Risk Averse Shortest Path Interdiction

Yongjia Song¹ and Siqian Shen²

1: Virginia Commonwealth University 2: University of Michigan

ICS 2015, Richmond, VA

Song and Shen

Network interdiction: a two-player game

Stackelberg game (two player; sequential moves) played on a network.

(a) Leader: Interdictor

(b) Follower: Operator

 Goal: maximally restrict a follower's utility gained in the network by damaging arcs or nodes.

Song and Shen Risk Averse Shortest Path Interdiction

Applications

- Smugglers (followers) evade authorities (leaders) who lead the game by placing checkpoints.
- Emergency service providers (leaders) allocate resources and fortify arcs/nodes against malicious attacks (followers).

▶ ...

Song and Shen

Deterministic Network Interdiction

A shortest path network interdiction on Graph G(V, A):

- $x_a \in \{0, 1\}, \forall a \in A$: whether or not interdict arc a
- y_a ∈ {0, 1}, ∀a ∈ A: whether or not arc a is on the path chosen by the follower

$$\max_{\mathbf{x}\in\mathbf{X}} \min_{\mathbf{y}} \sum_{\mathbf{a}\in\mathbf{A}} (c_{\mathbf{a}} + d_{\mathbf{a}}x_{\mathbf{a}})y_{\mathbf{a}}$$

s.t.
$$\sum_{\mathbf{a}\in\delta^{+}(i)} y_{\mathbf{a}} - \sum_{\mathbf{a}\in\delta^{-}(i)} y_{\mathbf{a}} = \begin{cases} 1 & \text{if } i = s \\ -1 & \text{if } i = t , \forall i \in \mathbf{a} \end{cases}$$
$$y_{\mathbf{a}} \geq 0, \forall \mathbf{a} \in \mathbf{A}$$

where $X = \{x \in \{0, 1\}^{|A|} \mid \sum_{a \in A} r_a x_a \le R\}$

Assume $d_a = 3, \forall a$, and we can interdict up to two

arcs

V

Deterministic Network Interdiction

A shortest path network interdiction on Graph G(V, A):

- $x_a \in \{0, 1\}, \forall a \in A$: whether or not interdict arc a
- y_a ∈ {0, 1}, ∀a ∈ A: whether or not arc a is on the path chosen by the follower

$$\max_{\mathbf{x}\in\mathbf{X}} \min_{\mathbf{y}} \sum_{\mathbf{a}\in\mathbf{A}} (c_{\mathbf{a}} + d_{\mathbf{a}}x_{\mathbf{a}})y_{\mathbf{a}}$$

s.t.
$$\sum_{\mathbf{a}\in\delta^{+}(i)} y_{\mathbf{a}} - \sum_{\mathbf{a}\in\delta^{-}(i)} y_{\mathbf{a}} = \begin{cases} 1 & \text{if } i = s \\ -1 & \text{if } i = t , \forall i \in V \\ 0 & \text{o.w.} \end{cases}$$
$$y_{\mathbf{a}} \ge 0, \forall \mathbf{a} \in \mathbf{A}$$

where $X = \{x \in \{0, 1\}^{|A|} \mid \sum_{a \in A} r_a x_a \le R\}$

Assume $d_a = 3, \forall a$, and we can interdict up to two arcs

Song and Shen

Deterministic Network Interdiction

A shortest path network interdiction on Graph G(V, A):

- $x_a \in \{0, 1\}, \forall a \in A$: whether or not interdict arc a
- y_a ∈ {0, 1}, ∀a ∈ A: whether or not arc a is on the path chosen by the follower

$$\max_{\mathbf{x}\in\mathbf{X}} \min_{\mathbf{y}} \sum_{\mathbf{a}\in\mathbf{A}} (c_{\mathbf{a}} + d_{\mathbf{a}}x_{\mathbf{a}})y_{\mathbf{a}}$$

s.t.
$$\sum_{\mathbf{a}\in\delta^{+}(i)} y_{\mathbf{a}} - \sum_{\mathbf{a}\in\delta^{-}(i)} y_{\mathbf{a}} = \begin{cases} 1 & \text{if } i = s \\ -1 & \text{if } i = t , \forall i \in V \\ 0 & \text{o.w.} \end{cases}$$
$$y_{\mathbf{a}} \ge 0, \forall \mathbf{a} \in A$$

where $X = \{x \in \{0, 1\}^{|A|} \mid \sum_{a \in A} r_a x_a \le R\}$

Assume $d_a = 3, \forall a$, and we can interdict up to two

arcs

Solution Approaches (Morton 2011)

Given a relaxed interdiction \hat{x} , the follower chooses a shortest path using $c_a + d_a \hat{x}_a$ as the length for each arc *a*:

 Extended formulation: take the dual of the inner shortest path LP

$$\begin{array}{l} \max_{x \in X, \pi} \ \pi_t \\ \text{s.t.} \ \pi_j - \pi_i \leq c_a + d_a x_a, \ \forall a = (i, j) \in A \\ \pi_s = 0 \end{array}$$

Benders formulation:

$$\max_{x \in X} \min_{P \in \mathcal{P}} \sum_{a \in P} (c_a + d_a x_a)$$

Song and Shen

Solution Approaches (Morton 2011)

Given a relaxed interdiction \hat{x} , the follower chooses a shortest path using $c_a + d_a \hat{x}_a$ as the length for each arc *a*:

 Extended formulation: take the dual of the inner shortest path LP

$$\begin{array}{l} \max_{x \in X, \pi} \pi_t \\ \text{s.t.} \ \pi_j - \pi_i \leq c_a + d_a x_a, \ \forall a = (i, j) \in A \\ \pi_s = 0 \end{array}$$

Benders formulation:

$$\max_{x \in X} \{ \theta \mid \theta \leq \sum_{a \in P} (c_a + d_a x_a), \ \forall P \in \mathcal{P} \}$$

Song and Shen

Stochastic Network Interdiction

Assume the arc lengths \tilde{c}_a and interdiction effects \tilde{d}_a are uncertain, and the uncertainty can be characterized by a finite set of scenarios $\{(c_a^k, d_a^k)\}_{k \in N}$

$$\max_{x \in X} \sum_{k \in N} p_k \min_{y^k} \sum_{a \in A} (c_a^k + x_a d_a^k) y_a^k$$
s.t.
$$\sum_{a \in \delta^+(i)} y_a^k - \sum_{a \in \delta^-(i)} y_a^k = \begin{cases} 1 & \text{if } i = s \\ -1 & \text{if } i = t , \forall i \in V, \forall k \\ 0 & \text{o.w.} \end{cases}$$

$$y_a^k \ge 0, \forall a \in A, \forall k \in N$$

Stochastic Network Interdiction

Assume the arc lengths \tilde{c}_a and interdiction effects \tilde{d}_a are uncertain, and the uncertainty can be characterized by a finite set of scenarios $\{(c_a^k, d_a^k)\}_{k \in N}$

$$\begin{array}{l} \max_{x \in X} \; \sum_{k \in N} p_k \theta^k \\ \text{s.t.} \; \theta^k \leq \sum_{a \in P} (c_a^k + d_a^k x_a), \; \forall P \in \mathcal{P} \end{array}$$

- Benders formulation is preferred, since it enables scenario decomposition
- Could be strengthened by additional valid inequalities, e.g., the step inequalities (Pan and Morton 2008)

Stochastic Network Interdiction

Assume the arc lengths \tilde{c}_a and interdiction effects \tilde{d}_a are uncertain, and the uncertainty can be characterized by a finite set of scenarios $\{(c_a^k, d_a^k)\}_{k \in N}$

$$\begin{array}{l} \max_{x \in X} \; \sum_{k \in N} p_k \theta^k \\ \text{s.t.} \; \theta^k \leq \sum_{a \in P} (c_a^k + d_a^k x_a), \; \forall P \in \mathcal{P} \end{array}$$

- Benders formulation is preferred, since it enables scenario decomposition
- Could be strengthened by additional valid inequalities, e.g., the step inequalities (Pan and Morton 2008)

Limit: the risk aversion of the players are not considered

Song and Shen Risk Averse Shortest Path Interdiction 6/28

Risk Averse Shortest Path Interdiction (RASPI)

Model risk aversion by chance constraint: risk averse interdictor (leader) targets on high probability of enforcing a long distance for the traveler

Two settings:

- Wait-and-see follower: make optimal response after observing the random outcome
 - We do not need the follower's risk attitude in this case
 - Traditional stochastic shortest path interdiction problem assumes a risk neutral leader
- Here-and-now follower: must make a decision before the observation of the random outcome
 - ► We assume the follower is risk neutral in the here-and-now setting: choose a path that has the shortest expected distance

Chance-constrained RASPI with Wait-and-see Follower

Chance-constrained RASPI with Here-and-now Follower

Song and Shen

Chance-constrained RASPI with Wait-and-see Follower

Chance-constrained RASPI with Here-and-now Follower

Song and Shen

Risk averse interdictor with wait-and-see follower: a chance-constrained model

Idea: Ensure that the follower's shortest possible traveling distance from s to t exceeds a given length ϕ with high probability

$$\begin{split} \min_{x,z} r^{\top}x \\ \text{s.t.} \quad & \sum_{a \in A} (c_a^k + d_a^k x_a) y_a^k(x) \geq \varphi z_k, \ \forall k \in N, \\ & \sum_{a \in A} p_k z_k \geq 1 - \varepsilon, \\ & z_k \in \{0,1\}, \ \forall k \in N, \ x_a \in \{0,1\}, \ \forall a \in A \\ \text{where } y^k(x) \in \arg\min_{y \in Y} \sum_{a \in A} (c_a^k + d_a^k x_a) y_a, Y : \text{flow balance equations} \end{split}$$

▶ $z_k \in \{0, 1\}$: whether or not scenario k is satisfied

Song and Shen

Risk averse interdictor with wait-and-see follower: a chance-constrained model

Idea: Ensure that the follower's shortest possible traveling distance from s to t exceeds a given length ϕ with high probability

$$\min_{x,z} r^{\top} x$$
s.t.
$$\sum_{a \in P} (c_a^k + d_a^k x_a) \ge \phi z_k, \ \forall P \in \mathcal{P}, \ \forall k \in N$$

$$\sum_{k \in N} p_k z_k \ge 1 - \epsilon,$$

$$z_k \in \{0,1\}, \ \forall k \in N, \ x_a \in \{0,1\}, \ \forall a \in A$$

▶ $z_k \in \{0, 1\}$: whether or not scenario k is satisfied

Song and Shen

Standard Benders decomposition

Given a relaxation solution \hat{x}, \hat{z} of the master problem (with a subset of paths)

- Solve a shortest path problem for each scenario k using $c_a^k + d_a^k \hat{x}_a$ as the arc length, and get the shortest path P^k
- ► Check if inequality ∑_{a∈P^k}(c^k_a + d^k_a x̂_a) ≥ φ2̂_k is violated, and add a Benders cut if so
- Could be applied for both integer and fractional solutions

Implicit covering structure

Scenario-based path inequality:

$$\sum_{a \in P} (c_a^k + d_a^k x_a) \ge \phi z_k, \forall P \in \mathcal{P}$$

Implicit covering structure

Scenario-based path inequality:

$$\sum_{a \in P} d_a^k x_a \ge (\phi - l_P^k) z_k, \forall P \in \mathcal{P}$$

where I_P^k is the length of path P using c_a^k as the arc length

Implicit covering structure

Scenario-based path inequality:

$$\sum_{a \in P} d_a^k x_a \ge (\phi - l_P^k) z_k, \forall P \in \mathcal{P}$$

where I_P^k is the length of path P using c_a^k as the arc length

Structure: exponentially many covering constraints

- ▶ Related to Song and Luedtke (2013), ∑_{a∈Ck} x_a ≥ z_k, "scenario-based graph cut inequalities"
- Related to Song, Luedtke, and Kücükyavuz (2014), multi-dimensional binary packing problems with a small (non-exponential) number of constraints

Pack-based formulation: Motivation

Fix a scenario k, given a set of arcs C, if none is interdicted in C, we cannot achieve the target \Rightarrow C is a pack in that scenario k!

$$\exists P \in \mathcal{P} : \sum_{a \in P \cap C} c_a^k + \sum_{a \in P \setminus C} (c_a^k + d_a^k) < \phi$$

Pack-based formulation: Motivation

Fix a scenario k, given a set of arcs C, if none is interdicted in C, we cannot achieve the target \Rightarrow C is a pack in that scenario k!

$$\exists P \in \mathcal{P} : \sum_{a \in P \cap C} c_a^k + \sum_{a \in P \setminus C} (c_a^k + d_a^k) < \phi$$

So, we must interdict enough arcs in the pack:

$$\sum_{a\in C} x_a \ge \psi(C),$$

 $\psi(C)$: the minimum number of arcs in C to interdict

- ► $d_a = 3, \forall a \in A$
- Need the shortest path to be at least 5

$$\blacktriangleright \ \psi(C) = 1$$

Song and Shen Risk Averse Shortest Path Interdiction 13/28

Pack-based formulation: Motivation

Fix a scenario k, given a set of arcs C, if none is interdicted in C, we cannot achieve the target \Rightarrow C is a pack in that scenario k!

$$\exists P \in \mathcal{P} : \sum_{a \in P \cap C} c_a^k + \sum_{a \in P \setminus C} (c_a^k + d_a^k) < \phi$$

So, we must interdict enough arcs in the pack:

$$\sum_{a \in C} x_a \ge \psi(C) z_k, \ \forall \text{ pack } C,$$

 $\psi(C)$: the minimum number of arcs in C to interdict

- ► $d_a = 3, \forall a \in A$
- Need the shortest path to be at least 5

$$\blacktriangleright \psi(C) = 1$$

 Song and Shen
 Risk Averse Shortest Path Interdiction
 13/28

Pack-based formulation

We can just focus on the minimal packs ($\forall a \in C, C \setminus \{a\}$ is not a pack) \Rightarrow in this case $\psi(C) = 1$:

$$\min_{x,z} r^{\top}x$$
s.t. $\sum_{a \in C} x_a \ge z_k, \forall k \in N, \forall \text{ minimal pack } C$

$$\sum_{k \in N} p_k z_k \ge 1 - \epsilon$$

$$z_k \in \{0,1\}, \forall k \in N$$

Pack-based formulation

We can just focus on the minimal packs ($\forall a \in C, C \setminus \{a\}$ is not a pack) \Rightarrow in this case $\psi(C) = 1$:

$$\min_{x,z} r^{\top}x$$
s.t. $\sum_{a \in C} x_a \ge z_k, \forall k \in N, \forall \text{ minimal pack } C$

$$\sum_{k \in N} p_k z_k \ge 1 - \epsilon$$

$$z_k \in [0, 1], \forall k \in N$$

We can perform lifting to strengthen the "base" pack inequality ∑_{a∈C} x_a ≥ 1 similarly to the 0-1 knapsack problem

Song and Shen

Review: Lifting

- 1. Sequential lifting: (Gu et al., 1997)
 - Efficient, especially when combined with Zemel's Algorithm (1989)
- 2. Sequence independent lifting: (Gu et al., 1998)
 - Even more efficient, obtain approximate lifting coefficients simultaneously
- 3. Multidimentional knapsack: (Kaparis and Letchford, 2009)
 - Sequential lifting, and solve the LP relaxation of the exact lifting problem

Review: sequential lifting

- 1. Downlifting
 - ▶ Suppose $\sum_{j \in L} \alpha_j x_j \ge \beta$ is valid with $x_t = 1, t \in N \setminus L$
 - Downlift on x_t so that $\sum_{j \in L} \alpha_j x_j + \alpha_t x_t \ge \beta + \alpha_t$
 - Downlifting strengthens the starting valid inequality
- 2. Uplifting
 - ▶ Suppose $\sum_{j \in L} \alpha_j x_j \ge \beta$ is valid with $x_t = 0, t \in N \setminus L$
 - Lift on x_t so that $\sum_{j \in L} \alpha_j x_j + \alpha_t x_t \ge \beta$
 - Uplifting is necessary for the validity of the inequality

Song and Shen

The lifting problem

- ▶ Suppose we start with the base pack inequality $\sum_{a \in C_1} x_a \ge 1$
- Assume $x_a = 0, a \in C_2$, $x_a = 1, a \in F$
- ► Now we downlift x₀ ∈ F to strengthen the basic pack inequality:

Exact lifting problem:

$$\pi_0 := \min \sum_{a \in C_1} x_a$$
s.t.
$$\sum_{a \in P} d_a^k x_a \ge \phi - l_P^k, \ \forall P \in \mathcal{P}$$

$$x_a = 0, \ \forall a \in C_2, x_0 = 0, x_{F \setminus \{0\}} = 1$$

$$x_a \in \{0, 1\}, \ \forall a \in A$$

 $\begin{array}{ll} \text{Lifting coefficient:} & \beta_0 := \max\{0, \pi_0 - 1\} \\ \Rightarrow & \text{Lifted inequality:} & \sum_{a \in C_1} x_a + \beta_0 x_0 \geq 1 + \beta_0 \\ \text{Song and Shen} & \text{Risk Averse Shortest Path Interdiction} \end{array}$

17/28

Approximate lifting

Motivation: relaxation of the lifting problem will also give a valid lifting coefficient

- LP relaxation of the lifting problem
- Restrict to a single path: the path that defines the pack
 - Lifting for 0-1 knapsack problems with a single knapsack constraint could be applied
 - ► Gu et al (1998): "default" lifting sequence

Lifted pack inequality:

$$\sum_{a \in C_1} x_a + \sum_{a \in F} \beta_a x_a + \sum_{a \in C_2} \gamma_a x_a \ge (1 + \sum_{a \in F} \beta_a) z_k$$

Song and Shen

Preliminary results: benefit of combinatorial information

- ▶ We generate grid network instances with random length $\{c_a^k\}_{k \in N, a \in A}$ and random interdiction effects $\{d_a^k\}_{k \in N, a \in A}$
- We solve 5 replications for each setting and show the average results

Instances			Extended		Benders		Pack-based	
Instance	e	Ν	AvgT	AvgN	AvgT	AvgN	AvgT	AvgN
nodearc-5	0.1	100	15.9	1738	15.6	45k	0.2	58
(25,80)		1000	22%(0)	>18k	30.5%(0)	>607k	6.9	252
	0.2	100	25.4	2181	72.6	178k	0.3	81
		1000	34%(0)	>16k	М	М	22.1	642

- Extended formulation and simple Benders are competitive
- Useful to exploit the combinatorial structure using pack-based formulation

Song and Shen Risk Averse Shortest Path Interdiction

Preliminary results: Benefit of doing lifting

Instances			No Lifting			Lifting		
Instance	e	Ν	AvgT	AvgN	AvgR	AvgT	AvgN	AvgR
nodearc-5	0.1	100	0.2	58	17%	0.2	56	16%
(25,80)		1000	6.9	252	18%	5.8	189	17%
	0.2	100	0.3	81	22%	0.3	88	21%
		1000	22.1	642	28%	20.9	554	27%
nodearc-8	0.1	100	1378.0	58k	30%	384.8	17k	25%
(64,224)		1000	19%(0)	>31k	37%	15%(0)	> 23k	32%
	0.2	100	4%(3)	>57k	36%	857.3	24k	31%
		1000	30%(0)	> 13k	46%	25%(0)	> 10 k	43%

- We perform lifting based on a single path, and use the "default" sequence of lifting from Gu (1998)
- Lifting is more beneficial in the harder instances

Song and Shen

Lifting based on a single path vs. LP-based lifting

Instances			LP-ł	based Lif	ting	single	single path Lifting		
Instance	e	Ν	AvgT	AvgN	AvgR	AvgT	AvgN	AvgR	
nodearc-5	0.1	100	7.5	47	15%	0.2	56	16%	
(25,80)		1000	299.6	194	18%	5.8	189	17%	
	0.2	100	15.0	107	20.4%	0.3	88	20.5%	
		1000	838.3	730	27.7%	20.9	554	27.1%	
nodearc-8	0.1	100	8%(1)	>2k	25%	384.8	17k	25%	
(64,224)		1000	27%(0)	>283	33%	15%(0)	>23k	32%	
	0.2	100	(1)	>3k	33.4%	857.3	24k	31.4%	
		1000	(0)	>283	44.2%	(0)	> 10 k	42.8%	

- Benefit of doing LP-based lifting is not clear
- LP-based lifting too time-consuming

Song and Shen

Risk Averse Shortest Path Interdiction

21/28

Chance-constrained RASPI with Wait-and-see Follower

Chance-constrained RASPI with Here-and-now Follower

Song and Shen

Risk averse interdictor with wait-and-see follower: a bilevel optimization model

Idea: Ensure that the actual traveling distance of the traveler exceeds a given length ϕ with high probability

$$\min_{\mathbf{x},\mathbf{z}} \mathbf{r}^{\top} \mathbf{x} \tag{1}$$

s.t.
$$\sum_{a\in A} (c_a^k + d_a^k x_a) y_a^k(x) \ge \varphi z_k, \ \forall k \in \mathbb{N},$$
(2)

$$\sum_{k\in\mathbb{N}}p_k z_k \ge 1-\epsilon,\tag{3}$$

$$z_k \in \{0,1\}, \ \forall k \in N, \ x_a \in \{0,1\}, \ \forall a \in A$$
 (4)

where
$$y^k(x) \in \arg\min_{y \in Y} \sum_{a \in A} (c_a^k + d_a^k x_a) y_a$$
 (5)

Song and Shen

Risk Averse Shortest Path Interdiction

23/28

Risk averse interdictor with wait-and-see follower: a bilevel optimization model

Idea: Ensure that the actual traveling distance of the traveler exceeds a given length φ with high probability

$$\min_{\mathbf{x},\mathbf{z}} \mathbf{r}^{\top} \mathbf{x} \tag{1}$$

s.t.
$$\sum_{a\in A} (c_a^k + d_a^k x_a) y_a(x) \ge \Phi z_k, \ \forall k \in \mathbb{N},$$
(2)

$$\sum_{k\in\mathbb{N}}p_k z_k \ge 1-\epsilon,\tag{3}$$

$$z_k \in \{0,1\}, \ \forall k \in N, \ x_a \in \{0,1\}, \ \forall a \in A$$
 (4)

where
$$y(x) \in \arg\min_{y \in Y} \sum_{a \in A} (\bar{c}_a + \bar{d}_a x_a) y_a$$
 (5)

Bilevel: constraint coefficient vector of (2) is an optimal solution to another optimization problem

Song and Shen Risk Averse Shortest Path Interdiction 23/28

A trivial cutting plane method

- ► y_a(x) is a piecewise constant function, where the discontinuity occurs only at binary integer points
- ► Checking the feasibility of an integer \$\hat{x} ∈ {0,1}^{|A|} is simple: y(\$\hat{x}\$) is the shortest path solution

No-good feasibility cut:

$$\sum_{a\in N_0} x_a + \sum_{a\in N_1} (1-x_a) \ge 1,$$

where $N_0 = \{ a \in A \mid \hat{x}_a = 0 \}$, and $N_1 = \{ a \in A \mid \hat{x}_a = 1 \}$

Song and Shen

Reformulation using strong LP duality

The follower's problem is an LP. Apply strong duality:

$$\min_{x,z,y,u} r^{\top} x$$
s.t.
$$\sum_{a \in A} (c_a^k + d_a^k x_a) y_a \ge \varphi z_k, \ \forall k \in N$$

$$\sum_{a \in A} (\bar{c}_a + \bar{d}_a x_a) y_a = u_s - u_t$$

$$u_i - u_j \le \bar{c}_a + \bar{d}_a x_a, \ \forall a = (i,j) \in A$$

$$\sum_{k \in N} p_k z_k \ge 1 - \epsilon$$

$$z_k \in \{0,1\}, \ \forall k \in N, \ x_a \in \{0,1\}, \ y \in Y$$

- An MINLP model, could apply the standard linearization trick to linearize the bilinear term
- ▶ Bad news: not decomposable by scenario, since decision variables {x_a, y_a}_{a∈A} and {u_i}_{i∈V} are independent of scenario.

Song and Shen Risk Averse Shortest Path Interdiction

An alternative "primal" formulation

An alternative way to model the shortest path:

$$\min_{\mathbf{x}, \mathbf{z}, \mathbf{y}, \mathbf{w}} \mathbf{r}^{\top} \mathbf{x}$$
s.t.
$$\sum_{a \in A} (c_a^k y_a + d_a^k w_a) \ge \Phi z_k, \ \forall k \in N$$

$$\sum_{a \in A} (\bar{c}_a + \bar{d}_a x_a) y_a \le \sum_{a \in P} (\bar{c}_a + \bar{d}_a x_a), \forall P \in \mathcal{P} \ (*)$$

$$\sum_{k \in N} p_k z_k \ge 1 - \epsilon$$

$$z_k \in \{0, 1\}, \ \forall k \in N, \ x_a \in \{0, 1\}, \ y \in Y$$

An alternative "primal" formulation

An alternative way to model the shortest path:

$$\min_{\mathbf{x}, \mathbf{z}, \mathbf{y}, \mathbf{w}} \mathbf{r}^{\top} \mathbf{x}$$
s.t.
$$\sum_{a \in A} (c_a^k y_a + d_a^k w_a) \ge \varphi z_k, \ \forall k \in \mathbb{N}$$

$$\sum_{a \in A} (\bar{c}_a y_a + \bar{d}_a w_a) \le \sum_{a \in P} (\bar{c}_a + \bar{d}_a x_a), \forall P \in \mathcal{P} \ (*)$$

$$\sum_{k \in \mathbb{N}} p_k z_k \ge 1 - \epsilon$$

$$z_k \in \{0, 1\}, \ \forall k \in \mathbb{N}, \ x_a \in \{0, 1\}, \ y \in Y$$

$$w_a = x_a y_a, \ \forall a \in A$$

Song and Shen

An alternative "primal" formulation

An alternative way to model the shortest path:

$$\min_{x,z,y,w} r^{\top} x$$
s.t.
$$\sum_{a \in A} (c_a^k y_a + d_a^k w_a) \ge \varphi z_k, \ \forall k \in N$$

$$\sum_{a \in A} (\bar{c}_a y_a + \bar{d}_a w_a) \le \sum_{a \in P} (\bar{c}_a + \bar{d}_a x_a), \forall P \in \mathcal{P} (*)$$

$$\sum_{k \in N} p_k z_k \ge 1 - \epsilon$$

$$z_k \in \{0,1\}, \ \forall k \in N, \ x_a \in \{0,1\}, \ y \in Y$$

$$w_a = x_a y_a, \ \forall a \in A$$

Preliminary experiments: given a relaxation solution \hat{x} :

- Separate inequality (*)
- \blacktriangleright Look for no-good cuts based on an integer solution by rounding \hat{x}

Song and Shen Risk Averse Shortest Path Interdiction

Very preliminary results

Insta		Μ	IIP	Cutting	Cutting plane		
Instance	e	Ν	AvgT	AvgN	AvgT	AvgN	
nodearc-5	0.2	100	0.9	367	1.7	415	
(25,80)		1000	17.9	744	29.1	897	
nodearc-8	0.2	100	317.5	30525	106.1	34201	
(64,224)		1000	588.0	5462	795.0	22715	

The two formulations are competitive

Summary

We investigate:

- Two type of risk averse (chance-constrained) shortest path interdiction problem (RASPI)
- ► Wait-and-see follower:
 - Take advantage of the combinatorial information
 - Lifted pack inequalities are effective
- Here-and-now risk neutral follower:
 - A bilevel problem formulation

Summary

We investigate:

- Two type of risk averse (chance-constrained) shortest path interdiction problem (RASPI)
- ► Wait-and-see follower:
 - Take advantage of the combinatorial information
 - Lifted pack inequalities are effective
- ► Here-and-now risk neutral follower:
 - A bilevel problem formulation

Ongoing research

- Investigate other variants of network interdiction problems: maximum flow, minimum cost flow, etc.
- Strong valid inequalities for bilevel programming formulation