Disconnecting Networks via Node Deletions

Exact Interdiction Models and Algorithms

Siqian Shen ${ }^{1} \quad$ J. Cole Smith ${ }^{2} \quad$ R. Goli ${ }^{2}$
${ }^{1}$ IOE, University of Michigan
${ }^{2}$ ISE, University of Florida

2012 INFORMS Optimization Society Conference, Miami FL

Outline

1 Introduction
2 Exact MIP Interdiction Models
■ Maximizing the Number of Components (MaxNum)
■ Minimizing the Largest Component Size (MinMaxC)
3 MIP Bounds and Inequalities
■ Just Solve the MIP...

- Valid Inequalities from Partitions

■ CPU Time Comparison
4 Summary and Future Research

MaxNum and MinMaxC on General Graphs? $(B=1)$

Counterexamples:

MaxNum

Motivation and Contributions

- The MaxNum and MinMaxC on general graphs: $\mathcal{N P}$-hard.

■ The MaxNum and MinMaxC on specially structured graphs: Polynomial-time Dynamic Programming Algorithms (Shen and Smith (2011))

■ This study will:

Motivation and Contributions

■ The MaxNum and MinMaxC on general graphs: $\mathcal{N P}$-hard.
■ The MaxNum and MinMaxC on specially structured graphs: Polynomial-time Dynamic Programming Algorithms (Shen and Smith (2011))

■ This study will:
1 Formulate two-stage interdiction MIPs having LP subproblems
2 Take the subproblem duals, and integrate the two stages
3 Linearize the monolithic MIP, and solve it to optimality

Motivation and Contributions

■ The MaxNum and MinMaxC on general graphs: $\mathcal{N P}$-hard.

- The MaxNum and MinMaxC on specially structured graphs: Polynomial-time Dynamic Programming Algorithms (Shen and Smith (2011))

■ This study will:
1 Formulate two-stage interdiction MIPs having LP subproblems
2 Take the subproblem duals, and integrate the two stages
3 Linearize the monolithic MIP, and solve it to optimality
4 Reformulate the MIP based on subgraph partitions of G, and generate valid inequalities by using intermediate polynomial-time optimal DP solutions from each partition.

Master Problem (MaxNum)

$$
\begin{array}{ll}
\max & \left\{\eta(x, y)-\frac{1}{n} \sum_{i=1}^{n}\left(1-x_{i}\right)\right\} \\
\text { s.t. } & \sum_{i \in \mathcal{V}}\left(1-x_{i}\right) \leq B \\
& x_{i}+x_{j}-1 \leq y_{i j} \quad \forall(i, j) \in \mathcal{E} \\
& x_{i} \in\{0,1\} \quad \forall i \in \mathcal{V} \\
& 0 \leq y_{i j} \leq 1 \quad \forall(i, j) \in \mathcal{E}, \tag{1e}
\end{array}
$$

- Undirected graph $G(\mathcal{V}, \mathcal{E})$, where $\mathcal{V}=\{1, \ldots, n\}$ and $\mathcal{E} \subset \mathcal{V} \times \mathcal{V}$
- $\eta(x, y)$: Subproblem objective, e.g., number of components for MaxNum
- $x_{i} \in\{0,1\}: x_{i}=1$ if node i is not deleted, and $x_{i}=0$ if i is deleted
- $y_{i j} \in\{0,1\}: y_{i j}=1$ if edge (i, j) exists, and $y_{i j}=0$ otherwise $\left(y_{i j}=x_{i} x_{j}\right)$
- B : Given node deletion budget (positive integer)

—Exact MIP Interdiction Models

-Maximizing the Number of Components (MaxNum)

MaxNum Subproblem: Solving $\eta(x, y)$

- Formulate on a directed transformation network $\widetilde{G}(\mathcal{N}, \mathcal{A})$
- Design a dummy node 0 and a unit cost for constructing $\operatorname{arc}(0, i), \forall i \in \mathcal{V}$
- GOAL: To flow $|\widetilde{\mathcal{V}}|$ paths from 0 to every active node $i \in \widetilde{\mathcal{V}}$

■ Decision Variables: $z_{i}:=1$ if $(0, i)$ is constructed and $=0$ otherwise; $f_{i j k}$: Flow on arc (i, j) with respect to path $0-k$

$$
\begin{align*}
\eta(x, y)=\min & \sum_{i \in \mathcal{N}} z_{i} \tag{2a}\\
\text { s.t.: } & |\widetilde{\mathcal{V}}| \text { paths from node } 0 \text { to every active node } i \tag{2b}\\
& -f_{0 i k}+z_{i} \geq 0 \quad \forall i, k \in \mathcal{N} \tag{2c}\\
& -f_{i j k} \geq-y_{i j} \quad \forall(i, j) \in \mathcal{A}, k \in \mathcal{N} \tag{2d}\\
& z_{i} \in\{0,1\}, \quad f_{i j k} \geq 0 . \tag{2e}
\end{align*}
$$

—Exact MIP Interdiction Models

-Maximizing the Number of Components (MaxNum)

MaxNum Subproblem: Solving $\eta(x, y)$

A transformed directed graph and a feasible solution illustration:

—Exact MIP Interdiction Models

-Maximizing the Number of Components (MaxNum)

Solving MaxNum

■ Good News:)
Fix (x, y) at binary values, and a subproblem LP gives the convex hull in terms of variables z.

- Solution Scheme:

■ Replace $\eta(x, y)$ in the master problem by the subproblem LP dual
■ Linearize bilinear terms of " $x \times$ duals" and " $y \times$ duals" by using McCormick inequalities (since both x and y are binary-valued).

■ Monolithically solve MaxNum in a " $\max \{\max \}=\max$ " framework

MinMaxC

- The master problem is similar to MaxNum except an obj modification:

$$
\begin{equation*}
\min \left\{\eta^{\prime}(x, y)+\frac{1}{n} \sum_{i=1}^{n}\left(1-x_{i}\right):(1 \mathrm{~b})-(1 \mathrm{e})\right\} \tag{2}
\end{equation*}
$$

where $\eta^{\prime}(x, y)$ represents the largest component size for a given (x, y).

- Subproblem Notation:

■ $\sigma_{i k} \in\{0,1\}:=1$ if nodes i and k belong to the same component
■ $\sigma_{k k}=1, \forall k \in \mathcal{N}$
■ $\lambda=\eta^{\prime}(x, y)$ represents the largest component size

MinMaxC: A Monolithic Model

$$
\begin{array}{ll}
\min & \left\{\lambda+\frac{1}{n} \sum_{i=1}^{n}\left(1-x_{i}\right)\right\} \\
\text { s.t. } & (1 \mathrm{~b})-(1 \mathrm{e}), \text { and } \sigma_{k k}=1 \quad \forall k \in \mathcal{N} \\
& \lambda \geq \sum_{i \in \mathcal{N}} \sigma_{i k} \quad \forall k \in \mathcal{N} \\
& \sigma_{j k}-\sigma_{i k} \geq y_{i j}-1 \quad \forall(i, j) \in \mathcal{A}, k \in \mathcal{N} \\
& \sigma_{i k} \in\{0,1\} \quad \forall i, k \in \mathcal{N} . \tag{3d}
\end{array}
$$

- (3b) enforces λ to be the largest component size
- (3c) pushes $\sigma_{j k}=1$ if $\sigma_{i k}=1$ and $y_{i j}=1$. That is, nodes j and k are in the same component, if nodes i and k are in the same component and j is connected to i
- (3) yields the convex hull even with (3d) being linear.

$\boxed{\text { MIP Bounds and Inequalities }}$

How efficient the Monolithic MIP models are?

- Experimental Tests:
- CPLEX 11.0 \& C++; a Dell PowerEdge 2600 UNIX machine with two 3.2 GHz processors; a one-hour time limit
■ Five 20 -node (having 40-60 arcs) and five 30 -node (having 100-200 arcs) graph instances with varied B-values

■ Result Observations:

- CPU time: 10s-100s for most 20-node instances; 100s-800s for 30-node instances
- CPU time \uparrow as $B \uparrow$ at the begining, and then CPU time \downarrow as B continue to \uparrow above a threshold of approximately $0.25|\mathcal{V}|$

On the other hand...

■ Given a tree $T(V, E)$, a DP algorithm can solve:

- $O\left(n^{3}\right) \Rightarrow$ MaxNum on trees
- $O\left(n^{3} \log n\right) \Rightarrow$ MinMaxC on trees

■ Extend the results to k-hole-graph for some k :

- $O\left(n^{3+k}\right) \Rightarrow$ MaxNum
- $O\left(n^{3+k} \log n\right) \Rightarrow$ MinMaxC

DP Algorithms for Specially-Structured Graphs

For an undirected tree $T(V, E)$,
■ r : root node

- T_{i} : subtree rooted at node $i\left(T=T_{r}\right)$

DP Algorithms for Specially-Structured Graphs

For an undirected tree $T(V, E)$,
■ r : root node

- T_{i} : subtree rooted at node $i\left(T=T_{r}\right)$

Key Concept:

- Open set O_{i} : All nodes in the same component to which subroot i belongs, and $o_{i}=\left|O_{i}\right|$
- If i is deleted, then O_{i} is empty and $o_{i}=0$

— MIP Bounds and Inequalities

\square Just Solve the MIP...

DP Algorithms for Specially-Structured Graphs

For an undirected tree $T(V, E)$,
■ r : root node
■ T_{i} : subtree rooted at node $i\left(T=T_{r}\right)$

Key Concept:

■ Open set O_{i} : All nodes in the same component to which subroot i belongs, and $o_{i}=\left|O_{i}\right|$

■ If i is deleted, then O_{i} is empty and $o_{i}=0$

Incumbent Initial Step:

There exists an optimal solution to all MaxNum and MinMaxC instances on tree graphs in which NO leaf node is deleted.

—MIP Bounds and Inequalities

\author{

- Just Solve the MIP...
}

$O\left(n^{3}\right)$ DP algorithms for MaxNum

$f_{i}\left(p_{i}, n_{i}\right)$: the fewest number of deletions required on subtree T_{i}, given that

- $p_{i}:=0$ if subtree root i is deleted, and $=1$ otherwise
- n_{i} : Number of components created, not including O_{i}

■ Note: $f_{l}(1,0)=0$ at every leaf node $l \in V$

$$
f_{i}(1,6)=3
$$

Illustration of $f_{i}\left(p_{i}, n_{i}\right)$ when an open set is present. Note that $n_{i}=6$ here because the open set itself is not counted in n_{i}.

Illustration of $f_{i}\left(p_{i}, n_{i}\right)$ when no open set is present.

\square MIP Bounds and Inequalities

- Just Solve the MIP...

Update $f_{i}\left(p_{i}, n_{i}\right)$ given $f_{v}\left(p_{v}, n_{v}\right), \forall v \in S_{i}$

When $p_{i}=0$ (subtree root i is deleted):
$f_{i}\left(0, n_{i}\right)=\min \quad \sum_{v \in S_{i}} f_{v}\left(p_{v}, n_{v}\right)+1$

$$
\text { s.t. } \quad n_{i}=\sum_{v \in S_{i}} n_{v}+\sum_{v \in S_{i}} p_{v}
$$

Every open set O_{v} becomes a new component after merging.

- MIP Bounds and Inequalities

- Just Solve the MIP...

Update $f_{i}\left(p_{i}, n_{i}\right)$ given $f_{v}\left(p_{v}, n_{v}\right), \forall v \in S_{i}$

When $p_{i}=0$ (subtree root i is deleted):
$f_{i}\left(0, n_{i}\right)=\min \quad \sum_{v \in S_{i}} f_{v}\left(p_{v}, n_{v}\right)+1$

$$
\text { s.t. } \quad n_{i}=\sum_{v \in S_{i}} n_{v}+\sum_{v \in S_{i}} p_{v}
$$

Every open set O_{v} becomes a new component after merging.

When $p_{i}=1$ (not deleted):

$$
\begin{aligned}
f_{i}\left(1, n_{i}\right)=\min & \sum_{v \in S_{i}} f_{v}\left(p_{v}, n_{v}\right) \\
\text { s.t. } & n_{i}=\sum_{v \in S_{i}} n_{v}
\end{aligned}
$$

All open sets O_{v} will merge with O_{i} to form a larger-cardinality open set at i.

—MIP Bounds and Inequalities

Update $f_{i}\left(p_{i}, n_{i}\right)$ given $f_{v}\left(p_{v}, n_{v}\right), \forall v \in S_{i}$

When $p_{i}=0$ (subtree root i is deleted):
$f_{i}\left(0, n_{i}\right)=\min \quad \sum_{v \in S_{i}} f_{v}\left(p_{v}, n_{v}\right)+1$

$$
\text { s.t. } \quad n_{i}=\sum_{v \in S_{i}} n_{v}+\sum_{v \in S_{i}} p_{v}
$$

Every open set O_{v} becomes a new component after merging.

When $p_{i}=1$ (not deleted):

$$
\begin{aligned}
f_{i}\left(1, n_{i}\right)=\min & \sum_{v \in S_{i}} f_{v}\left(p_{v}, n_{v}\right) \\
\text { s.t. } & n_{i}=\sum_{v \in S_{i}} n_{v}
\end{aligned}
$$

All open sets O_{v} will merge with O_{i} to form a larger-cardinality open set at i.

- Calculate $f_{i}\left(p_{i}, n_{i}\right)$ by sequentially merging one subtree at a time
- Since $n_{i} \leq n$, computing f_{i} is $O\left(n^{2}\right)$, for all $i \in V$.
- Total complexity: $O\left(n^{3}\right)$ for solving MaxNum on trees.

$O\left(n^{3} \log n\right)$ DP algorithms for MinMaxC

- $f_{i}\left(o_{i}, m_{i}\right)$: the fewest number of deletions on subtree T_{i}, given

■ an open set of size o_{i} exists on i

- a maximum component size of m_{i} (excluding O_{i})

■ However, since both o_{i} and $m_{i} \leq n$, merging requires $O\left(n^{5}\right)$ steps

$\boxed{\text { MIP Bounds and Inequalities }}$

- Just Solve the MIP...

$O\left(n^{3} \log n\right)$ DP algorithms for MinMaxC

- $f_{i}\left(o_{i}, m_{i}\right)$: the fewest number of deletions on subtree T_{i}, given
- an open set of size o_{i} exists on i
- a maximum component size of m_{i} (excluding O_{i})
- However, since both o_{i} and $m_{i} \leq n$, merging requires $O\left(n^{5}\right)$ steps

■ Define $f_{i}\left(o_{i}, \tau\right)$ instead: the fewest number of deletions on subtree T_{i}, given that

- no component has a larger size than τ (a fixed target)
- it generates an open set of size o_{i} where $o_{i} \leq \tau$
- $f_{l}(1, \tau)=0$ at every leaf node $l \in V$ for any $\tau \geq 1$.

- MIP Bounds and Inequalities

- Just Solve the MIP...

$O\left(n^{3} \log n\right)$ DP algorithms for MinMaxC

- $f_{i}\left(o_{i}, m_{i}\right)$: the fewest number of deletions on subtree T_{i}, given
- an open set of size o_{i} exists on i

■ a maximum component size of m_{i} (excluding O_{i})

- However, since both o_{i} and $m_{i} \leq n$, merging requires $O\left(n^{5}\right)$ steps

■ Define $f_{i}\left(o_{i}, \tau\right)$ instead: the fewest number of deletions on subtree T_{i}, given that

- no component has a larger size than τ (a fixed target)
$■$ it generates an open set of size o_{i} where $o_{i} \leq \tau$
■ $f_{l}(1, \tau)=0$ at every leaf node $l \in V$ for any $\tau \geq 1$.
■ Employ a binary-search scaling scheme over τ; update $f_{i}\left(o_{i}, \tau\right)$ for all $i \in V$ for a given τ

Update $f_{i}\left(o_{i}, \tau\right)$ given $f_{v}\left(o_{v}, \tau\right), \forall v \in S_{i}$

When $o_{i}=0$ (subtree root i is deleted):
$f_{i}(0, \tau)=\min \quad \sum_{v \in S_{i}} f_{v}\left(o_{v}, \tau\right)+1$.
The largest component size is automatically not more than τ.

\square MIP Bounds and Inequalities

- Just Solve the MIP...

Update $f_{i}\left(o_{i}, \tau\right)$ given $f_{v}\left(o_{v}, \tau\right), \forall v \in S_{i}$

When $o_{i}=0$ (subtree root i is deleted):
$f_{i}(0, \tau)=\min \quad \sum_{v \in S_{i}} f_{v}\left(o_{v}, \tau\right)+1$.
The largest component size is automatically not more than τ.

When $o_{i}>0$ (not deleted):
$f_{i}\left(o_{i}, \tau\right)=\min \quad \sum_{v \in S_{i}} f_{v}\left(o_{v}, \tau\right)$
s.t. $\quad o_{i}=\sum_{v \in S_{i}} o_{v}+1 \leq \tau$.

$\boxed{\text { MIP Bounds and Inequalities }}$

- Just Solve the MIP...

Update $f_{i}\left(o_{i}, \tau\right)$ given $f_{v}\left(o_{v}, \tau\right), \forall v \in S_{i}$

When $o_{i}=0$ (subtree root i is deleted): $f_{i}(0, \tau)=\min \quad \sum_{v \in S_{i}} f_{v}\left(o_{v}, \tau\right)+1 . \quad f_{i}\left(o_{i}, \tau\right)=\min \quad \sum_{v \in S_{i}} f_{v}\left(o_{v}, \tau\right)$

The largest component size is automatically not more than τ.

When $o_{i}>0$ (not deleted):
s.t. $\quad o_{i}=\sum_{v \in S_{i}} o_{v}+1 \leq \tau$.

- Initial: Upper bound $U B=n-B$; Lower bound $L B=1 ; \tau=\left\lfloor\frac{n-B+1}{2}\right\rfloor$
- Step 1: Solve MinMaxC for a current $\tau\left(O\left(n^{3}\right)\right.$ steps $)$
- Step 2: Update τ : If $L B<U B$, update $\tau=\lfloor(U B+L B) / 2\rfloor$; go to Step 1 ($O(\log n)$ iterations)
- Total complexity: $O\left(n^{3} \log n\right)$ for solving MinMaxC on trees.

- MIP Bounds and Inequalities

\author{

- Just Solve the MIP...
}

k-hole graphs

■ A hole of a graph: a set of nodes v_{1}, \ldots, v_{m} such that an edge exists between v_{i} and $v_{j}(i<j)$ if and only if $i=j-1$ or $i=1$ and $j=m$.

- $M^{1}, \ldots, M^{k}:$ the k holes in a graph, where nodes $\left\{v_{1}, \ldots, v_{q}\right\}$ compose the union of the nodes in these holes

■ Transform a k-hole graph into a weighted "hole" tree

MaxNum and MinMaxC on k-hole-graphs

- Case 0 (no node is deleted in any hole)
- Every M^{j} is a hole-node with size $\left|M^{j}\right|$
- Yield a tree structure with weighted hole-nodes

■ Use the same DP recursions as before, but prohibit deletions of hole-nodes

$\boxed{\text { MIP Bounds and Inequalities }}$

MaxNum and MinMaxC on k-hole-graphs

- Case 0 (no node is deleted in any hole)
- Every M^{j} is a hole-node with size $\left|M^{j}\right|$
- Yield a tree structure with weighted hole-nodes

■ Use the same DP recursions as before, but prohibit deletions of hole-nodes

- Case i (delete node v_{i} and obtain a p-hole-graph such that $p<k$)

■ Recursively solve on a resulting p-hole-graph

- $\Gamma(k)=$ the complexity on k-hole-graphs, we have that $\Gamma(k)=O(n \Gamma(k-1))$
- Base case: 0-hole-graph (i.e., a tree)

$\boxed{\text { MIP Bounds and Inequalities }}$

- Just Solve the MIP...

MaxNum and MinMaxC on k-hole-graphs

- Case 0 (no node is deleted in any hole)
- Every M^{j} is a hole-node with size $\left|M^{j}\right|$
- Yield a tree structure with weighted hole-nodes

■ Use the same DP recursions as before, but prohibit deletions of hole-nodes

- Case i (delete node v_{i} and obtain a p-hole-graph such that $p<k$)
- Recursively solve on a resulting p-hole-graph
- $\Gamma(k)=$ the complexity on k-hole-graphs, we have that $\Gamma(k)=O(n \Gamma(k-1))$
- Base case: 0-hole-graph (i.e., a tree)

■ Complexities on k-hole-graph: $O\left(n^{3+k}\right)$ for MaxNum, and $O\left(n^{3+k} \log n\right)$ for MinMaxC.

Incorporate DP Solutions into the MIP Framework

■ Idea 1: Optimal DP solutions obtained on k-hole subgraphs of G provide bounds for the real subproblem objectives. However...

- Our computational results show:
- Bounds are generally not very tight, but tighter on smaller G instances (i.e., 20 -node as opposed to 30 - and 40 -node graphs)

■ Idea 2: Employ a graph-partition strategy, solve the DP on each partition, and generate valid inequalities for MIPs.

$\boxed{\text { MIP Bounds and Inequalities }}$

- Valid Inequalities from Partitions

Reformulating the MIP

Notation (MaxNum for instance):

- Partition graph G into m subgraphs G_{1}, \ldots, G_{m}
- k_{i} : the number of holes in each subgraph $G_{i}, \forall i=1, \ldots, m$
- Execute DP on each k_{i}-hole subgraph G_{i} for a budget $\mathrm{B} \Rightarrow$
- $\eta_{i}\left(B_{i}\right)$: maxnum obtained on G_{i} for deletion budgets $B_{i}=0, \ldots, B$ (variables)
- $g_{i}\left(B_{i}\right)$: Piecewise-linear concave envelope function of $\eta_{i}\left(B_{i}\right)$ such that $\eta_{i}\left(B_{i}\right) \leq g_{i}\left(B_{i}\right)$ for all $B_{i}=0, \ldots, B$.

$\boxed{\text { MIP Bounds and Inequalities }}$

- Valid Inequalities from Partitions

Reformulating the MIP

Notation (MaxNum for instance):

- Partition graph G into m subgraphs G_{1}, \ldots, G_{m}
- k_{i} : the number of holes in each subgraph $G_{i}, \forall i=1, \ldots, m$
- Execute DP on each k_{i}-hole subgraph G_{i} for a budget $\mathrm{B} \Rightarrow$
- $\eta_{i}\left(B_{i}\right)$: maxnum obtained on G_{i} for deletion budgets $B_{i}=0, \ldots, B$ (variables)
- $g_{i}\left(B_{i}\right)$: Piecewise-linear concave envelope function of $\eta_{i}\left(B_{i}\right)$ such that $\eta_{i}\left(B_{i}\right) \leq g_{i}\left(B_{i}\right)$ for all $B_{i}=0, \ldots, B$.
Append the following valid inequalities into the MaxNum MIP:

$$
\begin{align*}
& \eta-\sum_{i=1}^{m} \eta_{i} \leq 0 \tag{4a}\\
& \eta_{i}-g_{i}\left(B_{i}\right) \leq 0 \quad \forall i=1, \ldots, m \tag{4b}\\
& B_{i}=\sum_{j \in V_{i}}\left(1-x_{j}\right) \quad \forall i=1, \ldots, m . \tag{4c}
\end{align*}
$$

— MIP Bounds and Inequalities

- Valid Inequalities from Partitions

Example 1: Solving MaxNum

Given a 20-node graph G and $B=10$, solving the $1^{\text {st }}$ partition G_{1} (10-node):

$\boxed{\text { MIP Bounds and Inequalities }}$

- Valid Inequalities from Partitions

Example 1: Solving MaxNum

Given a 20 -node graph G and $B=10$, solving the $2^{\text {nd }}$ partition G_{2} (10-node):

$\boxed{\text { MIP Bounds and Inequalities }}$

- Valid Inequalities from Partitions

Example 1: Solving MaxNum

Inequalities (4a) and (4c) are:

$$
\begin{equation*}
\eta \leq \eta_{1}+\eta_{2}, B_{1}=\sum_{i \in G_{1}}\left(1-x_{i}\right), B_{2}=\sum_{i \in G_{2}}\left(1-x_{i}\right) . \tag{5}
\end{equation*}
$$

Associated with the three-segment $g_{1}\left(B_{1}\right)$, for G_{1}, we generate (4b) as

$$
\begin{equation*}
\eta_{1} \leq 2 B_{1}+1, \quad \eta_{1} \leq B_{1}+4, \quad \eta_{1} \leq 10 \tag{6}
\end{equation*}
$$

Similarly, corresponding to each segment of $g_{2}\left(B_{2}\right)$, for G_{2}, (4b) become

$$
\begin{equation*}
\eta_{2} \leq(4 / 3) B_{2}+1, \quad \eta_{2} \leq B_{2}+3, \quad \eta_{2} \leq 10 \tag{7}
\end{equation*}
$$

— MIP Bounds and Inequalities

- Valid Inequalities from Partitions

Example 2: Solving MinMaxC

$g_{i}^{\prime}\left(B_{i}\right)$ is the convex envelop of $\eta_{i}^{\prime}\left(B_{i}\right)$, and signs in (4a) and (4b) are flipped.

— MIP Bounds and Inequalities

- Valid Inequalities from Partitions

Example 2: Solving MinMaxC

$g_{i}^{\prime}\left(B_{i}\right)$ is the convex envelop of $\eta_{i}^{\prime}\left(B_{i}\right)$, and signs in (4a) and (4b) are flipped.

- MIP Bounds and Inequalities

- Valid Inequalities from Partitions

Example 2: Solving MinMaxC

Inequalities (4a) and (4c) are:

$$
\begin{equation*}
\eta^{\prime} \geq \eta_{1}^{\prime}+\eta_{2}^{\prime}, B_{1}=\sum_{i \in G_{1}}\left(1-x_{i}\right), B_{2}=\sum_{i \in G_{2}}\left(1-x_{i}\right) \tag{8}
\end{equation*}
$$

The following two sets of inequalities are generated to describe $g_{i}^{\prime}\left(B_{i}\right)$, for $i=1,2$:

$$
\begin{align*}
\eta^{\prime} & \geq-3 B_{1}+10, \eta^{\prime} \geq-2 B_{1}+9 \\
\eta^{\prime} & \geq-B_{1}+6, \eta^{\prime} \geq-0.5 B_{1}+4, \eta^{\prime} \geq 1 \tag{9}\\
\eta^{\prime} & \geq-1.5 B_{2}+10, \eta^{\prime} \geq-B_{2}+8, \eta^{\prime} \geq 1 \tag{10}
\end{align*}
$$

— MIP Bounds and Inequalities

CPU Times for 20-node Instances Using 2-Partition

Instance	Prob.	$B=4$		$B=8$	
		Orig.	2-Partition	Orig.	2-Partition
$20-1$	MaxNum	24.62	$[34.52]$	5.94	$[16.85]$
	MinMaxC	16.56	8.15	1.27	$[1.90]$
$20-2$	MaxNum	49.67	43.28	79.48	42.52
	MinMaxC	8.17	6.53	16.22	12.53
$20-3$	MaxNum	51.94	44.24	16.34	$[33.84]$
	MinMaxC	19.55	15.66	13.57	$[19.29]$
$20-4$	MaxNum	41.77	$[88.48]$	36.81	34.13
	MinMaxC	30.71	24.06	15.26	7.72
$20-5$	MaxNum	71.06	54.73	21.55	$[34.65]$
	MinMaxC	33.40	22.19	14.76	14.49

$L_{\text {MIP Bounds and Inequalities }}$

CPU Times for 30-node Instances Using 3-Partition

Instance	Prob.	$B=4$		$B=8$	
		Orig.	3-Partition	Orig.	3-Partition
$30-1$	MaxNum	467.92	384.43	289.14	235.28
	MinMaxC	462.93	391.20	166.24	$[204.12]$
$30-2$	MaxNum	467.93	452.96	209.58	$[218.07]$
	MinMaxC	331.22	$[334.29]$	98.64	87.35
$30-3$	MaxNum	502.85	479.30	725.49	623.58
	MinMaxC	217.05	172.45	117.54	$[121.11]$
$30-4$	MaxNum	516.72	446.82	202.18	183.71
	MinMaxC	345.67	$[351.84]$	94.25	$[96.36]$
$30-5$	MaxNum	432.40	328.66	189.62	171.55
	MinMaxC	479.24	443.74	143.82	143.30

$\square_{\text {MIP Bounds and Inequalities }}$

- CPU Time Comparison

40-node Instances Using 2- and 4-Partition

None 40-node instances can be solved within a one-hour time limit. Thus, we report gaps (\%) reported by CPLEX instead

Instance	Prob.	$B=4$					
		Orig.	2-Partition	4-Partition	Orig.	2-Partition	4-Partition
$40-1$	MaxNum	131.39%	58.12%	131.35%	87.82%	48.07%	87.79%
	MinMaxC	27.82%	11.11%	27.85%	62.47%	32.82%	$[62.49 \%]$
$40-2$	MaxNum	124.51%	124.51%	110.29%	84.68%	33.78%	74.97%
	MinMaxC	26.19%	6.95%	20.42%	58.52%	21.10%	$[58.68 \%]$
$40-3$	MaxNum	122.56%	44.99%	112.14%	85.94%	85.92%	$[88.85 \%]$
	MinMaxC	25.92%	25.77%	25.85%	58.17%	57.09%	47.38%
$40-4$	MaxNum	114.68%	59.95%	$[128.20 \%]$	95.47%	49.98%	86.80%
	MinMaxC	27.93%	27.93%	27.87%	61.52%	47.38%	47.50%
$40-5$	MaxNum	125.26%	44.99%	120.01%	84.15%	53.76%	$[100.18 \%]$
	MinMaxC	26.25%	26.21%	26.20%	59.17%	44.65%	51.80%

Future Research

■ Vary partition patterns, and test the computational efficacy of different valid inequalities

■ Dynamically update partitions within a branch-and-bound (B\&B) tree

■ The locally valid inequalities may lead to a quicker termination and more effective fathoming rules for the $\mathrm{B} \& \mathrm{~B}$ algorithm

Thank you

Questions? ...

