(w, x) is a large-scale linear program given fixed x and w.

QoS penalty $g(x, y^1, \ldots, y^K)$

- Penalize # of unserved customers
 - ▶ i.e., unused capacity on rental arcs $(u_a^k y_a^k), \forall a \in A^{\text{one}} \cup A^{\text{two}}$
- Risk-neutral model

•
$$g(x, y^1, \dots, y^K) = \sum_{k \in K} p^k \sum_{a \in A^{\text{one}} \cup A^{\text{two}}} G_a(u_a^k - y_a^k)$$

- Risk-averse model
 - $H_a(w, x)$: denotes the unused capacity on arc a given w and x
 - ► $g(x, y^1, ..., y^K) = G_0 \text{CVaR}_{1-\epsilon} \left(\sum_{a \in A^{\text{one}} \cup A^{\text{two}}} H_a(w, x) \right)$

2nd-stage linear program when penalizing CVaR

$$Q_{c}(w,x) = \min_{y,z,v\geq 0} \sum_{k\in K} p^{k} \sum_{a\in A} f_{a} y_{a}^{k} + G_{0} \left(v + \frac{1}{\epsilon} \sum_{k\in K} p^{k} z^{k} \right)$$

s.t. $y^{k} \in Y(w,x,u^{k}), \ z^{k} \geq 0 \quad \forall k \in K$
 $z^{k} \geq \sum_{a\in A^{\text{one}}\cup A^{\text{two}}} (u_{a}^{k} - y_{a}^{k}) - v \quad \forall k \in K,$

where

► v: VaR_{1-e}
$$\left(\sum_{a \in A^{\text{one}} \cup A^{\text{two}}} H_a(w, x)\right)$$

► $z^k = \max\left\{\sum_{a \in A^{\text{one}} \cup A^{\text{two}}} (u_a^k - y_a^k) - v, 0\right\}$

Outline

Introduction

Problem formulation

Solution algorithm

Computational results

Applications and extensions

Branch-and-cut and parallelization

- There can be many 2nd-stage subproblems
 - \Rightarrow many spatial-temporal networks with huge sizes due to
 - Fine division into zones
 - Fine granularity of time

Branch-and-cut and parallelization

- There can be many 2nd-stage subproblems
 - \Rightarrow many spatial-temporal networks with huge sizes due to
 - Fine division into zones
 - Fine granularity of time
- Branch-and-cut algorithm
 - Branch on integer variables in the 1st stage
 - Use Benders decomposition to generate Benders cuts
 - Lift Benders cuts with mixed-integer rounding (MIR)
 - Follow similar ideas in Bodur and Luedtke (2014) for a two-stage stochastic integer program for call-center staffing

Branch-and-cut and parallelization

- There can be many 2nd-stage subproblems
 - \Rightarrow many spatial-temporal networks with huge sizes due to
 - Fine division into zones
 - Fine granularity of time
- Branch-and-cut algorithm
 - Branch on integer variables in the 1st stage
 - Use Benders decomposition to generate Benders cuts
 - Lift Benders cuts with mixed-integer rounding (MIR)
 - Follow similar ideas in Bodur and Luedtke (2014) for a two-stage stochastic integer program for call-center staffing
- Use parallel computing to speed up subproblem computation
 - Master-Worker scheme by OpenMPI 1.6
 - ▶ UM Flux HPC cluster, 20 cores each with 48GB RAM.

Branch-and-cut

Branch-and-cut with MIR (Bodur & Luedtke 2014)

Outline

Introduction

Problem formulation

Solution algorithm

Computational results

Applications and extensions

Data description

- Boston-Cambridge Zipcar; Data from Oct 1 to Dec 1, 2014
- > Zipcar cost parameters; $c^{rel} = 22 or \$10 per hour for car relocation
- 1-hour periods, over 24 hours
- $\epsilon = 0.1$ and 0.05 for the CVaR risk-averse model
- ▶ Use Java + Gurobi 6.0.3; Intel dual-core CPU with 8GB RAM.

Demand data follows Gamma distributions

Computational efficiency

- Tests run for |K| = 100, 200, 500, 1000
- Across all sets of results
 - Branch-and-cut slower if subproblems solved in series, faster if solved in parallel
 - # iterations fairly constant with |K|
- Using MIR can improve parallel solve time

Model	Series	Parallel	# iterations
	solve time	solve time	
Stoch	236,207	236,207	-
Stoch-Branch	291,389	34,430	39
Stoch-MIR	160,272	27,175	37
CVaR	190,072	190,072	-
CVaR-Branch	254,038	35,301	30
CVaR-MIR	343,550	34,544	39

Table: Computational time (in second) for |K| = 1000

Computational results

Question: How does the proportion of one-way demand vs round-trip demand affect profitability and QoS?

- Vary proportion of one-way trips
 - ▶ 0%, 20%, 40%, 60%, 80%, and 100%
- Vary carshare systems:
 - Reservation based: c_i^{lot} = \$9.6 per hour in zones i = 1, 2, 5, 6, 9 and c_i^{lot} = \$7.4 per hour in other zones; c^{ffp} = 0
 - Free-float: $c^{\text{ffp}} = \$9.6$ per hour; $c_i^{\text{lot}} = 0, \forall i = 1, \dots, 9$
- Reduce relocation cost from \$22 per hour to \$10
 - ▶ U.S. average wage in 2014 \Rightarrow minimum hour-pay requirement

Some general remarks of the results

- Similar risk neutral and CVaR penalty model results
- Similar reservation-based and free-floating system results
 - Because similar costs of parking lot and free-float permit per year
- Vehicle allocation cannot be directly inferred from demand concentration

Figure: Demand concentration (by starting location) vs vehicle allocation

Recommending Changes

- We tried to increase the revenue of one-way to improve profitability and quality of service (QoS)
 - Does not help when one-way proportion is high
- ► Effective approach: Decrease unit cost for car relocation $c^{\text{rel}} = \$22 \Rightarrow c^{\text{rel}} = \10
- Effects of change
 - Slight increase in profitability
 - Major improvement in QoS
 - Major reduction in trips denied
- More willing to relocate cars to meet demand

Change in profitability

One-way	Setup	One-way trip	Round-trip	Relocation	Profit
proportion	cost (\$)	revenue (\$)	revenue (\$)	cost (\$)	(\$)
60%	1,770	4,804	7,475	333	10,176
80%	1,682	6,625	3,572	454	8,061
100%	1,496	8,359	0	549	6,315

Table: Profitability before change ($c^{rel} =$ \$22)

One-way	Setup	One-way trip	Round-trip	Relocation	Profit
proportion	cost (\$)	revenue (\$)	revenue (\$)	cost (\$)	(\$)
60%	1,749	6,761	7,491	1,986	10,517
80%	1,635	9,282	3,570	2,696	8,521
100%	1,418	11,700	0	3,389	6,894

Table: Profitability after change ($c^{rel} =$ \$10)

Change in QoS (unsatisfied demand)

In general, we observe expected unserved customers \nearrow as one-way proportion \nearrow for both $c^{\text{rel}} = \$22$ and $c^{\text{rel}} = \$10$.

One-way	Proportion of	ldle
proportion	trips unfulfilled	vehicle-hours
60%	18.50%	3,209
80%	23.40%	3,433
100%	29.10%	3,264

Table: QoS before change ($c^{rel} =$ \$22)

One-way	Proportion of	ldle
proportion	trips unfulfilled	vehicle-hours
60%	1.20%	2,871
80%	0.20%	2,981
100%	0.00%	2,711

Table: QoS after change ($c^{rel} =$ \$10)

Change in QoS (denied trips)

Definition: Trips disallowed despite there being a car to serve demand. Expected denied trips \nearrow as one-way proportion \nearrow .

One-way	Mean	99th
proportion		percentile
60%	11.64%	15.47%
80%	15.30%	20.40%
100%	19.71%	25.03%

Table: Denied trips before change ($c^{rel} =$ \$22)

One-way	Mean	99th
proportion		percentile
60%	0.08%	0.82%
80%	0.00%	0.21%
100%	0.00%	0.21%

Table: Denied trips after change ($c^{rel} =$ \$10)

Outline

Introduction

Problem formulation

Solution algorithm

Computational results

Applications and extensions

Extensions of for-profit carshare

- Not-for-profit car sharing
 - City Carshare (Carma): nonprofit carsharing program in Bay Area since 2001
 - Function: provide last-miles solutions for public transit
 - Mission: Reduce cars; improve traffic; reduce emissions
- ightarrow > 80% of Carma's vehicles are electric powered \Rightarrow
 - Project 1: Composition of shared car fleet design for meeting not-for-profit goals and encouraging carsharing

Extensions of for-profit carshare

- Not-for-profit car sharing
 - City Carshare (Carma): nonprofit carsharing program in Bay Area since 2001
 - Function: provide last-miles solutions for public transit
 - Mission: Reduce cars; improve traffic; reduce emissions
- ightarrow > 80% of Carma's vehicles are electric powered \Rightarrow
 - Project 1: Composition of shared car fleet design for meeting not-for-profit goals and encouraging carsharing
 - Project 2: Locating charging stations for shared electric vehicles (EVs)

Extensions of for-profit carshare

- Not-for-profit car sharing
 - City Carshare (Carma): nonprofit carsharing program in Bay Area since 2001
 - Function: provide last-miles solutions for public transit
 - Mission: Reduce cars; improve traffic; reduce emissions
- ightarrow > 80% of Carma's vehicles are electric powered \Rightarrow
 - Project 1: Composition of shared car fleet design for meeting not-for-profit goals and encouraging carsharing
 - Project 2: Locating charging stations for shared electric vehicles (EVs)
 - Project 3: Joint management of shared EVs in coupled power and transportation networks

Carshare for underserved communities

Underserved communities: Disabled, elderly, and low-income

- Iimited access to personal vehicles
- limited access to high techs used for booking vehicles
- limited access to services other than transportation need

Carshare for underserved communities

Underserved communities: Disabled, elderly, and low-income

- Iimited access to personal vehicles
- limited access to high techs used for booking vehicles
- limited access to services other than transportation need

A vehicle-and-service-sharing system (V3S):

- allocate vehicles to communities shared by households
- match vehicle sharing with service sharing needs
- encourage service sharing by waiving/decreasing drivers' vehicle usage fee
- periodically relocates vehicles across multiple communities by learning service sharing behavior

Take a bigger step?

Next: Autonomous vehicle (AV) sharing?

- Obtain data about AV speed and connectivity from M-city.
- Design AV-based carshare system and V3S.
- Develop stochastic dynamic program for AV control.

Thank you!

Questions?