Risk Averse Shortest Path Interdiction

Yongjia Song ${ }^{1}$ and Siqian Shen ${ }^{2}$

1: Virginia Commonwealth University
2: University of Michigan

ICS 2015, Richmond, VA

Network interdiction: a two-player game

Stackelberg game (two player; sequential moves) played on a network.

(a) Leader: Interdictor

(b) Follower: Operator

- Goal: maximally restrict a follower's utility gained in the network by damaging arcs or nodes.

Applications

- Smugglers (followers) evade authorities (leaders) who lead the game by placing checkpoints.
- Emergency service providers (leaders) allocate resources and fortify arcs/nodes against malicious attacks (followers).

Deterministic Network Interdiction

A shortest path network interdiction on Graph $G(V, A)$:

- $x_{a} \in\{0,1\}, \forall a \in A$: whether or not interdict arc a
- $y_{a} \in\{0,1\}, \forall a \in A$: whether or not arc a is on the path chosen by the follower

$$
\begin{aligned}
& \max _{x \in X} \min _{y} \sum_{a \in A}\left(c_{a}+d_{a} x_{a}\right) y_{a} \\
& \text { s.t. } \\
& \sum_{a \in \delta^{+}(i)} y_{a}-\sum_{a \in \delta^{-}(i)} y_{a}= \begin{cases}1 & \text { if } i=s \\
-1 & \text { if } i=t, \forall i \in V \\
0 & \text { o.w. } \\
& y_{a} \geq 0, \forall a \in A\end{cases}
\end{aligned}
$$

where $X=\left\{x \in\{0,1\}^{|A|} \mid \sum_{a \in A} r_{a} x_{a} \leq R\right\}$

Deterministic Network Interdiction

A shortest path network interdiction on Graph $G(V, A)$:

- $x_{a} \in\{0,1\}, \forall a \in A$: whether or not interdict arc a
- $y_{a} \in\{0,1\}, \forall a \in A$: whether or not arc a is on the path chosen by the follower

$$
\begin{aligned}
& \max _{x \in X} \min _{y} \sum_{a \in A}\left(c_{a}+d_{a} x_{a}\right) y_{a} \\
& \text { s.t. } \quad \sum_{a \in \delta^{+}(i)} y_{a}-\sum_{a \in \mathcal{S}^{-}(i)} y_{a}= \begin{cases}1 & \text { if } i=s \\
-1 & \text { if } i=t, \forall i \in V \\
0 & \text { o.w. } \\
& y_{a} \geq 0, \forall a \in A\end{cases}
\end{aligned}
$$

where $X=\left\{x \in\{0,1\}^{|A|} \mid \sum_{a \in A} r_{a} x_{a} \leq R\right\}$

Assume $d_{a}=3, \forall a$, and we can interdict up to two arcs

Deterministic Network Interdiction

A shortest path network interdiction on Graph $G(V, A)$:

- $x_{a} \in\{0,1\}, \forall a \in A$: whether or not interdict arc a
- $y_{a} \in\{0,1\}, \forall a \in A$: whether or not arc a is on the path chosen by the follower

$$
\begin{array}{ll}
\max _{x \in X} & \min _{y} \sum_{a \in A}\left(c_{a}+d_{a} x_{a}\right) y_{a} \\
\text { s.t. } & \sum_{a \in \mathcal{S}^{+}(i)} y_{a}-\sum_{a \in \delta^{-}(i)} y_{a}= \begin{cases}1 & \text { if } i=s \\
-1 & \text { if } i=t, \forall i \in V \\
0 & \text { o.w. } \\
& y_{a} \geq 0, \forall a \in A\end{cases}
\end{array}
$$

Assume $d_{a}=3, \forall a$, and we can interdict up to two arcs

where $X=\left\{x \in\{0,1\}^{|A|} \mid \sum_{a \in A} r_{a} x_{a} \leq R\right\}$

Solution Approaches (Morton 2011)

Given a relaxed interdiction \hat{x}, the follower chooses a shortest path using $c_{a}+d_{a} \hat{x}_{a}$ as the length for each arc a :

- Extended formulation: take the dual of the inner shortest path LP

$$
\begin{aligned}
& \max _{x \in X, \pi} \pi_{t} \\
& \text { s.t. } \pi_{j}-\pi_{i} \leq c_{a}+d_{a} x_{a}, \forall a=(i, j) \in A \\
& \pi_{s}=0
\end{aligned}
$$

- Benders formulation:

$$
\max _{x \in X} \min _{P \in \mathcal{P}} \sum_{a \in P}\left(c_{a}+d_{a} x_{a}\right)
$$

Solution Approaches (Morton 2011)

Given a relaxed interdiction \hat{x}, the follower chooses a shortest path using $c_{a}+d_{a} \hat{x}_{a}$ as the length for each arc a :

- Extended formulation: take the dual of the inner shortest path LP

$$
\begin{aligned}
& \max _{x \in X, \pi} \pi_{t} \\
& \text { s.t. } \pi_{j}-\pi_{i} \leq c_{a}+d_{a} x_{a}, \forall a=(i, j) \in A \\
& \pi_{s}=0
\end{aligned}
$$

- Benders formulation:

$$
\max _{x \in X}\left\{\theta \mid \theta \leq \sum_{a \in P}\left(c_{a}+d_{a} x_{a}\right), \forall P \in \mathcal{P}\right\}
$$

Stochastic Network Interdiction

Assume the arc lengths \tilde{c}_{a} and interdiction effects \tilde{d}_{a} are uncertain, and the uncertainty can be characterized by a finite set of scenarios $\left\{\left(c_{a}^{k}, d_{a}^{k}\right)\right\}_{k \in N}$
$\max _{x \in X} \sum_{k \in N} p_{k} \min _{y^{k}} \sum_{a \in A}\left(c_{a}^{k}+x_{a} d_{a}^{k}\right) y_{a}^{k}$

$$
\begin{aligned}
& \text { s.t. } \sum_{a \in \mathcal{\delta}^{+}(i)} y_{a}^{k}-\sum_{a \in \mathcal{S}^{-}(i)} y_{a}^{k}= \begin{cases}1 & \text { if } i=s \\
-1 & \text { if } i=t, \forall i \in V, \forall k \\
0 & \text { o.w. }\end{cases} \\
& y_{a}^{k} \geq 0, \forall a \in A, \forall k \in N
\end{aligned}
$$

Stochastic Network Interdiction

Assume the arc lengths \tilde{c}_{a} and interdiction effects \tilde{d}_{a} are uncertain, and the uncertainty can be characterized by a finite set of scenarios $\left\{\left(c_{a}^{k}, d_{a}^{k}\right)\right\}_{k \in N}$

$$
\begin{aligned}
& \max _{x \in X} \sum_{k \in N} p_{k} \theta^{k} \\
& \text { s.t. } \theta^{k} \leq \sum_{a \in P}\left(c_{a}^{k}+d_{a}^{k} x_{a}\right), \forall P \in \mathcal{P}
\end{aligned}
$$

- Benders formulation is preferred, since it enables scenario decomposition
- Could be strengthened by additional valid inequalities, e.g., the step inequalities (Pan and Morton 2008)

Stochastic Network Interdiction

Assume the arc lengths \tilde{c}_{a} and interdiction effects \tilde{d}_{a} are uncertain, and the uncertainty can be characterized by a finite set of scenarios $\left\{\left(c_{a}^{k}, d_{a}^{k}\right)\right\}_{k \in N}$

$$
\begin{aligned}
& \max _{x \in X} \sum_{k \in N} p_{k} \theta^{k} \\
& \text { s.t. } \theta^{k} \leq \sum_{a \in P}\left(c_{a}^{k}+d_{a}^{k} x_{a}\right), \forall P \in \mathcal{P}
\end{aligned}
$$

- Benders formulation is preferred, since it enables scenario decomposition
- Could be strengthened by additional valid inequalities, e.g., the step inequalities (Pan and Morton 2008)

Limit: the risk aversion of the players are not considered

Risk Averse Shortest Path Interdiction (RASPI)

Model risk aversion by chance constraint: risk averse interdictor (leader) targets on high probability of enforcing a long distance for the traveler

Two settings:

- Wait-and-see follower: make optimal response after observing the random outcome
- We do not need the follower's risk attitude in this case
- Traditional stochastic shortest path interdiction problem assumes a risk neutral leader
- Here-and-now follower: must make a decision before the observation of the random outcome
- We assume the follower is risk neutral in the here-and-now setting: choose a path that has the shortest expected distance

Outline

Chance-constrained RASPI with Wait-and-see Follower

Chance-constrained RASPI with Here-and-now Follower

Outline

Chance-constrained RASPI with Wait-and-see Follower

Chance-constrained RASPI with Here-and-now Follower

Risk averse interdictor with wait-and-see follower: a

 chance-constrained modelIdea: Ensure that the follower's shortest possible traveling distance from s to t exceeds a given length ϕ with high probability

$$
\begin{aligned}
\min _{x, z} & r^{\top} x \\
\text { s.t. } & \sum_{a \in A}\left(c_{a}^{k}+d_{a}^{k} x_{a}\right) y_{a}^{k}(x) \geq \phi z_{k}, \forall k \in N, \\
& \sum_{k \in N} p_{k} z_{k} \geq 1-\epsilon, \\
& z_{k} \in\{0,1\}, \forall k \in N, x_{a} \in\{0,1\}, \forall a \in A
\end{aligned}
$$

where $y^{k}(x) \in \arg \min _{y \in Y} \sum_{a \in A}\left(c_{a}^{k}+d_{a}^{k} x_{a}\right) y_{a}, Y$: flow balance equations

- $z_{k} \in\{0,1\}$: whether or not scenario k is satisfied

Risk averse interdictor with wait-and-see follower: a

 chance-constrained modelIdea: Ensure that the follower's shortest possible traveling distance from s to t exceeds a given length ϕ with high probability

$$
\begin{aligned}
\min _{x, z} & r^{\top} x \\
\text { s.t. } & \sum_{a \in P}\left(c_{a}^{k}+d_{a}^{k} x_{a}\right) \geq \phi z_{k}, \forall P \in \mathcal{P}, \forall k \in N, \\
& \sum_{k \in N} p_{k} z_{k} \geq 1-\epsilon, \\
& z_{k} \in\{0,1\}, \forall k \in N, x_{a} \in\{0,1\}, \forall a \in A
\end{aligned}
$$

- $z_{k} \in\{0,1\}$: whether or not scenario k is satisfied

Standard Benders decomposition

Given a relaxation solution \hat{x}, \hat{z} of the master problem (with a subset of paths)

- Solve a shortest path problem for each scenario k using $c_{a}^{k}+d_{a}^{k} \hat{x}_{a}$ as the arc length, and get the shortest path P^{k}
- Check if inequality $\sum_{a \in P^{k}}\left(c_{a}^{k}+d_{a}^{k} \widehat{x}_{a}\right) \geq \phi \hat{z}_{k}$ is violated, and add a Benders cut if so
- Could be applied for both integer and fractional solutions

Implicit covering structure

Scenario-based path inequality:

$$
\sum_{a \in P}\left(c_{a}^{k}+d_{a}^{k} x_{a}\right) \geq \phi z_{k}, \forall P \in \mathcal{P}
$$

Implicit covering structure

Scenario-based path inequality:

$$
\sum_{a \in P} d_{a}^{k} x_{a} \geq\left(\phi-l_{P}^{k}\right) z_{k}, \forall P \in \mathcal{P}
$$

where I_{P}^{k} is the length of path P using c_{a}^{k} as the arc length

Implicit covering structure

Scenario-based path inequality:

$$
\sum_{a \in P} d_{a}^{k} x_{a} \geq\left(\phi-l_{P}^{k}\right) z_{k}, \forall P \in \mathcal{P}
$$

where I_{P}^{k} is the length of path P using c_{a}^{k} as the arc length
Structure: exponentially many covering constraints

- Related to Song and Luedtke (2013), $\sum_{a \in C_{k}} x_{a} \geq z_{k}$, "scenario-based graph cut inequalities"
- Related to Song, Luedtke, and Kücükyavuz (2014), multi-dimensional binary packing problems with a small (non-exponential) number of constraints

Pack-based formulation: Motivation

Fix a scenario k, given a set of arcs C, if none is interdicted in C, we cannot achieve the target $\Rightarrow C$ is a pack in that scenario k !

$$
\exists P \in \mathcal{P}: \sum_{a \in P \cap C} c_{a}^{k}+\sum_{a \in P \backslash C}\left(c_{a}^{k}+d_{a}^{k}\right)<\phi
$$

Pack-based formulation: Motivation

Fix a scenario k, given a set of arcs C, if none is interdicted in C, we cannot achieve the target $\Rightarrow C$ is a pack in that scenario k !

$$
\exists P \in \mathcal{P}: \sum_{a \in P \cap C} c_{a}^{k}+\sum_{a \in P \backslash C}\left(c_{a}^{k}+d_{a}^{k}\right)<\phi
$$

So, we must interdict enough arcs in the pack:

$$
\sum_{a \in C} x_{a} \geq \psi(C)
$$

$\psi(C)$: the minimum number of arcs in C to interdict

- $d_{a}=3, \forall a \in A$
- Need the shortest path to be at least 5
- $\psi(C)=1$

Pack-based formulation: Motivation

Fix a scenario k, given a set of arcs C, if none is interdicted in C, we cannot achieve the target $\Rightarrow C$ is a pack in that scenario k !

$$
\exists P \in \mathcal{P}: \sum_{a \in P \cap C} c_{a}^{k}+\sum_{a \in P \backslash C}\left(c_{a}^{k}+d_{a}^{k}\right)<\phi
$$

So, we must interdict enough arcs in the pack:

$$
\sum_{a \in C} x_{a} \geq \psi(C) z_{k}, \forall \text { pack } C
$$

$\psi(C)$: the minimum number of arcs in C to interdict

- $d_{a}=3, \forall a \in A$
- Need the shortest path to be at least 5
- $\psi(C)=1$

Pack-based formulation

We can just focus on the minimal packs $(\forall a \in C, C \backslash\{a\}$ is not a pack) \Rightarrow in this case $\psi(C)=1$:

$$
\begin{array}{ll}
\min _{x, z} & r^{\top} x \\
\text { s.t. } & \sum_{a \in C} x_{a} \geq z_{k}, \forall k \in N, \forall \text { minimal pack } C \\
& \sum_{k \in N} p_{k} z_{k} \geq 1-\epsilon \\
& z_{k} \in\{0,1\}, \forall k \in N
\end{array}
$$

Pack-based formulation

We can just focus on the minimal packs $(\forall a \in C, C \backslash\{a\}$ is not a pack) \Rightarrow in this case $\psi(C)=1$:

$$
\begin{aligned}
\min _{x, z} & r^{\top} x \\
\text { s.t. } & \sum_{a \in C} x_{a} \geq z_{k}, \forall k \in N, \forall \text { minimal pack } C \\
& \sum_{k \in N} p_{k} z_{k} \geq 1-\epsilon \\
& z_{k} \in[0,1], \forall k \in N
\end{aligned}
$$

- We can perform lifting to strengthen the "base" pack inequality $\sum_{a \in C} x_{a} \geq 1$ similarly to the 0-1 knapsack problem

Review: Lifting

1. Sequential lifting: (Gu et al., 1997)

- Efficient, especially when combined with Zemel's Algorithm (1989)

2. Sequence independent lifting: (Gu et al., 1998)

- Even more efficient, obtain approximate lifting coefficients simultaneously

3. Multidimentional knapsack: (Kaparis and Letchford, 2009)

- Sequential lifting, and solve the LP relaxation of the exact lifting problem

Review: sequential lifting

1. Downlifting

- Suppose $\sum_{j \in L} \alpha_{j} x_{j} \geq \beta$ is valid with $x_{t}=1, t \in N \backslash L$
- Downlift on x_{t} so that $\sum_{j \in L} \alpha_{j} x_{j}+\alpha_{t} x_{t} \geq \beta+\alpha_{t}$
- Downlifting strengthens the starting valid inequality

2. Uplifting

- Suppose $\sum_{j \in L} \alpha_{j} x_{j} \geq \beta$ is valid with $x_{t}=0, t \in N \backslash L$
- Lift on x_{t} so that $\sum_{j \in L} \alpha_{j} x_{j}+\alpha_{t} x_{t} \geq \beta$
- Uplifting is necessary for the validity of the inequality

The lifting problem

- Suppose we start with the base pack inequality $\sum_{a \in C_{1}} x_{a} \geq 1$
- Assume $x_{a}=0, a \in C_{2}, x_{a}=1, a \in F$
- Now we downlift $x_{0} \in F$ to strengthen the basic pack inequality:

Exact lifting problem:

$$
\begin{aligned}
\pi_{0}:=\min & \sum_{a \in C_{1}} x_{a} \\
\text { s.t. } & \sum_{a \in P} d_{a}^{k} x_{a} \geq \phi-l_{P}^{k}, \forall P \in \mathcal{P} \\
& x_{a}=0, \forall a \in C_{2}, x_{0}=0, x_{F \backslash\{0\}}=1 \\
& x_{a} \in\{0,1\}, \forall a \in A
\end{aligned}
$$

Lifting coefficient: $\beta_{0}:=\max \left\{0, \pi_{0}-1\right\}$
\Rightarrow Lifted inequality: $\sum_{a \in C_{1}} x_{a}+\beta_{0} x_{0} \geq 1+\beta_{0}$

Approximate lifting

Motivation: relaxation of the lifting problem will also give a valid lifting coefficient

- LP relaxation of the lifting problem
- Restrict to a single path: the path that defines the pack
- Lifting for 0-1 knapsack problems with a single knapsack constraint could be applied
- Gu et al (1998): "default" lifting sequence

Lifted pack inequality:

$$
\sum_{a \in C_{1}} x_{a}+\sum_{a \in F} \beta_{a} x_{a}+\sum_{a \in C_{2}} \gamma_{a} x_{a} \geq\left(1+\sum_{a \in F} \beta_{a}\right) z_{k}
$$

Preliminary results: benefit of combinatorial information

- We generate grid network instances with random length $\left\{c_{a}^{k}\right\}_{k \in N, a \in A}$ and random interdiction effects $\left\{d_{a}^{k}\right\}_{k \in N, a \in A}$
- We solve 5 replications for each setting and show the average results

Instances			Extended			Benders		Pack-based	
Instance	ϵ	N	AvgT	AvgN	AvgT	AvgN	AvgT	AvgN	
nodearc-5	0.1	100	15.9	1738	15.6	45 k	0.2	58	
$(25,80)$		1000	$22 \%(0)$	$>18 \mathrm{k}$	$30.5 \%(0)$	$>607 \mathrm{k}$	6.9	252	
	0.2	100	25.4	2181	72.6	178 k	0.3	81	
		1000	$34 \%(0)$	$>16 \mathrm{k}$	M	M	22.1	642	

- Extended formulation and simple Benders are competitive
- Useful to exploit the combinatorial structure using pack-based formulation

Preliminary results: Benefit of doing lifting

Instances			No Lifting					Lifting		
Instance	ϵ	N	AvgT	AvgN	AvgR	AvgT	AvgN	AvgR		
nodearc-5	0.1	100	0.2	58	17%	0.2	56	16%		
$(25,80)$		1000	6.9	252	18%	5.8	189	17%		
	0.2	100	0.3	81	22%	0.3	88	21%		
		1000	22.1	642	28%	20.9	554	27%		
nodearc-8	0.1	100	1378.0	58 k	30%	384.8	17 k	25%		
$(64,224)$		1000	$19 \%(0)$	$>31 \mathrm{k}$	37%	$15 \%(0)$	$>23 \mathrm{k}$	32%		
	0.2	100	$4 \%(3)$	$>57 \mathrm{k}$	36%	857.3	24 k	31%		
		1000	$30 \%(0)$	$>13 \mathrm{k}$	46%	$25 \%(0)$	$>10 \mathrm{k}$	43%		

- We perform lifting based on a single path, and use the "default" sequence of lifting from Gu (1998)
- Lifting is more beneficial in the harder instances

Lifting based on a single path vs. LP-based lifting

Instances			LP-based Lifting			single path Lifting		
Instance	ϵ	N	AvgT	AvgN	AvgR	AvgT	AvgN	AvgR
nodearc-5	0.1	100	7.5	47	15%	0.2	56	16%
$(25,80)$		1000	299.6	194	18%	5.8	189	17%
	0.2	100	15.0	107	20.4%	0.3	88	20.5%
		1000	838.3	730	27.7%	20.9	554	27.1%
nodearc-8	0.1	100	$8 \%(1)$	$>2 \mathrm{k}$	25%	384.8	17 k	25%
$(64,224)$		1000	$27 \%(0)$	>283	33%	$15 \%(0)$	$>23 \mathrm{k}$	32%
	0.2	100	(1)	$>3 \mathrm{k}$	33.4%	857.3	24 k	31.4%
		1000	(0)	>283	44.2%	(0)	$>10 \mathrm{k}$	42.8%

- Benefit of doing LP-based lifting is not clear
- LP-based lifting too time-consuming

Outline

Chance-constrained RASPI with Wait-and-see Follower

Chance-constrained RASPI with Here-and-now Follower

Risk averse interdictor with wait-and-see follower: a bilevel optimization model

Idea: Ensure that the actual traveling distance of the traveler exceeds a given length ϕ with high probability

$$
\begin{align*}
\min _{x, z} & r^{\top} x \tag{1}\\
\text { s.t. } & \sum_{a \in A}\left(c_{a}^{k}+d_{a}^{k} x_{a}\right) y_{a}^{k}(x) \geq \phi z_{k}, \forall k \in N, \tag{2}\\
& \sum_{k \in N} p_{k} z_{k} \geq 1-\epsilon, \tag{3}\\
& z_{k} \in\{0,1\}, \forall k \in N, x_{a} \in\{0,1\}, \forall a \in A \tag{4}\\
\text { where } & y^{k}(x) \in \arg \min _{y \in Y} \sum_{a \in A}\left(c_{a}^{k}+d_{a}^{k} x_{a}\right) y_{a} \tag{5}
\end{align*}
$$

Risk averse interdictor with wait-and-see follower: a bilevel optimization model

Idea: Ensure that the actual traveling distance of the traveler exceeds a given length ϕ with high probability

$$
\begin{align*}
\min _{x, z} & r^{\top} x \tag{1}\\
\text { s.t. } & \sum_{a \in A}\left(c_{a}^{k}+d_{a}^{k} x_{a}\right) y_{a}(x) \geq \phi z_{k}, \forall k \in N, \tag{2}\\
& \sum_{k \in N} p_{k} z_{k} \geq 1-\epsilon, \tag{3}\\
& z_{k} \in\{0,1\}, \forall k \in N, x_{a} \in\{0,1\}, \forall a \in A \tag{4}\\
\text { where } & y(x) \in \arg \min _{y \in Y} \sum_{a \in A}\left(\bar{c}_{a}+\bar{d}_{a} x_{a}\right) y_{a} \tag{5}
\end{align*}
$$

Bilevel: constraint coefficient vector of (2) is an optimal solution to another optimization problem

A trivial cutting plane method

- $y_{a}(x)$ is a piecewise constant function, where the discontinuity occurs only at binary integer points
- Checking the feasibility of an integer $\hat{x} \in\{0,1\}^{|A|}$ is simple: $y(\hat{x})$ is the shortest path solution

No-good feasibility cut:

$$
\sum_{a \in N_{0}} x_{a}+\sum_{a \in N_{1}}\left(1-x_{a}\right) \geq 1
$$

where $N_{0}=\left\{a \in A \mid \hat{x}_{a}=0\right\}$, and $N_{1}=\left\{a \in A \mid \hat{x}_{a}=1\right\}$

Reformulation using strong LP duality

The follower's problem is an LP. Apply strong duality:

$$
\begin{aligned}
\min _{x, z, y, u} & r^{\top} x \\
\text { s.t. } & \sum_{a \in A}\left(c_{a}^{k}+d_{a}^{k} x_{a}\right) y_{a} \geq \phi z_{k}, \forall k \in N \\
& \sum_{a \in A}\left(\bar{c}_{a}+\bar{d}_{a} x_{a}\right) y_{a}=u_{s}-u_{t} \\
& u_{i}-u_{j} \leq \bar{c}_{a}+\bar{d}_{a} x_{a}, \forall a=(i, j) \in A \\
& \sum_{k \in N} p_{k} z_{k} \geq 1-\epsilon \\
& z_{k} \in\{0,1\}, \forall k \in N, x_{a} \in\{0,1\}, y \in Y .
\end{aligned}
$$

- An MINLP model, could apply the standard linearization trick to linearize the bilinear term
- Bad news: not decomposable by scenario, since decision variables $\left\{x_{a}, y_{a}\right\}_{a \in A}$ and $\left\{u_{i}\right\}_{i \in V}$ are independent of scenario.

An alternative "primal" formulation

An alternative way to model the shortest path:

$$
\begin{aligned}
\min _{x, z, y, w} & r^{\top} x \\
\text { s.t. } & \sum_{a \in A}\left(c_{a}^{k} y_{a}+d_{a}^{k} w_{a}\right) \geq \phi z_{k}, \forall k \in N \\
& \sum_{a \in A}\left(\bar{c}_{a}+\bar{d}_{a} x_{a}\right) y_{a} \leq \sum_{a \in P}\left(\bar{c}_{a}+\bar{d}_{a} x_{a}\right), \forall P \in \mathcal{P}(*) \\
& \sum_{k \in N} p_{k} z_{k} \geq 1-\epsilon \\
& z_{k} \in\{0,1\}, \forall k \in N, x_{a} \in\{0,1\}, \quad y \in Y
\end{aligned}
$$

An alternative "primal" formulation

An alternative way to model the shortest path:

$$
\begin{aligned}
\min _{x, z, y, w} & r^{\top} x \\
\text { s.t. } & \sum_{a \in A}\left(c_{a}^{k} y_{a}+d_{a}^{k} w_{a}\right) \geq \phi z_{k}, \forall k \in N \\
& \sum_{a \in A}\left(\bar{c}_{a} y_{a}+\bar{d}_{a} w_{a}\right) \leq \sum_{a \in P}\left(\bar{c}_{a}+\bar{d}_{a} x_{a}\right), \forall P \in \mathcal{P}(*) \\
& \sum_{k \in N} p_{k} z_{k} \geq 1-\epsilon \\
& z_{k} \in\{0,1\}, \forall k \in N, x_{a} \in\{0,1\}, y \in Y \\
& w_{a}=x_{a} y_{a}, \forall a \in A
\end{aligned}
$$

An alternative "primal" formulation

An alternative way to model the shortest path:

$$
\begin{aligned}
\min _{x, z, y, w} & r^{\top} x \\
\text { s.t. } & \sum_{a \in A}\left(c_{a}^{k} y_{a}+d_{a}^{k} w_{a}\right) \geq \phi z_{k}, \forall k \in N \\
& \sum_{a \in A}\left(\bar{c}_{a} y_{a}+\bar{d}_{a} w_{a}\right) \leq \sum_{a \in P}\left(\bar{c}_{a}+\bar{d}_{a} x_{a}\right), \forall P \in \mathcal{P}(*) \\
& \sum_{k \in N} p_{k} z_{k} \geq 1-\epsilon \\
& z_{k} \in\{0,1\}, \forall k \in N, \quad x_{a} \in\{0,1\}, y \in Y \\
& w_{a}=x_{a} y_{a}, \quad \forall a \in A
\end{aligned}
$$

Preliminary experiments: given a relaxation solution \hat{x} :

- Separate inequality (*)
- Look for no-good cuts based on an integer solution by rounding \hat{x}

Very preliminary results

Instances			MIP		Cutting plane	
Instance	ϵ	N	AvgT	AvgN	AvgT	AvgN
nodearc-5	0.2	100	0.9	367	1.7	415
$(25,80)$		1000	17.9	744	29.1	897
nodearc-8	0.2	100	317.5	30525	106.1	34201
$(64,224)$		1000	588.0	5462	795.0	22715

The two formulations are competitive

Summary

We investigate:

- Two type of risk averse (chance-constrained) shortest path interdiction problem (RASPI)
- Wait-and-see follower:
- Take advantage of the combinatorial information
- Lifted pack inequalities are effective
- Here-and-now risk neutral follower:
- A bilevel problem formulation

Summary

We investigate:

- Two type of risk averse (chance-constrained) shortest path interdiction problem (RASPI)
- Wait-and-see follower:
- Take advantage of the combinatorial information
- Lifted pack inequalities are effective
- Here-and-now risk neutral follower:
- A bilevel problem formulation

Ongoing research

- Investigate other variants of network interdiction problems: maximum flow, minimum cost flow, etc.
- Strong valid inequalities for bilevel programming formulation

