Decomposition Algorithm for Optimizing Multi-server Appointment Scheduling with Chance Constraints

Siqian Shen joint work with Yan Deng

University of Michigan

ISyE, Georgia Tech February 13, 2015

Deng and S. (Michigan)

Outline

Introduction

Formulations of CC-MAS

Solution Algorithms Outer Decomposition 1st Stage: Chance-Constrained Server-Allocation 2nd Stage: Chance-Constrained Appointment Scheduling Model Variants

Computational Results

Deng and S. (Michigan)

Applications I

Health care operations management:

- 1. Appointment scheduling in outpatient clinics
 - How many doctors? The sequence of appointments for each doctor? Time scheduled in between the appointments?
- 2. Surgery planning in operating rooms (ORs)
 - Which ORs to open? How to allocate surgeries to ORs? How to schedule surgeries in their assigned ORs?

Applications II

High-cost and volatile test scheduling:

- 1. Crash test scheduling on prototype vehicles
 - How many prototype vehicles to use? How to allocate tests to vehicles? When to start each test?
- 2. Planning TAs and office hours
 - How many TAs to have? The sequence of office-hour appointments? Time allocation in between the appointments?

General Problem Structure

The multi-server appointment scheduling (MAS) problems

- decide how many/which (costly) servers to open
- allocate and schedule appointments on multiple servers
- involve uncertain service durations

General Problem Structure

The multi-server appointment scheduling (MAS) problems

- decide how many/which (costly) servers to open
- allocate and schedule appointments on multiple servers
- involve uncertain service durations

Challenges:

- Integrated mixed 0-1 planning decisions and larger-scale set of scenarios
- To coordinate staff and resources, need to specify the arrival time of each appt. cannot start before the specified time.
- All planning decisions made before realizing the uncertainty
- ► Recourse problem: evaluating the undesirable consequences:
 - e.g., server under-utilization, server overtime, appt. delay...
 - complete recourse if minimizing the expected penalty.

Motivation and Goals

Consider the quality of service (QoS):

 use chance constraints to restrict the risk of having overtime servers and appt. delay (given their ambiguous penalty costs)

Motivation and Goals

Consider the quality of service (QoS):

 use chance constraints to restrict the risk of having overtime servers and appt. delay (given their ambiguous penalty costs)

Goals: study the Chance-Constrained Multi-Server Appointment Scheduling (CC-MAS) problem to find out:

- Benefit of integrating allocation and scheduling decisions?
- Benefit of the chance constraints vs. minimizing the expected penalty of server overtime and appt. delay?
- How to compute the non-convex, mixed-integer, stochastic optimization model?

Sketched Model of CC-MAS

- Decision 1: opening servers; allocation of jobs to servers
- **Decision 2:** plan start times of jobs on individual servers
- Objective: minimize the costs of opening servers and allocating appt. subject to
 - each appointment starts on time
 - a chance constraint requiring the minimum joint probability of all servers finishing on time.

Computing the chance constraints:

- apply the Sample Average Approximation (SAA) method (e.g., Luedtike and Ahmed (2008))
- transform each into a set of big-M constraints with binary logic variables and a cardinality knapsack constraint that restricts values of the logic variables.
- ► apply **decomposition** for solving the MILP representation.

Literature Review I

Server allocation:

 Blake and Donald (2002), Ozkarahan (2000), Jebali et al. (2006), Denton et al. (2010), Shylo et al. (2012)...

Appointment scheduling under service-time uncertainty:

Denton and Gupta (2003), Mak et al. (2014), Kong et al. (2014), Jiang and S. (2015)...

Job scheduling:

Coffiman et al. (1978), Van den Akker et al. (2000), Savelsbergh et al. (2005), Sarin et al. (2014)...

Chance-Constrained Programming:

- Scenario Approximation: Calafiore and Campi (2005), Nemirovski and Shapiro (2006)
- Convex relaxation/approximation: Ahmed (2011), Nemirovski and Shapiro (2007)

Deng and S. (Michigan)

Literature Review II

 Efficient point: Sen (1992), Dentcheva et al. (2000), Ruszczyński (2002)

Decomposition for general chance-constrained programs:

- Luedtke et al. (2010), Küçükyavuz (2012): strong valid inequalities for CC with randomness only in RHS
- Luedtke (2013): strong valid inequality and a branch-and-cut algorithm based on scenario decomposition
- Tanner and Ntaimo (2010): no recourse. branch-and-cut based on irreducible infeasible system
- Beraldi and Bruni (2010): specialized branch-and-bound
- Qiu et al. (2014), Song et al. (2014): strengthening big-M coefficients in the extended formulation
- ▶ Watson et al. (2010), Ahmed et al. (2014): dual decomposition

Parameters of CC-MAS

- I: a set of appointments.
- ► J: a set of servers.
- T_j : operating time limit of server $j \in J$.
- c_i^1 : cost of operating server *j*.
- c_{ii}^2 : cost of assigning appointment *i* to server *j*.
- $[\underline{a}_i, \overline{a}_i]$: earliest and latest time to start appointment *i*.
- ► W_i: maximum allowable delay time of appointment i.
- ξ_i : random service durations of appointment *i*.
- Ω : a discrete and finite support of the random service time ξ_i .
- $\xi^{\omega} = [\xi_i^{\omega}, i \in I]^{\mathsf{T}}$ is a realization in scenario $\omega \in \Omega$.

Decisions in CC-MAS

Binary Variables:

- ▶ x_j (open server): for $j \in J$, $x_j = 1$ if server j opens, and 0 o.w.
- y_{ij} (allocation): for j ∈ J and i ∈ I, y_{ij} = 1 if appt. i is allocated to server j, and 0 o.w.
- ▶ $z_{i'i}$ (sequence): for any $i, i' \in I$, $i \neq i'$, $z_{i'i} = 1$ if appt. i' is scheduled ahead of i, and 0 o.w.

Continuous Variables:

- ▶ planned arrival time of appointments: $s_i \ge 0, \forall i \in I$
- ► actual start time of appointments: t_i^w , $\forall i \in I$, $w \in \Omega$

Formulation of CC-MAS I

min
$$\sum_{j \in J} c_j^1 x_j + \sum_{i \in I} \sum_{j \in J} c_{ij}^2 y_{ij}$$
(1)

s.t.
$$(x, y, z, s) \in Q$$
 (2)

$$\mathbb{P}\Big\{(x, y, z, s) \in \mathcal{Q}(\xi)\Big\} \ge 1 - \epsilon.$$
(3)

- Q is a fixed region, given by MILP constraints in x, y, z, s.
- $Q(\xi)$ is a region parameterized by the uncertain vector ξ .

Deng and S. (Michigan)

Formulation of CC-MAS II

Mixed 0-1 integer deterministic set:

$$Q = \left\{ (x, y, z, s) \in \{0, 1\}^{|J|} \times \{0, 1\}^{|I| \times |J|} \times \{0, 1\}^{|I| \times (|I|-1)} \times \mathbb{R}_{+}^{|I|} : \sum_{j \in J} y_{ij} = 1, \ y_{ij} \le x_{j} \quad \forall i \in I, \ j \in J \\ y_{ij} + y_{i'j} - 1 \le z_{ii'} + z_{i'i} \le 1, \\ 1 - z_{ii'} \ge y_{ij} - y_{i'j}, \ 1 - z_{ii'} \ge y_{i'j} - y_{ij}, \quad \forall i, i' \in I, \ i \neq i', \ j \in J \\ \underline{a}_{i} \le s_{i} \le \overline{a}_{i} \quad \forall i \in I \\ s_{i} \ge -\mathcal{M}_{i'i}^{1}(1 - z_{i'i}) + s_{i'} \quad \forall i, i' \in I, \ i \neq i' \right\}.$$
(4)

Deng and S. (Michigan)

Decomposition for CC-MAS

13/34

Formulation of CC-MAS III

$$\begin{aligned} \forall w \in \Omega: \\ \mathcal{Q}(\xi^w) &= \Big\{ (x, y, z, s) : \exists t^w \in \mathbb{R}^{|I|}_+ \text{ such that} \\ t^w_i \geq s_i, \quad \forall i \in I. \\ t^w_i \geq -\mathcal{M}^2_{i'iw}(1 - z_{i'i}) + t^w_{i'} + \xi^w_{i'} \quad \forall i, i' \in I, \ i \neq i'. \\ t^w_i + \xi^w_i \leq T_j + \mathcal{M}^3_{ijw}(1 - y_{ij}) \quad \forall i \in I, \ j \in J \Big\}, \end{aligned}$$

In the rest of the talk, we replace the joint chance constraint (3) by

$$\sum_{w\in\Omega}\mathbb{I}\left\{(x,y,z,s)\in\mathcal{Q}(\xi^w)
ight\}\geq |\Omega|- heta$$

- $\mathbb{I}\{\cdot\}$ is an indicator function; $\theta = \lfloor \epsilon |\Omega| \rfloor$.
- It can lead to the extended MIP reformulation; or we use it to evaluate the chance of a given solution (x̂, ŷ, ẑ, ŝ) satisfying all constraints in Q(ξ).

Deng and S. (Michigan)

Outline

Introduction

Formulations of CC-MAS

Solution Algorithms Outer Decomposition

1st Stage: Chance-Constrained Server-Allocation 2nd Stage: Chance-Constrained Appointment Scheduling Model Variants

Computational Results

Deng and S. (Michigan)

Separate Allocation & Scheduling

1st-stage (allocation):

$$\min\left\{c^1x + c^2y: \sum_{j \in J} y_{ij} = 1, \ y_{ij} \le x_j, \ (x, y) \in \mathcal{A} \cap \{0, 1\}^{|J|} \times \{0, 1\}^{|I| \times |J|}\right\}$$

where $\mathcal{A} = \{(x, y) : \exists s, z \text{ satisfying other constraints in } Q \text{ and the chance constraint } (3). \}.$

2nd-stage (scheduling): given (\hat{x}, \hat{y}) , check whether $(\hat{x}, \hat{y}) \in \mathcal{A}$ by finding a feasible (z, s, t) to constraints in \mathcal{A} with $y = \hat{y}$.

- If such a solution exists, (\hat{x}, \hat{y}) is optimal.
- Otherwise, add a cut to the 1st-stage allocation problem, e.g., no-good cuts for binary valued (x, y).

Separate Allocation & Scheduling

1st-stage (allocation):

$$\min\left\{c^1x + c^2y: \ \sum_{j\in J} y_{ij} = 1, \ y_{ij} \leq x_j, \ (x,y) \in \mathcal{A} \cap \{0,1\}^{|J|} \times \{0,1\}^{|I| \times |J|}\right\}$$

where $\mathcal{A} = \{(x, y) : \exists s, z \text{ satisfying other constraints in } Q \text{ and the chance constraint } (3). \}.$

2nd-stage (scheduling): given (\hat{x}, \hat{y}) , check whether $(\hat{x}, \hat{y}) \in \mathcal{A}$ by finding a feasible (z, s, t) to constraints in \mathcal{A} with $y = \hat{y}$.

- If such a solution exists, (\hat{x}, \hat{y}) is optimal.
- Otherwise, add a cut to the 1st-stage allocation problem, e.g., no-good cuts for binary valued (x, y).

Problem: Finding a feasible schedule is hard; not much information about feasibility is known when solving the 1st-stage.

Deng and S. (Michigan)

Our Approaches I

Enhancement 1: Add a proxy of the joint chance constraint to the 1st-stage problem:

$$\sum_{w \in \Omega} \mathbb{I}\left\{\sum_{i \in I} \xi_i^w y_{ij} \le T_j x_j \ \forall j \in J\right\} \ge |\Omega| - \theta \tag{5}$$

Enhancement 2: For a given (\hat{x}, \hat{y}) , consider

• set
$$J(\hat{x}) = \{j \in J : \hat{x}_j = 1\}$$
 of operating servers;

sets l_j(ŷ) = {i ∈ l : ŷ_{ij} = 1} of appointments allocated on each server j ∈ J(x̂).

Define variables:

- ▶ $u_{ik} \in \{0,1\}, \forall i \in I_j(\hat{y}) \text{ and } k = 1, ..., |I_j(\hat{y})|$, such that $u_{ik} = 1$ if appt. *i* is scheduled as the k^{th} one, and $u_{ik} = 0$ o.w.
- r_k ≥ 0 and γ_k ≥ 0 representing the appointed start time and the actual start time of the kth appt. respectively, ∀k = 1,..., |l_j(ŷ)|.

Deng and S. (Michigan)

Our Approaches II

The 2nd-stage feasible set \mathcal{A} is equivalent to:

$$\begin{split} &\sum_{k=1}^{|I_j(\hat{y})|} u_{ik} = 1 \quad \forall i \in I_j(\hat{y}) \\ &\sum_{i \in I_j(\hat{y})} \underline{a}_i u_{ik} \leq r_k \leq \sum_{i \in I_j(\hat{y})} \overline{a}_i u_{ik} \quad \forall k = 1, \dots, |I_j(\hat{y})| \\ &r_k - r_{k-1} \geq 0 \quad \forall k = 2, \dots, |I_j(\hat{y})| \\ &\gamma_k^{\mathsf{W}} \geq r_k \quad \forall k = 1, \dots, |I_j(\hat{y})|, \ \forall w \in \Omega \\ &\gamma_k^{\mathsf{W}} \geq \gamma_{k-1}^{\mathsf{W}} + \sum_{i \in I_j(\hat{y})} \xi_i^{\mathsf{W}} u_{ik-1} \quad \forall k = 2, \dots, |I_j(\hat{y})|, \ \forall w \in \Omega \\ &\gamma_{|I_j(\hat{y})|}^{\mathsf{W}} + \sum_{i \in I_j(\hat{y})} \xi_i^{\mathsf{W}} u_{i|I_j(\hat{y})|} \leq T_j, \ \forall w \in \Omega \\ &u_{ik} \in \{0, 1\}, \forall i \in I_j(\hat{y}), \ r_k \geq 0, \ \gamma_k \geq 0, \ k = 1, \dots, |I_j(\hat{y})|. \end{split}$$

This reformulation does not contain the big- $\mathcal{M}^1,$ - \mathcal{M}^2 and - \mathcal{M}^3 coefficients.

Deng and S. (Michigan)

Outline

Introduction

Formulations of CC-MAS

Solution Algorithms Outer Decomposition 1st Stage: Chance-Constrained Server-Allocation 2nd Stage: Chance-Constrained Appointment Scheduling Model Variants

Computational Results

Deng and S. (Michigan)

Strengthened Big-M Coefficients

To optimize the enhanced 1st-stage allocation problem with the added joint chance constraint (5), we work with the extended reformulation.

Strengthen the big-M coefficients using two approaches:

- Qiu et al. (2014): iteratively repeat plugging the latest-attained coefficients into an LP model to compute improved values.
- Song et al. (2014): sort scenario-based optimal objectives (much easier to compute) to derive valid coefficient thresholds.

Other Approaches for Optimizing the 1st Stage

1. Branch-and-Cut (Luedtke (2013)): Strengthen the big-M valid inequalities in Song et al. (2014) by lifting, and integrate into a branch-and-cut algorithm.

Other Approaches for Optimizing the 1st Stage

- 1. Branch-and-Cut (Luedtke (2013)): Strengthen the big-M valid inequalities in Song et al. (2014) by lifting, and integrate into a branch-and-cut algorithm.
- 2. Decomposition-based bounding: consider scenario-based subproblems:

$$v(w,S) = \min \left\{ c^1 x + c^2 y : (x,y) \in \mathcal{D}_w \setminus S \right\} \quad \forall w \in \Omega \qquad (6)$$

where S is a set of (x, y) vertices violating the joint chance constraint (5). For a fixed S, we compute v(w, S), $\forall w \in \Omega$ to update valid upper bound \overline{B} (any v(w, S) yielding feasible (x(w), y(w))) and lower bound \underline{B} (= $v(\sigma_{\theta+1}, S)$ as the $\theta + 1$ largest value). We append evaluated solutions to the set S and add no-good cuts for excluding the corresponding (x, y).

Other Approaches for Optimizing the 1st Stage

- 1. Branch-and-Cut (Luedtke (2013)): Strengthen the big-M valid inequalities in Song et al. (2014) by lifting, and integrate into a branch-and-cut algorithm.
- 2. Decomposition-based bounding: consider scenario-based subproblems:

$$v(w,S) = \min \left\{ c^1 x + c^2 y : (x,y) \in \mathcal{D}_w \setminus S \right\} \quad \forall w \in \Omega \qquad (6)$$

where S is a set of (x, y) vertices violating the joint chance constraint (5). For a fixed S, we compute v(w, S), $\forall w \in \Omega$ to update valid upper bound \overline{B} (any v(w, S) yielding feasible (x(w), y(w))) and lower bound \underline{B} (= $v(\sigma_{\theta+1}, S)$ as the $\theta + 1$ largest value). We append evaluated solutions to the set S and add no-good cuts for excluding the corresponding (x, y).

3. Dual/scenario decomposition: make copies of x and y in all scenarios and enforce them taking the same values by using nonanticipativity constraints. Take the Lagrangian dual and optimize.

Deng and S. (Michigan)

Outline

Introduction

Formulations of CC-MAS

Solution Algorithms Outer Decomposition 1st Stage: Chance-Constrained Server-Allocation 2nd Stage: Chance-Constrained Appointment Scheduling Model Variants

Computational Results

Deng and S. (Michigan)

2nd Stage: Chance-Constrained Appointment Scheduling

Given (\hat{x}, \hat{y}) from the 1st stage, we verify whether exists feasible appt. arrivals to satisfy the server-overtime chance constraint.

- It is an MIP with a joint chance constraint.
- We can still apply the previous approaches used for solving the enhanced 1st-stage problem.
- All constraints are "server decomposable" except the joint chance constraint of server overtime.
- We use branch-and-cut and add cuts based on "scenario covers" (i.e., "cover inequalities" by identifying scenarios that cannot be *all* violated.)
- We identify the scenario covers based on irreducibly infeasible subsystem (IIS) of an LP relaxation model.
- The idea was also implemented by Tanner and Ntaimo (2010) and Codato and Fischetti (2006) in different contexts.

Outline

Introduction

Formulations of CC-MAS

Solution Algorithms

Outer Decomposition 1st Stage: Chance-Constrained Server-Allocation 2nd Stage: Chance-Constrained Appointment Scheduling Model Variants

Computational Results

Deng and S. (Michigan)

We consider the following model variants and most computational methods can be generalized:

Replace the joint chance constraint (3) by multiple chance constraints each for one server:

$$\sum_{w\in\Omega}\mathbb{I}\left\{(x,y,z,s)\in\mathcal{Q}_{j}(\xi^{w})
ight\}\geq|\Omega|-\lfloor\epsilon_{j}|\Omega|
floor.$$

The 2nd-stage problem becomes server-wise decomposable.

We consider the following model variants and most computational methods can be generalized:

Replace the joint chance constraint (3) by multiple chance constraints each for one server:

$$\sum_{w\in\Omega}\mathbb{I}\left\{(x,y,z,s)\in\mathcal{Q}_j(\xi^w)
ight\}\geq |\Omega|-\lfloor\epsilon_j|\Omega|
floor.$$

The 2nd-stage problem becomes server-wise decomposable.

• Hard constraints on appointment waiting: $t_i^w - s_i \leq W_i$, for all $i \in I, w \in \Omega$.

We consider the following model variants and most computational methods can be generalized:

Replace the joint chance constraint (3) by multiple chance constraints each for one server:

$$\sum_{w\in\Omega}\mathbb{I}\left\{(x,y,z,s)\in\mathcal{Q}_j(\xi^w)
ight\}\geq |\Omega|-\lfloor\epsilon_j|\Omega|
floor.$$

The 2nd-stage problem becomes server-wise decomposable.

- ► Hard constraints on appointment waiting: $t_i^w s_i \leq W_i$, for all $i \in I$, $w \in \Omega$.
- ▶ Recourse Cost in the Objective: Define a variables $o_j^w \in \mathbb{R}_+$ as the overtime of every server j in each scenario $w \Rightarrow c^1x + c^2y + (1/|\Omega|) \sum_{w \in \Omega} \sum_{j \in J} c_j^3 o_j^w$, and add constraints $o_j^w \ge t_i^w + \xi_i^w T_j \mathcal{M}^3_{ijw}(1 y_{ij}), \forall i \in I, j \in J, w \in \Omega.$

We consider the following model variants and most computational methods can be generalized:

Replace the joint chance constraint (3) by multiple chance constraints each for one server:

$$\sum_{w\in\Omega}\mathbb{I}\left\{(x,y,z,s)\in\mathcal{Q}_j(\xi^w)
ight\}\geq |\Omega|-\lfloor\epsilon_j|\Omega|
floor.$$

The 2nd-stage problem becomes server-wise decomposable.

- ► Hard constraints on appointment waiting: $t_i^w s_i \leq W_i$, for all $i \in I$, $w \in \Omega$.
- ▶ Recourse Cost in the Objective: Define a variables $o_j^w \in \mathbb{R}_+$ as the overtime of every server j in each scenario $w \Rightarrow c^1x + c^2y + (1/|\Omega|) \sum_{w \in \Omega} \sum_{j \in J} c_j^3 o_j^w$, and add constraints $o_j^w \ge t_i^w + \xi_i^w T_j \mathcal{M}_{ijw}^3(1 y_{ij}), \forall i \in I, j \in J, w \in \Omega.$
- The delay of appointments can be penalized in a similar way.

Deng and S. (Michigan)

Computational Setup

Problem instances: allocating and scheduling surgeries to operating rooms (ORs) under surgery time uncertainty.

ORs (servers):

►
$$T_j = 4 \sim 15, j \in J; c_j^1 = 8 \sim 18, j \in J;$$

 $c_{ij}^2 = 1, \forall i \in I, j \in J.$

Surgeries (appointments):

 durations of the operating time of each surgery type are randomly sampled based on one-week data, following a lognormal distribution.

•
$$[\underline{a}_i, \overline{a}_i]$$
: [0, 6], [6, 12], and [0, 12].

Computer characteristics:

▶ CPU 3.20 GHz, with 8GB memory; CPLEX 12.5.1.

Deng and S. (Michigan)

Benchmark with Two-Stage Cost-Based Models

1. Cost-Based Model:

2. Separate Modeling: 10% overtime-free%.

Deng and S. (Michigan)

Decomposition for CC-MAS

27/34

Results of Integrating Allocation and Scheduling

A benchmark process: CCSA \rightarrow CCS: Chance-constrained server allocation (CCSA)

a stochastic bin packing problem where we "pack" surgeries with random durations into ORs with time limits, subject to a joint chance constraint of β on-time OR closure rate.

Chance-constrained scheduling (CCS)

Pass an optimal solution of CCSA to CCS, where we seek feasible schedules to satisfy the two chance constraints in CC-MAS.

Results of Integrating Allocation and Scheduling

A benchmark process: CCSA \rightarrow CCS: Chance-constrained server allocation (CCSA)

a stochastic bin packing problem where we "pack" surgeries with random durations into ORs with time limits, subject to a joint chance constraint of β on-time OR closure rate.

Chance-constrained scheduling (CCS)

Pass an optimal solution of CCSA to CCS, where we seek feasible schedules to satisfy the two chance constraints in CC-MAS.

Table: Results of QoS level β' and cost of "integrating" and "separating" CC-MAS models.

Model used		β'(%) given β (%):			solution cost given β (%):				
	80	85	90	95	100	80	85	90	95	100	
CC-MAS	87.7±1.3	89.3±1.5	91.2±1.3	94.3±1.5	96.9±1.5	38.0±0.1	38.3±0.8	38.3±0.8	41.1±1.4	44.1±1.7	
$CCSA \rightarrow CCS$	$75.5 {\pm} 2.0$	$79.7 {\pm} 1.6$	$79.6 {\pm} 1.1$	$80.1{\pm}2.1$	$85.8 {\pm} 2.8$	38.0±0.0	$38.0{\pm}0.0$	$38.0{\pm}0.1$	$38.3{\pm}0.8$	$40.4{\pm}1.1$	

Deng and S. (Michigan)

CPU Time Results of Decomposition I

Table: Total solution time and number of branched nodes

Instance		Direct			MP+SP			MP*+SP		
Instance	22	total	#node	total	#node	#cut	total	#node	#cut	
J = 5	20	269.8	169356	366.2	23	8	1.3	421	3	
I = 10	200	-	5333*	4854.3	14320	64	54.6	6503	3	
	2000	-	29*	-	879*	87*	-	13199*	5*	

Table: Solution time for solving MP* and big-M strengthening

Instance	0	MP*+SP	N	$1P_{iter}^* + SP$		М	MP*scen+SP		
Instance	1751	mp (sec)	mp (sec)	str (sec)	str%	mp (sec)	str (sec)	str%	
J = 5	20	0.4	0.3	1.1	15.4%	0.1	7.9	1.0%	
I = 10	200	48.7	11.4	20.4	16.0%	1.5	725.4	1.1%	
	2000	-	15.8	1917.7	16.0%	5.3	5325.0	1.0%	

CPU Time Results of Decomposition II

Table: Comparisons of B&C, scenario-based bounding, dual decomposition for the enhanced 1st-stage problem (MP*)

Instance	101	B&C+SP			F	bnd+SP		I	Dbnd+SP		
Instance	22	total (sec)	#sub	sub (sec)	total (sec)	#sub	sub (sec)	total (sec)	#sub	sub (sec)	
J = 5	20	2.5	35	0.06	3.2	146	0.02	1.6	248	0.008	
I = 10	200	173.2	388	0.44	10.0	568	0.02	13.8	2480	0.007	
	2000	2494.9	3754	0.66	78.5	2100	0.03	185.2	29500	0.007	
J = 10	20	6535.8	2672	2.40	115.3	751	0.12	46.8	656	0.07	
I = 20	200	-	-	-	410.5	1136	0.16	347.8	2080	0.09	
	2000	-	-	-	1332.4	4000	0.13	1053.4	8324	0.10	

Table: Solution time on directly computing the 2nd-stage problem (SP)

Instance		MP [*] _{iter} +SI		SP B&C+SP			Pbnd+SP			Dbnd+SP	
instance	1751	sp (sec)	sp%	sp (sec)	sp%	sp	(sec)	sp%	s	o (sec)	sp%
J = 5	20	0.3	18.3%	0.4	16.0%		0.8	12.8%		0.1	3.8%
I = 10	200	3.4	9.8%	0.2	0.1%		0.2	4.5%		0.1	2.5%
	2000	42.0	4.0%	27.7	1.1%		2.4	3.7%		1.6	2.1%
J = 10	20	4.1	6.7%	23.0	0.3%		0.1	0.1%		0.9	3.8%
I = 20	200	-	-	-	-		2.4	1.3%		13.8	3.5%
	2000	-	-	-	-		25.3	1.9%		22.1	2.1%

Deng and S. (Michigan)

CPU Time Results of Decomposition III

Table: IIS-based scenario cover inequalities for solving SP

Instance		MP [*] _{iter} +B&C'		B&C+B	B&C+B&C'		-B&C'	Dbnd+	Dbnd+B&C'	
Instance	22	sp (sec)	sp%	sp (sec)	sp%	sp (sec)	sp%	sp (sec)	sp%	
J = 5	20	3.4	70.3%	0.3	9.9%	0.5	7.9%	4.3	84.0%	
I = 10	200	13.3	27.9%	3.9	1.7%	3.4	37.2%	2.3	26.0%	
	2000	39.7	3.6%	21.6	0.8%	11.7	14.5%	9.4	9.9%	
J = 10	20	27.0	30.5%	27.1	0.3%	12.3	54.3%	2.0	7.3%	
I = 20	200	-	-	-	-	14.0	6.4%	5.7	1.4%	
	2000	-	-	-	-	13.2	0.9%	12.1	1.1%	

Table: The CC-MAS variant with overtime penalty cost

Instance		Pbnd+SP		Dbnd	Dbnd+SP		-B&C'	Dbnd+	Dbnd+B&C'	
	22	mp (sec)	sp (sec)							
J = 5	20	32.4	20.3	29.7	1.5	18.9	34.5	65.5	35.7	
I = 10	200	50.7	248.6	110.6	449.3	64.3	104.8	47.5	76.3	
penal.	2000	361.1	1242.7	249.1	3032.6	130.9	523.8	117.8	700.7	
J = 10	20	369.8	198.5	248.4	104.8	465.3	127.4	388.1	333.0	
I = 20	200	842.3	2036.1	502.3	3571.7	535.7	369.6	476.1	629.2	
penal.	2000	1567.5	5413.7	1098.4	2499.0	795.4	749.9	731.5	166.9	

Deng and S. (Michigan)

CPU Time Results of Decomposition IV

Table: Multiple chance constraints vs. joint chance constraint

Instance		MP^*_{iter} +SI	P (MCC)	MP _i *	P^*_{iter} +SP	
mstance	1751	total	#node	total	#node	
J = 5	20	0.3	311	1.3	421	
I = 10	200	31.9	751	54.6	6503	
	2000	4474.5	9701	-	13199*	

Conclusions

- Combine multiple server/scenario-based decomposition methods for solving CC-MAS.
- The work can be generalized to problems with decomposable structures, e.g., network problems with multiple subgraphs and correlated network-flow decisions.
- The decomposition framework is also not restricted to problems with joint chance constraints.

Future research:

- Incorporate other risk measures.
- Apply to prototype vehicle test scheduling (under collaboration with Ford Motor Company).
- Introduce distribution ambiguity. Consider multiple uncertainty sources.

Thank you!

Questions?

Deng and S. (Michigan)