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Carsharing

» Short term car rental e @
» Consumer benefits lecar

» Private vehicle

» No ownership responsibility

» Societal & environmental benefits
» Reduced congestion (6 cars replaced per shared vehicle)
» Reduced fuel consumption (vehicle mileage “\, 44% per
carshare user)
» Reduced greenhouse gas emissions

» Becoming more popular

» Over 1,000 cities worldwide have adopted carsharing
» Over 1 million individuals sharing over 20,000 vehicles in the
u.s.
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Types of carshare

> Reservation-based vs. free-floating

» Contracted paid parking lots for reservation-based users
> Free-float parking permits for free float users

» One-way vs. round-trip rentals
» One-way more desirable for consumers
> Flexibility of using vehicles
> Potentially save on rental fees by splitting trips
» One-way trips problematic for companies

» Management complexities
> Unbalanced demand requires redistribution of fleet
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Carshare design and optimization

» Strategic decisions to consider, e.g.

» Implement one-way or not?

» Offset cost with price differentiation?
(Zipcar charges $7.50-$8.50 per hour round-trip and $12 per
hour one-way in Boston)

» Evaluate the impact

» Field testing (Zipcar's ONE>WAY beta program)
» Mathematical modeling (focus of this talk)

» Optimize profitability and quality of service via models that

» Incorporate round-trip & one-way uncertain demands
» Understand customer behavior in response to decisions
» Optimize & evaluate strategic decisions
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Framing the problem

How does the proportion of one-way demand vs round-trip demand
affect profitability and QoS?

Assumptions:

v

A set of service zones and a finite number of service periods

v

Serve random one-way and round-trip rentals
» Vehicle movement and demand aggregated by zone
» Vehicles travel between zones at different periods
» Demand uncertainty with known distribution

v

Cars can be relocated, to balance vehicle distributions

v

Unsatisfied demand is immediately lost
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A two-stage stochastic programming framework

1 1
: Operational Decisions:

_— ' '
Uncertainty |
Realization 1| Stage 2 1

1 1

» Strategic decisions:
» zone-based # of parking lots to buy (for reservation-based)

» zone-based # of free-float permits to buy (for free float)
» # of cars initially allocated in each zone (for both)

» Recourse decisions:
» Movement of cars (from car users and also relocation)

» Objective: To minimize
» costs of allocating cars and purchasing parking lots/permits
» (uncertain) costs of operating and relocating cars
» (uncertain) penalty of undesirable quality of service (related to
unsatisfied demand and denied trips)
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15t-stage master problem

min Z <C,!°tWi + (Cfrp + C,!°c>Xi) + Q(w, x)

w,x -
iel

s.t. (w,x)EX:{WEZL{,xEZL{': ZX,'SS, xj < wj, ViE/}
i€l

I: Set of zones

S: Maximum # cars

cl°, Vi € I: cost for locating one car in zone i.

¢ = 0 for reservation-based, and ¢t = 0, Vi € I for free-float.
wez": # parking lots to purchase in each zone

x ez 7 cars to initially allocate to each zone

YV Vv vV VvV VY

Q(w, x) models the 2*-stage recourse problem by using spatial-temporal
networks to model realized one-way & round-trip demands.
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Building spatial-temporal network

> Example:

>

>
>
>

Zones A, B

()
(1)

Time periods, 0,1,2,3
Travel times between zones, A<~B =2
n;: Zone i at time t
Type Volume | Origin  Destination | Start End
One-way 4 A B 0 -
Round-trip 2 B - 1 3
@ @ ®
\’*D N> N>
@ @ ®
\BD N N
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Building spatial-temporal network

> Example:
» Zones A, B
» Time periods, 0,1,2,3
» Travel times between zones, A<+B =2
> n;i. Zone i at time t

Type Volume | Origin  Destination | Start End
One-way 4 A B 0 -
Round-trip 2 B - 1 3
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Figure: One-way arcs
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Building spatial-temporal network

> Example:
» Zones A, B

» Time periods, 0,1,2,3
» Travel times between zones, A<+B =2

> n;i. Zone i at time t

Type Volume | Origin  Destination | Start End

One-way 4 A B 0 -

Round-trip 2 B - 1 3
®@ ® ® ®
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Building spatial-temporal network

> Example:
» Zones A, B
» Time periods, 0,1,2,3
» Travel times between zones, A<+B =2
> n;i. Zone i at time t

Type Volume | Origin  Destination | Start End
One-way 4 A B 0 -
Round-trip 2 B - 1 3
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Figure: Relocation arcs
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Building spatial-temporal network

> Example:
» Zones A, B
» Time periods, 0,1,2,3
» Travel times between zones, A<+B =2
> n;i. Zone i at time t

Type Volume | Origin  Destination | Start End
One-way 4 A B 0 -
Round-trip 2 B - 1 3
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Figure: Idling arcs
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Building spatial-temporal network

> Example:

» Zones A, B

» Time periods, 0,1,2,3
» Travel times between zones, A<+B =2
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Spatial-temporal network

» Random demand

> d2¢: # of one-way rentals from zone j starting at period t

Ijts

and returned to zone j at period s.

» diW°: 4 of round-trip rentals from zone i starting at period t

its

and returned to zone i at period s.

» Original cost parameters

» r°"¢:. Revenue per one-way rental per period

>t Revenue per round-trip rental per period
» ¢c™: Maintenance cost per car per period
>

reI

c"®": Relocation cost per car per period

» Network arc parameters

Type of arc Cost per unit flow f; Capacity u,
One-way arc (njt, njs) —(r°" — c™t) (s — t) dge
Round-trip arc (njt, njs) —(rtwe — cMt)(s — t) o
Relocation arc (nit, nj t1¢;) (c + cmtye; “+o0o
Idle arc (n,-t, n,-’t+1) Cidle w;j
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2"d_stage minimum cost flow problem

Q(w,x) =
min Zpszayak+g(yl-,»--7ym)

1 K
yheyIK] kEK  acA

st. y e Y(w,x,uf)={y~ e er :

Xi If t= O
dDTovE— > yk=q0  ift=12.,T-1 viel
a€6t (nir) acs— (nit) —x; ift=T

y; < uk Ya € A°"e U Atwe

a

yk<w  Viela=(mgni1) € A%} vkek

> K: Set of demand scenarios (sampled from known distribution)
> A: Set of spatial-temporal arcs

> y*: Flows on spatial-temporal network

> Y(w,x, u*): Flow balance & capacity constraints

> Q(w,x) is a large-scale linear program given fixed x and w.
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QoS penalty g(x, yt,...,y%)

» Penalize # of unserved customers

> i.e., unused capacity on rental arcs (uX — yk), Va € Acrey Atve
> Risk-neutral model

> g(X,yl, e ’yK) = ZkeK pk ZaeA°"euAtW° Ga(”fa( - y;)
> Risk-averse model

» H,(w, x): denotes the unused capacity on arc a given w and x
> g(X7.y1) A 7}/K) = Gocvalee (ZaerneuAtwo Ha(W;X))

95%

5%
O.OSLVaR
» Gg penalizes the expected value of the worst 100¢% scenarios.
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2"d_stage linear program when penalizing CVaR

Qelwrx) =, I Zpiaya+Go vty P )

keK  acA € kek
st. yKe Y(w,x,u5), >0 Vk € K
k> Z (uk —yk) - Vk € K,
aerneuAtwo

where

> v VaR]__E (ZaerneuAtWO Ha(WaX))

> Zk = max{zaerneuAtwo(u§ - yak) - V7O}
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Solution algorithm
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Branch-and-cut and parallelization

» There can be many 2nd-stage subproblems
= many spatial-temporal networks with huge sizes due to

» Fine division into zones
» Fine granularity of time
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Branch-and-cut and parallelization

» There can be many 2nd-stage subproblems
= many spatial-temporal networks with huge sizes due to
» Fine division into zones
» Fine granularity of time

» Branch-and-cut algorithm

» Branch on integer variables in the 1%t stage
» Use Benders decomposition to generate Benders cuts
» Lift Benders cuts with mixed-integer rounding (MIR)
> Follow similar ideas in Bodur and Luedtke (2014) for a
two-stage stochastic integer program for call-center staffing
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Branch-and-cut and parallelization

» There can be many 2nd-stage subproblems
= many spatial-temporal networks with huge sizes due to
» Fine division into zones
» Fine granularity of time

» Branch-and-cut algorithm

» Branch on integer variables in the 1%t stage

» Use Benders decomposition to generate Benders cuts
» Lift Benders cuts with mixed-integer rounding (MIR)

> Follow similar ideas in Bodur and Luedtke (2014) for a
two-stage stochastic integer program for call-center staffing

> Use parallel computing to speed up subproblem computation

» Master-Worker scheme by OpenMPI 1.6
» UM Flux HPC cluster, 20 cores each with 48GB RAM.
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Branch-and-cut

Master problem

Subproblems

@- < valid cut
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Branch-and-cut with MIR (Bodur & Luedtke 2014)

Master problem
AN

Cut list

Subproblems
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Data description
Boston-Cambridge Zipcar; Data from Oct 1 to Dec 1, 2014

Zipcar cost parameters; ¢ = $22 or $10 per hour for car relocation
1-hour periods, over 24 hours

€ = 0.1 and 0.05 for the CVaR risk-averse model

Use Java + Gurobi 6.0.3; Intel dual-core CPU with 8GB RAM.

vV vV v Vv Y

Demand data follows Gamma distributions

0.9
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\ —— Low demand, observed ||
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Computational efficiency

» Tests run for |K| = 100,200, 500, 1000
» Across all sets of results
» Branch-and-cut slower if subproblems solved in series, faster if

solved in parallel

> # iterations fairly constant with |K|

» Using MIR can improve parallel solve time

Model Series Parallel # iterations
solve time  solve time
Stoch 236,207 236,207 -
Stoch-Branch 291,389 34,430 39
Stoch-MIR 160,272 27,175 37
CVaR 190,072 190,072 -
CVaR-Branch 254,038 35,301 30
CVaR-MIR 343,550 34,544 39

Table: Computational time (in second) for |K| = 1000

Shen (U of Michigan)
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Computational results

Question: How does the proportion of one-way demand vs
round-trip demand affect profitability and QoS?

» Vary proportion of one-way trips
» 0%, 20%, 40%, 60%, 80%, and 100%

» Vary carshare systems:
> Reservation based: c/°* = $9.6 per hour in zones i = 1,2,5,6,9
and c°t = $7.4 per hour in other zones; ¢ =0

> Free-float: ¢ = $9.6 per hour; c®* =0, Vi=1,...,9

» Reduce relocation cost from $22 per hour to $10
» U.S. average wage in 2014 = minimum hour-pay requirement
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Some general remarks of the results

> Similar risk neutral and CVaR penalty model results
> Similar reservation-based and free-floating system results

> Because similar costs of parking lot and free-float permit per year

> Vehicle allocation cannot be directly inferred from demand concentration

(a) Demand heatmap (b) Vehicle allocation

Figure: Demand concentration (by starting location) vs vehicle allocation
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Recommending Changes

» We tried to increase the revenue of one-way to improve
profitability and quality of service (QoS)
» Does not help when one-way proportion is high

» Effective approach: Decrease unit cost for car relocation
c =$22 = ¢ = $10

» Effects of change

» Slight increase in profitability
» Major improvement in QoS
» Major reduction in trips denied

> More willing to relocate cars to meet demand

Shen (U of Michigan)
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Change in profitability

One-way Setup  One-way trip Round-trip  Relocation Profit
proportion | cost ($) revenue ($)  revenue ($) cost ($) (%)
60% 1,770 4,804 7,475 333 | 10,176

80% 1,682 6,625 3,572 454 8,061
100% 1,496 8,359 0 549 6,315

Table: Profitability before change (¢ = $22)

One-way Setup  One-way trip Round-trip  Relocation Profit
proportion | cost ($) revenue ($)  revenue ($) cost ($) (%)
60% 1,749 6,761 7,491 1,986 | 10,517

80% 1,635 9,282 3,670 2,696 8,521
100% 1,418 11,700 0 3,389 6,894

Table: Profitability after change (c™ = $10)
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Change in QoS (unsatisfied demand)

In general, we observe expected unserved customers * as one-way
proportion * for both ¢ = $22 and " = $10.

Shen (U of Michigan)

One-way Proportion of Idle
proportion | trips unfulfilled | vehicle-hours
60% 18.50% 3,209

80% 23.40% 3,433
100% 29.10% 3,264

Table: QoS before change (c™® = $22)

One-way Proportion of Idle
proportion | trips unfulfilled | vehicle-hours
60% 1.20% 2,871

80% 0.20% 2,981
100% 0.00% 2,711

Table: QoS after change (c"™ = $10)
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Change in QoS (denied trips)
Definition: Trips disallowed despite there being a car to serve
demand. Expected denied trips * as one-way proportion .

One-way Mean 99th
proportion percentile
60% | 11.64% 15.47%

80% | 15.30% 20.40%
100% | 19.71% 25.03%

Table: Denied trips before change (c™ = $22)

One-way Mean 99th
proportion percentile
60% | 0.08% 0.82%

80% | 0.00% 0.21%
100% | 0.00% 0.21%

Table: Denied trips after change (c™ = $10)
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Applications and extensions
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Extensions of for-profit carshare

» Not-for-profit car sharing

» City Carshare (Carma): nonprofit carsharing program in Bay
Area since 2001

» Function: provide last-miles solutions for public transit

» Mission: Reduce cars; improve traffic; reduce emissions

» > 80% of Carma’s vehicles are electric powered =

» Project 1: Composition of shared car fleet design for meeting
not-for-profit goals and encouraging carsharing
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Extensions of for-profit carshare

» Not-for-profit car sharing

» City Carshare (Carma): nonprofit carsharing program in Bay
Area since 2001

» Function: provide last-miles solutions for public transit

» Mission: Reduce cars; improve traffic; reduce emissions

» > 80% of Carma’s vehicles are electric powered =
» Project 1: Composition of shared car fleet design for meeting
not-for-profit goals and encouraging carsharing

» Project 2: Locating charging stations for shared electric
vehicles (EVs)

» Project 3: Joint management of shared EVs in coupled power
and transportation networks
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Carshare for underserved communities

Underserved communities: Disabled, elderly, and low-income
» limited access to personal vehicles
> limited access to high techs used for booking vehicles

» limited access to services other than transportation need
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Carshare for underserved communities

Underserved communities: Disabled, elderly, and low-income
» limited access to personal vehicles
> limited access to high techs used for booking vehicles

» limited access to services other than transportation need

A vehicle-and-service-sharing system (V3S):
» allocate vehicles to communities shared by households
» match vehicle sharing with service sharing needs

> encourage service sharing by waiving/decreasing drivers’
vehicle usage fee

» periodically relocates vehicles across multiple communities by
learning service sharing behavior
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Take a bigger step?

Next: Autonomous vehicle (AV) sharing?

- Nobility Transformation Facility

» Obtain data about AV speed and connectivity from M-city.
> Design AV-based carshare system and V3S.

» Develop stochastic dynamic program for AV control.
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Thank you!

Questions?
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