Disconnecting Networks via Node Deletions Exact Interdiction Models and Algorithms

Siqian Shen¹ J. Cole Smith² R. Goli²

¹IOE, University of Michigan ²ISE, University of Florida

2012 INFORMS Optimization Society Conference, Miami FL

Outline

1 Introduction

- 2 Exact MIP Interdiction Models
 - Maximizing the Number of Components (MaxNum)
 - Minimizing the Largest Component Size (MinMaxC)
- 3 MIP Bounds and Inequalities
 - Just Solve the MIP...
 - Valid Inequalities from Partitions
 - CPU Time Comparison
- 4 Summary and Future Research

MaxNum and MinMaxC on General Graphs? (B = 1)

Counterexamples:

MaxNum

Motivation and Contributions

- The MaxNum and MinMaxC on general graphs: \mathcal{NP} -hard.
- The MaxNum and MinMaxC on specially structured graphs: Polynomial-time Dynamic Programming Algorithms (Shen and Smith (2011))
- This study will:

Motivation and Contributions

- The MaxNum and MinMaxC on general graphs: \mathcal{NP} -hard.
- The MaxNum and MinMaxC on specially structured graphs: Polynomial-time Dynamic Programming Algorithms (Shen and Smith (2011))
- This study will:
 - 1 Formulate two-stage interdiction MIPs having LP subproblems
 - 2 Take the subproblem **duals**, and **integrate** the two stages
 - 3 Linearize the monolithic MIP, and solve it to optimality

Motivation and Contributions

- The MaxNum and MinMaxC on general graphs: \mathcal{NP} -hard.
- The MaxNum and MinMaxC on specially structured graphs: Polynomial-time Dynamic Programming Algorithms (Shen and Smith (2011))
- This study will:
 - 1 Formulate two-stage interdiction MIPs having LP subproblems
 - 2 Take the subproblem **duals**, and **integrate** the two stages
 - 3 Linearize the monolithic MIP, and solve it to optimality
 - 4 Reformulate the MIP based on subgraph partitions of G, and generate valid inequalities by using intermediate polynomial-time optimal DP solutions from each partition.

Exact MIP Interdiction Models

Master Problem (MaxNum)

$$x \qquad \left\{ \eta(x, y) - \frac{1}{n} \sum_{i=1}^{n} (1 - x_i) \right\}$$
(1a)

s.t.
$$\sum_{i \in \mathcal{V}} (1 - x_i) \le B$$
(1b)

$$x_i + x_j - 1 \le y_{ij} \quad \forall (i,j) \in \mathcal{E}$$
 (1c)

$$x_i \in \{0, 1\} \quad \forall i \in \mathcal{V} \tag{1d}$$

$$0 \le y_{ij} \le 1 \quad \forall (i,j) \in \mathcal{E}, \tag{1e}$$

- Undirected graph $G(\mathcal{V}, \mathcal{E})$, where $\mathcal{V} = \{1, \dots, n\}$ and $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$
- $\eta(x, y)$: Subproblem objective, e.g., number of components for MaxNum
- $x_i \in \{0, 1\}$: $x_i = 1$ if node *i* is not deleted, and $x_i = 0$ if *i* is deleted

•
$$y_{ij} \in \{0, 1\}$$
: $y_{ij} = 1$ if edge (i, j) exists, and $y_{ij} = 0$ otherwise $(y_{ij} = x_i x_j)$

■ *B*: Given node deletion budget (positive integer)

ma

Exact MIP Interdiction Models

Maximizing the Number of Components (MaxNum)

MaxNum Subproblem: Solving $\eta(x, y)$

- Formulate on a directed transformation network $\widetilde{G}(\mathcal{N}, \mathcal{A})$
- Design a dummy node 0 and a unit cost for constructing arc $(0, i), \forall i \in \mathcal{V}$
- **GOAL**: To flow $|\widetilde{\mathcal{V}}|$ paths from 0 to every active node $i \in \widetilde{\mathcal{V}}$
- **Decision Variables:** z_i : = 1 if (0, i) is constructed and = 0 otherwise; f_{ijk} : Flow on arc (i, j) with respect to path 0-k

$$\eta(x, y) = \min \sum_{\substack{i \in \mathcal{N} \\ i \subset \mathcal{N}}} z_i$$
(2a)

s.t.: $|\mathcal{V}|$ paths from node 0 to every active node *i* (2b)

$$-f_{0ik} + z_i \ge 0 \quad \forall i, \ k \in \mathcal{N}$$

$$(2c)$$

$$-f_{ijk} \ge -y_{ij} \quad \forall (i,j) \in \mathcal{A}, \ k \in \mathcal{N}$$
 (2d)

$$z_i \in \{0, 1\}, \quad f_{ijk} \ge 0.$$
 (2e)

Exact MIP Interdiction Models

Maximizing the Number of Components (MaxNum)

MaxNum Subproblem: Solving $\eta(x, y)$

A transformed directed graph and a feasible solution illustration:

Exact MIP Interdiction Models

Maximizing the Number of Components (MaxNum)

Solving MaxNum

■ Good News:)

Fix (x, y) at binary values, and a subproblem LP gives the convex hull in terms of variables *z*.

- Solution Scheme:
 - **Replace** $\eta(x, y)$ in the master problem by the subproblem LP dual
 - Linearize bilinear terms of "x × duals" and "y × duals" by using McCormick inequalities (since both x and y are binary-valued).
 - Monolithically solve MaxNum in a "max{max} = max" framework

Exact MIP Interdiction Models

Minimizing the Largest Component Size (MinMaxC)

MinMaxC

The master problem is similar to MaxNum except an obj modification:

$$\min\left\{\eta'(x,y) + \frac{1}{n}\sum_{i=1}^{n} (1-x_i) : (1b)-(1e)\right\},$$
(2)

where $\eta'(x, y)$ represents the largest component size for a given (x, y).

- Subproblem Notation:
 - $\sigma_{ik} \in \{0, 1\}$: = 1 if nodes *i* and *k* belong to the same component
 - $\bullet \ \sigma_{kk} = 1, \ \forall k \in \mathcal{N}$
 - $\lambda = \eta'(x, y)$ represents the largest component size

Exact MIP Interdiction Models

Minimizing the Largest Component Size (MinMaxC)

MinMaxC: A Monolithic Model

min

$$\left\{ \lambda + \frac{1}{n} \sum_{i=1}^{n} (1 - x_i) \right\}$$
(1b)-(1e), and $\sigma_{kk} = 1 \quad \forall k \in \mathcal{N}$
(3a)

s.t.

$$\lambda \ge \sum_{i \in \mathcal{N}} \sigma_{ik} \quad \forall k \in \mathcal{N} \tag{3b}$$

$$\sigma_{jk} - \sigma_{ik} \ge y_{ij} - 1 \quad \forall (i,j) \in \mathcal{A}, \ k \in \mathcal{N}$$
 (3c)

$$\sigma_{ik} \in \{0,1\} \quad \forall i, \ k \in \mathcal{N}. \tag{3d}$$

- (3b) enforces λ to be the largest component size
- (3c) pushes $\sigma_{jk} = 1$ if $\sigma_{ik} = 1$ and $y_{ij} = 1$. That is, nodes *j* and *k* are in the same component, if nodes *i* and *k* are in the same component and *j* is connected to *i*
- (3) yields the convex hull even with (3d) being linear.

└─ Just Solve the MIP...

How efficient the Monolithic MIP models are?

Experimental Tests:

- CPLEX 11.0 & C++; a Dell PowerEdge 2600 UNIX machine with two 3.2 GHz processors; a one-hour time limit
- Five 20-node (having 40 60 arcs) and five 30-node (having 100-200 arcs) graph instances with varied *B*-values
- Result Observations:
 - CPU time: 10s-100s for most 20-node instances; 100s-800s for 30-node instances
 - CPU time \uparrow as $B \uparrow$ at the beginning, and then CPU time \downarrow as B continue to \uparrow above a threshold of approximately $0.25|\mathcal{V}|$

MIP Bounds and Inequalities

└─ Just Solve the MIP ...

On the other hand...

Given a tree T(V, E), a DP algorithm can solve:

- $O(n^3) \Rightarrow \text{MaxNum on trees}$
- $O(n^3 \log n) \Rightarrow \text{MinMaxC}$ on trees

Extend the results to *k*-hole-graph for some *k*:

- $O(n^{3+k}) \Rightarrow MaxNum$
- $O(n^{3+k}\log n) \Rightarrow \operatorname{MinMaxC}$

└─ Just Solve the MIP...

DP Algorithms for Specially-Structured Graphs

For an undirected tree T(V, E),

 \blacksquare *r*: root node

• T_i : subtree rooted at node $i (T = T_r)$

LJust Solve the MIP ...

DP Algorithms for Specially-Structured Graphs

For an undirected tree T(V, E),

- r: root node
- T_i : subtree rooted at node $i (T = T_r)$

Key Concept:

- **Open set** O_i : All nodes in the same component to which subroot *i* belongs, and $o_i = |O_i|$
- If *i* is deleted, then O_i is empty and $o_i = 0$

└─ Just Solve the MIP...

DP Algorithms for Specially-Structured Graphs

For an undirected tree T(V, E),

- r: root node
- T_i : subtree rooted at node $i (T = T_r)$

Key Concept:

- **Open set** O_i : All nodes in the same component to which subroot *i* belongs, and $o_i = |O_i|$
- If *i* is deleted, then O_i is empty and $o_i = 0$

Incumbent Initial Step:

There exists an optimal solution to all MaxNum and MinMaxC instances on tree graphs in which NO leaf node is deleted.

└─ Just Solve the MIP...

$O(n^3)$ DP algorithms for MaxNum

 $f_i(p_i, n_i)$: the fewest number of deletions required on subtree T_i , given that

- p_i : = 0 if subtree root *i* is deleted, and = 1 otherwise
- n_i : Number of components created, not including O_i
- Note: $f_l(1,0) = 0$ at every leaf node $l \in V$

Illustration of $f_i(p_i, n_i)$ when an open set is present. Note that $n_i = 6$ here because the open set itself is not counted in n_i . Illustration of $f_i(p_i, n_i)$ when no open set is present.

MIP Bounds and Inequalities

└─ Just Solve the MIP...

Update $f_i(p_i, n_i)$ given $f_v(p_v, n_v), \forall v \in S_i$

When $p_i = 0$ (subtree root *i* is deleted):

 $f_i(0, n_i) = \min \qquad \sum_{v \in S_i} f_v(p_v, n_v) + 1$ s.t. $n_i = \sum_{v \in S_i} n_v + \sum_{v \in S_i} p_v$

Every open set O_v becomes a new component after merging.

MIP Bounds and Inequalities

└─ Just Solve the MIP ...

fi

Update $f_i(p_i, n_i)$ given $f_v(p_v, n_v)$, $\forall v \in S_i$

When $p_i = 0$ (subtree root *i* is deleted):

$$(0, n_i) = \min \qquad \sum_{\nu \in S_i} f_{\nu}(p_{\nu}, n_{\nu}) + 1$$

s.t.
$$n_i = \sum_{\nu \in S_i} n_{\nu} + \sum_{\nu \in S_i} p_{\nu}$$

Every open set O_v becomes a new component after merging.

When $p_i = 1$ (not deleted):

$$f_i(1, n_i) = \min$$
 $\sum_{v \in S_i} f_v(p_v, n_v)$
s.t. $n_i = \sum_{v \in S_i} n_v$

All open sets O_v will merge with O_i to form a larger-cardinality open set at *i*.

MIP Bounds and Inequalities

└─ Just Solve the MIP...

Update $f_i(p_i, n_i)$ given $f_v(p_v, n_v), \forall v \in S_i$

When $p_i = 0$ (subtree root *i* is deleted):

 $f_i(0, n_i) = \min \sum_{v \in S} f_v(p_v, n_v) + 1$

s.t.
$$n_i = \sum_{v \in S_i} n_v + \sum_{v \in S_i} p_v$$

When $p_i = 1$ (not deleted):

$$f_i(1, n_i) = \min$$
 $\sum_{v \in S_i} f_v(p_v, n_v)$
s.t. $n_i = \sum_{v \in S_i} n_v$

All open sets O_v will merge with O_i to form a larger-cardinality open set at *i*.

Every open set O_v becomes a new component after merging.

- Calculate $f_i(p_i, n_i)$ by sequentially merging one subtree at a time
- Since $n_i \leq n$, computing f_i is $O(n^2)$, for all $i \in V$.
- Total complexity: $O(n^3)$ for solving MaxNum on trees.

└─ Just Solve the MIP ...

$O(n^3 \log n)$ DP algorithms for MinMaxC

■ $f_i(o_i, m_i)$: the fewest number of deletions on subtree T_i , given

• an open set of size o_i exists on i

• a maximum component size of m_i (excluding O_i)

• However, since both o_i and $m_i \leq n$, merging requires $O(n^5)$ steps

└─ Just Solve the MIP...

$O(n^3 \log n)$ DP algorithms for MinMaxC

- $f_i(o_i, m_i)$: the fewest number of deletions on subtree T_i , given
 - an open set of size o_i exists on i
 - a maximum component size of m_i (excluding O_i)
- However, since both o_i and $m_i \leq n$, merging requires $O(n^5)$ steps
- Define f_i(o_i, τ) instead: the fewest number of deletions on subtree T_i, given that
 - no component has a larger size than τ (a fixed target)
 - it generates an open set of size o_i where $o_i \leq \tau$
 - $f_l(1, \tau) = 0$ at every leaf node $l \in V$ for any $\tau \ge 1$.

└─ Just Solve the MIP...

$O(n^3 \log n)$ DP algorithms for MinMaxC

- $f_i(o_i, m_i)$: the fewest number of deletions on subtree T_i , given
 - an open set of size o_i exists on i
 - a maximum component size of m_i (excluding O_i)
- However, since both o_i and $m_i \leq n$, merging requires $O(n^5)$ steps
- Define f_i(o_i, τ) instead: the fewest number of deletions on subtree T_i, given that
 - no component has a larger size than τ (a fixed target)
 - it generates an open set of size o_i where $o_i \leq \tau$
 - $f_l(1, \tau) = 0$ at every leaf node $l \in V$ for any $\tau \ge 1$.
- Employ a binary-search scaling scheme over *τ*; update *f_i(o_i, τ*) for all *i* ∈ *V* for a given *τ*

└─ Just Solve the MIP...

Update $f_i(o_i, \tau)$ given $f_v(o_v, \tau), \forall v \in S_i$

When $o_i = 0$ (subtree root *i* is deleted):

$$f_i(0, au) = \min \qquad \sum_{\nu \in S_i} f_{\nu}(o_{
u}, au) + 1.$$

The largest component size is automatically not more than τ .

└─ Just Solve the MIP...

Update $f_i(o_i, \tau)$ given $f_v(o_v, \tau), \forall v \in S_i$

When $o_i = 0$ (subtree root *i* is deleted):

$$f_i(0, au) = \min$$
 $\sum_{v \in S_i} f_v(o_v, au) + 1.$

The largest component size is automatically not more than τ .

When $o_i > 0$ (not deleted):

$$f_i(o_i, \tau) = \min \qquad \sum_{v \in S_i} f_v(o_v, \tau)$$

s.t.
$$o_i = \sum_{v \in S_i} o_v + 1 \le \tau.$$

Lust Solve the MIP

Update $f_i(o_i, \tau)$ given $f_v(o_v, \tau), \forall v \in S_i$

When $o_i = 0$ (subtree root *i* is deleted):

When $o_i > 0$ (not deleted):

$$f_i(0,\tau) = \min \sum_{v \in S_i} f_v(o_v,\tau) + 1. \qquad f_i(o_i,\tau) = \min \sum_{v \in S_i} f_v(o_v,\tau)$$

The largest component size is s.t. $o_i = \sum_{v \in S_i} o_v + 1 \le \tau.$

automatically not more than τ .

Initial: Upper bound
$$UB = n - B$$
; Lower bound $LB = 1$; $\tau = \lfloor \frac{n - B + 1}{2} \rfloor$

- Step 1: Solve MinMaxC for a current τ ($O(n^3)$ steps)
- Step 2: Update τ : If LB < UB, update $\tau = |(UB + LB)/2|$; go to Step 1 $(O(\log n) \text{ iterations})$
- Total complexity: $O(n^3 \log n)$ for solving MinMaxC on trees.

└─ Just Solve the MIP...

k-hole graphs

- A hole of a graph: a set of nodes v₁,..., v_m such that an edge exists between v_i and v_j (i < j) if and only if i = j − 1 or i = 1 and j = m.</p>
- *M*¹,...,*M*^k: the *k* holes in a graph, where nodes {*v*₁,...,*v*_q} compose the union of the nodes in these holes
- Transform a *k*-hole graph into a weighted "hole" tree

└─ Just Solve the MIP...

MaxNum and MinMaxC on k-hole-graphs

- Case 0 (no node is deleted in any hole)
 - Every M^j is a *hole-node* with size $|M^j|$
 - Yield a tree structure with weighted hole-nodes
 - Use the same DP recursions as before, but prohibit deletions of hole-nodes

└─ Just Solve the MIP...

MaxNum and MinMaxC on k-hole-graphs

- Case 0 (no node is deleted in any hole)
 - Every M^j is a *hole-node* with size $|M^j|$
 - Yield a tree structure with weighted hole-nodes
 - Use the same DP recursions as before, but prohibit deletions of hole-nodes

Case *i* (delete node v_i and obtain a *p*-hole-graph such that p < k)

- Recursively solve on a resulting *p*-hole-graph
- $\Gamma(k)$ = the complexity on *k*-hole-graphs, we have that $\Gamma(k) = O(n \Gamma(k-1))$
- Base case: 0-hole-graph (i.e., a tree)

└─ Just Solve the MIP...

MaxNum and MinMaxC on k-hole-graphs

- Case 0 (no node is deleted in any hole)
 - Every M^j is a *hole-node* with size $|M^j|$
 - Yield a tree structure with weighted hole-nodes
 - Use the same DP recursions as before, but prohibit deletions of hole-nodes

Case *i* (delete node v_i and obtain a *p*-hole-graph such that p < k)

- Recursively solve on a resulting *p*-hole-graph
- $\Gamma(k)$ = the complexity on *k*-hole-graphs, we have that $\Gamma(k) = O(n \Gamma(k-1))$
- Base case: 0-hole-graph (i.e., a tree)
- Complexities on *k*-hole-graph: $O(n^{3+k})$ for MaxNum, and $O(n^{3+k} \log n)$ for MinMaxC.

└─ Just Solve the MIP...

Incorporate DP Solutions into the MIP Framework

- Idea 1: Optimal DP solutions obtained on k-hole subgraphs of G provide bounds for the real subproblem objectives. However...
- Our computational results show:
 - Bounds are generally not very tight, but tighter on smaller G instances (i.e., 20-node as opposed to 30- and 40-node graphs)
- Idea 2: Employ a graph-partition strategy, solve the DP on each partition, and generate valid inequalities for MIPs.

MIP Bounds and Inequalities

└─ Valid Inequalities from Partitions

Reformulating the MIP

Notation (MaxNum for instance):

- Partition graph G into m subgraphs G_1, \ldots, G_m
- k_i : the number of holes in each subgraph G_i , $\forall i = 1, ..., m$
- Execute DP on each k_i -hole subgraph G_i for a budget B \Rightarrow
- $\eta_i(B_i)$: maxnum obtained on G_i for deletion budgets $B_i = 0, \dots, B$ (variables)
- g_i(B_i): Piecewise-linear concave envelope function of η_i(B_i) such that η_i(B_i) ≤ g_i(B_i) for all B_i = 0,..., B.

MIP Bounds and Inequalities

└─ Valid Inequalities from Partitions

Reformulating the MIP

Notation (MaxNum for instance):

- Partition graph G into m subgraphs G_1, \ldots, G_m
- k_i : the number of holes in each subgraph G_i , $\forall i = 1, ..., m$
- Execute DP on each k_i -hole subgraph G_i for a budget B \Rightarrow
- $\eta_i(B_i)$: maxnum obtained on G_i for deletion budgets $B_i = 0, \dots, B$ (variables)
- g_i(B_i): Piecewise-linear concave envelope function of η_i(B_i) such that η_i(B_i) ≤ g_i(B_i) for all B_i = 0,..., B.

Append the following valid inequalities into the MaxNum MIP:

$$\eta - \sum_{i=1}^{m} \eta_i \le 0 \tag{4a}$$

$$\eta_i - g_i(B_i) \le 0 \quad \forall i = 1, \dots, m \tag{4b}$$

$$B_i = \sum_{j \in V_i} (1 - x_j) \quad \forall i = 1, \dots, m.$$

$$(4c)$$

MIP Bounds and Inequalities

Valid Inequalities from Partitions

Example 1: Solving MaxNum

Given a 20-node graph G and B = 10, solving the 1st partition G_1 (10-node):

MIP Bounds and Inequalities

Valid Inequalities from Partitions

Example 1: Solving MaxNum

Given a 20-node graph G and B = 10, solving the 2nd partition G_2 (10-node):

L-Valid Inequalities from Partitions

Example 1: Solving MaxNum

Inequalities (4a) and (4c) are:

$$\eta \le \eta_1 + \eta_2, \ B_1 = \sum_{i \in G_1} (1 - x_i), \ B_2 = \sum_{i \in G_2} (1 - x_i).$$
 (5)

Associated with the three-segment $g_1(B_1)$, for G_1 , we generate (4b) as

$$\eta_1 \le 2B_1 + 1, \qquad \eta_1 \le B_1 + 4, \qquad \eta_1 \le 10.$$
 (6)

Similarly, corresponding to each segment of $g_2(B_2)$, for G_2 , (4b) become

$$\eta_2 \le (4/3)B_2 + 1, \qquad \eta_2 \le B_2 + 3, \qquad \eta_2 \le 10.$$
 (7)

MIP Bounds and Inequalities

Valid Inequalities from Partitions

Example 2: Solving MinMaxC

 $g'_i(B_i)$ is the convex envelop of $\eta'_i(B_i)$, and signs in (4a) and (4b) are flipped.

MIP Bounds and Inequalities

Valid Inequalities from Partitions

Example 2: Solving MinMaxC

 $g'_i(B_i)$ is the convex envelop of $\eta'_i(B_i)$, and signs in (4a) and (4b) are flipped.

L Valid Inequalities from Partitions

Example 2: Solving MinMaxC

Inequalities (4a) and (4c) are:

$$\eta' \ge \eta'_1 + \eta'_2, \ B_1 = \sum_{i \in G_1} (1 - x_i), \ B_2 = \sum_{i \in G_2} (1 - x_i).$$
 (8)

The following two sets of inequalities are generated to describe $g'_i(B_i)$, for i = 1, 2:

$$\eta' \ge -3B_1 + 10, \ \eta' \ge -2B_1 + 9, \eta' \ge -B_1 + 6, \ \eta' \ge -0.5B_1 + 4, \ \eta' \ge 1$$
(9)

$$\eta' \ge -1.5B_2 + 10, \ \eta' \ge -B_2 + 8, \ \eta' \ge 1$$
 (10)

CPU Time Comparison

CPU Times for 20-node Instances Using 2-Partition

Instance	Drob	B = 4		B = 8		
	1100.	Orig.	2-Partition	Orig.	2-Partition	
20-1	MaxNum	24.62	[34.52]	5.94	[16.85]	
	MinMaxC	16.56	8.15	1.27	[1.90]	
20-2	MaxNum	49.67	43.28	79.48	42.52	
	MinMaxC	8.17	6.53	16.22	12.53	
20-3	MaxNum	51.94	44.24	16.34	[33.84]	
	MinMaxC	19.55	15.66	13.57	[19.29]	
20-4	MaxNum	41.77	[88.48]	36.81	34.13	
	MinMaxC	30.71	24.06	15.26	7.72	
20-5	MaxNum	71.06	54.73	21.55	[34.65]	
	MinMaxC	33.40	22.19	14.76	14.49	

CPU Time Comparison

CPU Times for 30-node Instances Using 3-Partition

Instance	Prob.	B = 4		B = 8		
		Orig.	3-Partition	Orig.	3-Partition	
30-1	MaxNum	467.92	384.43	289.14	235.28	
	MinMaxC	462.93	391.20	166.24	[204.12]	
30-2	MaxNum	467.93	452.96	209.58	[218.07]	
	MinMaxC	331.22	[334.29]	98.64	87.35	
30-3	MaxNum	502.85	479.30	725.49	623.58	
	MinMaxC	217.05	172.45	117.54	[121.11]	
30-4	MaxNum	516.72	446.82	202.18	183.71	
	MinMaxC	345.67	[351.84]	94.25	[96.36]	
30-5	MaxNum	432.40	328.66	189.62	171.55	
	MinMaxC	479.24	443.74	143.82	143.30	

CPU Time Comparison

40-node Instances Using 2- and 4-Partition

None 40-node instances can be solved within a one-hour time limit. Thus, we report gaps (%) reported by CPLEX instead

Instance	Prob.	B = 4			B = 8		
		Orig.	2-Partition	4-Partition	Orig.	2-Partition	4-Partition
40-1	MaxNum	131.39%	58.12%	131.35%	87.82%	48.07%	87.79%
	MinMaxC	27.82%	11.11%	27.85%	62.47%	32.82%	[62.49%]
40-2	MaxNum	124.51%	124.51%	110.29%	84.68%	33.78%	74.97%
	MinMaxC	26.19%	6.95%	20.42%	58.52%	21.10%	[58.68%]
40-3	MaxNum	122.56%	44.99%	112.14%	85.94%	85.92%	[88.85%]
	MinMaxC	25.92%	25.77%	25.85%	58.17%	57.09%	47.38%
40-4	MaxNum	114.68%	59.95%	[128.20%]	95.47%	49.98%	86.80%
	MinMaxC	27.93%	27.93%	27.87%	61.52%	47.38%	47.50%
40-5	MaxNum	125.26%	44.99%	120.01%	84.15%	53.76%	[100.18%]
	MinMaxC	26.25%	26.21%	26.20%	59.17%	44.65%	51.80%

Summary and Future Research

Future Research

- Vary partition patterns, and test the computational efficacy of different valid inequalities
- Dynamically update partitions within a branch-and-bound (B&B) tree
- The locally valid inequalities may lead to a quicker termination and more effective fathoming rules for the B&B algorithm

Summary and Future Research

Thank you

Questions? ...