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Node Deletion and Node Disconnection

Introduction

Motivation and Contributions

The MaxNum and MinMaxC on general graphs: NP-hard.

The MaxNum and MinMaxC on specially structured graphs:
Polynomial-time Dynamic Programming Algorithms (Shen and
Smith (2011))

This study will:

1 Formulate two-stage interdiction MIPs having LP subproblems
2 Take the subproblem duals, and integrate the two stages
3 Linearize the monolithic MIP, and solve it to optimality
4 Reformulate the MIP based on subgraph partitions of G, and

generate valid inequalities by using intermediate
polynomial-time optimal DP solutions from each partition.
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Node Deletion and Node Disconnection

Exact MIP Interdiction Models

Master Problem (MaxNum)

max

(
η(x, y)−

1
n

nX
i=1

(1− xi)

)
(1a)

s.t.
X
i∈V

(1− xi) ≤ B (1b)

xi + xj − 1 ≤ yij ∀(i, j) ∈ E (1c)

xi ∈ {0, 1} ∀i ∈ V (1d)

0 ≤ yij ≤ 1 ∀(i, j) ∈ E, (1e)

Undirected graph G(V, E), where V = {1, . . . , n} and E ⊂ V × V
η(x, y): Subproblem objective, e.g., number of components for MaxNum

xi ∈ {0, 1}: xi = 1 if node i is not deleted, and xi = 0 if i is deleted

yij ∈ {0, 1}: yij = 1 if edge (i, j) exists, and yij = 0 otherwise (yij = xixj)

B: Given node deletion budget (positive integer)
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Node Deletion and Node Disconnection

Exact MIP Interdiction Models

Maximizing the Number of Components (MaxNum)

MaxNum Subproblem: Solving η(x, y)

Formulate on a directed transformation network eG(N ,A)

Design a dummy node 0 and a unit cost for constructing arc (0, i), ∀i ∈ V
GOAL: To flow |eV| paths from 0 to every active node i ∈ eV
Decision Variables: zi: = 1 if (0, i) is constructed and = 0 otherwise; fijk:
Flow on arc (i, j) with respect to path 0–k

η(x, y) = min
X
i∈N

zi (2a)

s.t.: |eV| paths from node 0 to every active node i (2b)

−f0ik + zi ≥ 0 ∀i, k ∈ N (2c)

−fijk ≥ −yij ∀(i, j) ∈ A, k ∈ N (2d)

zi ∈ {0, 1}, fijk ≥ 0. (2e)
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Node Deletion and Node Disconnection

Exact MIP Interdiction Models

Maximizing the Number of Components (MaxNum)

MaxNum Subproblem: Solving η(x, y)

A transformed directed graph and a feasible solution illustration:
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Exact MIP Interdiction Models

Maximizing the Number of Components (MaxNum)

Solving MaxNum

Good News: )

Fix (x, y) at binary values, and a subproblem LP gives the convex hull
in terms of variables z.

Solution Scheme:

Replace η(x, y) in the master problem by the subproblem LP dual

Linearize bilinear terms of “x × duals" and “y × duals" by using
McCormick inequalities (since both x and y are binary-valued).

Monolithically solve MaxNum in a “max{max} = max" framework
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Exact MIP Interdiction Models

Minimizing the Largest Component Size (MinMaxC)

MinMaxC

The master problem is similar to MaxNum except an obj modification:

min

(
η′(x, y) +

1
n

nX
i=1

(1− xi) : (1b)–(1e)

)
, (2)

where η′(x, y) represents the largest component size for a given (x, y).

Subproblem Notation:

σik ∈ {0, 1}: = 1 if nodes i and k belong to the same component

σkk = 1, ∀k ∈ N

λ = η′(x, y) represents the largest component size
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Node Deletion and Node Disconnection

Exact MIP Interdiction Models

Minimizing the Largest Component Size (MinMaxC)

MinMaxC: A Monolithic Model

min

(
λ+

1
n

nX
i=1

(1− xi)

)
(3a)

s.t. (1b)–(1e), and σkk = 1 ∀k ∈ N

λ ≥
X
i∈N

σik ∀k ∈ N (3b)

σjk − σik ≥ yij − 1 ∀(i, j) ∈ A, k ∈ N (3c)

σik ∈ {0, 1} ∀i, k ∈ N . (3d)

(3b) enforces λ to be the largest component size

(3c) pushes σjk = 1 if σik = 1 and yij = 1. That is, nodes j and k are in the same
component, if nodes i and k are in the same component and j is connected to i

(3) yields the convex hull even with (3d) being linear.
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Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

How efficient the Monolithic MIP models are?

Experimental Tests:

CPLEX 11.0 & C++; a Dell PowerEdge 2600 UNIX machine
with two 3.2 GHz processors; a one-hour time limit
Five 20-node (having 40 - 60 arcs) and five 30-node (having
100-200 arcs) graph instances with varied B-values

Result Observations:

CPU time: 10s-100s for most 20-node instances; 100s-800s for
30-node instances
CPU time ↑ as B ↑ at the begining, and then CPU time ↓ as B
continue to ↑ above a threshold of approximately 0.25|V|
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Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

On the other hand...

Given a tree T(V,E), a DP algorithm can solve:
O(n3)⇒MaxNum on trees

O(n3 log n)⇒MinMaxC on trees

Extend the results to k-hole-graph for some k:
O(n3+k)⇒MaxNum

O(n3+k log n)⇒MinMaxC
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Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

DP Algorithms for Specially-Structured Graphs

For an undirected tree T(V,E),

r: root node

Ti: subtree rooted at node i (T = Tr)

Key Concept:

Open set Oi: All nodes in the same component to which subroot i
belongs, and oi = |Oi|

If i is deleted, then Oi is empty and oi = 0

Incumbent Initial Step:

There exists an optimal solution to all MaxNum and MinMaxC instances on
tree graphs in which NO leaf node is deleted.
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Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

O(n3) DP algorithms for MaxNum

fi(pi, ni): the fewest number of deletions required on subtree Ti, given that

pi: = 0 if subtree root i is deleted, and = 1 otherwise

ni: Number of components created, not including Oi

Note: fl(1, 0) = 0 at every leaf node l ∈ V

    
  

  (   )     

Illustration of   (     ) when an open set is 

present. Note that      here because the 

open set itself is not counted in   . 

  (   )     

Illustration of   (     ) when no open set 

is present. 
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Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

Update fi(pi, ni) given fv(pv, nv), ∀v ∈ Si

When pi = 0 (subtree root i is
deleted):

fi(0, ni) = min
∑
v∈Si

fv(pv, nv) + 1

s.t. ni =
∑
v∈Si

nv +
∑
v∈Si

pv

Every open set Ov becomes a new
component after merging.

When pi = 1 (not deleted):

fi(1, ni) = min
∑
v∈Si

fv(pv, nv)

s.t. ni =
∑
v∈Si

nv

All open sets Ov will merge with
Oi to form a larger-cardinality open
set at i.

Calculate fi(pi, ni) by sequentially merging one subtree at a time

Since ni ≤ n, computing fi is O(n2), for all i ∈ V .

Total complexity: O(n3) for solving MaxNum on trees.

14 / 27



Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

Update fi(pi, ni) given fv(pv, nv), ∀v ∈ Si

When pi = 0 (subtree root i is
deleted):

fi(0, ni) = min
∑
v∈Si

fv(pv, nv) + 1

s.t. ni =
∑
v∈Si

nv +
∑
v∈Si

pv

Every open set Ov becomes a new
component after merging.

When pi = 1 (not deleted):

fi(1, ni) = min
∑
v∈Si

fv(pv, nv)

s.t. ni =
∑
v∈Si

nv

All open sets Ov will merge with
Oi to form a larger-cardinality open
set at i.

Calculate fi(pi, ni) by sequentially merging one subtree at a time

Since ni ≤ n, computing fi is O(n2), for all i ∈ V .

Total complexity: O(n3) for solving MaxNum on trees.

14 / 27



Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

Update fi(pi, ni) given fv(pv, nv), ∀v ∈ Si

When pi = 0 (subtree root i is
deleted):

fi(0, ni) = min
∑
v∈Si

fv(pv, nv) + 1

s.t. ni =
∑
v∈Si

nv +
∑
v∈Si

pv

Every open set Ov becomes a new
component after merging.

When pi = 1 (not deleted):

fi(1, ni) = min
∑
v∈Si

fv(pv, nv)

s.t. ni =
∑
v∈Si

nv

All open sets Ov will merge with
Oi to form a larger-cardinality open
set at i.

Calculate fi(pi, ni) by sequentially merging one subtree at a time

Since ni ≤ n, computing fi is O(n2), for all i ∈ V .

Total complexity: O(n3) for solving MaxNum on trees.

14 / 27



Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

O(n3 log n) DP algorithms for MinMaxC

fi(oi,mi): the fewest number of deletions on subtree Ti, given

an open set of size oi exists on i

a maximum component size of mi (excluding Oi)

However, since both oi and mi ≤ n, merging requires O(n5) steps

Define fi(oi, τ) instead: the fewest number of deletions on
subtree Ti, given that

no component has a larger size than τ (a fixed target)
it generates an open set of size oi where oi ≤ τ
fl(1, τ) = 0 at every leaf node l ∈ V for any τ ≥ 1.

Employ a binary-search scaling scheme over τ ; update fi(oi, τ)
for all i ∈ V for a given τ
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Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

Update fi(oi, τ) given fv(ov, τ), ∀v ∈ Si

When oi = 0 (subtree root i is deleted):

fi(0, τ) = min
X
v∈Si

fv(ov, τ) + 1.

The largest component size is
automatically not more than τ .

When oi > 0 (not deleted):

fi (oi, τ) = min
X
v∈Si

fv(ov, τ)

s.t. oi =
X
v∈Si

ov + 1 ≤ τ.

Initial: Upper bound UB = n− B; Lower bound LB = 1; τ = b n−B+1
2 c

Step 1: Solve MinMaxC for a current τ (O(n3) steps)

Step 2: Update τ : If LB < UB, update τ = b(UB + LB)/2c; go to Step 1
(O(log n) iterations)

Total complexity: O(n3 log n) for solving MinMaxC on trees.
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Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

k-hole graphs

A hole of a graph: a set of nodes v1, . . . , vm such that an edge exists
between vi and vj (i < j) if and only if i = j− 1 or i = 1 and j = m.

M1, . . . ,Mk: the k holes in a graph, where nodes {v1, . . . , vq} compose
the union of the nodes in these holes

Transform a k-hole graph into a weighted “hole” tree
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Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

MaxNum and MinMaxC on k-hole-graphs

Case 0 (no node is deleted in any hole)

Every Mj is a hole-node with size |Mj|

Yield a tree structure with weighted hole-nodes

Use the same DP recursions as before, but prohibit deletions of
hole-nodes

Case i (delete node vi and obtain a p-hole-graph such that p < k)

Recursively solve on a resulting p-hole-graph

Γ(k) = the complexity on k-hole-graphs, we have that
Γ(k) = O(n Γ(k − 1))

Base case: 0-hole-graph (i.e., a tree)

Complexities on k-hole-graph: O(n3+k) for MaxNum, and
O(n3+k log n) for MinMaxC.
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Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Just Solve the MIP...

Incorporate DP Solutions into the MIP Framework

Idea 1: Optimal DP solutions obtained on k-hole subgraphs of G
provide bounds for the real subproblem objectives. However...

Our computational results show:

Bounds are generally not very tight, but tighter on smaller G
instances (i.e., 20-node as opposed to 30- and 40-node graphs)

Idea 2: Employ a graph-partition strategy, solve the DP on each
partition, and generate valid inequalities for MIPs.
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Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Valid Inequalities from Partitions

Reformulating the MIP

Notation (MaxNum for instance):

Partition graph G into m subgraphs G1, . . . ,Gm

ki: the number of holes in each subgraph Gi, ∀i = 1, . . . ,m

Execute DP on each ki-hole subgraph Gi for a budget B⇒
ηi(Bi): maxnum obtained on Gi for deletion budgets Bi = 0, . . . ,B (variables)

gi(Bi): Piecewise-linear concave envelope function of ηi(Bi) such that ηi(Bi) ≤ gi(Bi)
for all Bi = 0, . . . ,B.

Append the following valid inequalities into the MaxNum MIP:

η −
mX

i=1

ηi ≤ 0 (4a)

ηi − gi(Bi) ≤ 0 ∀i = 1, . . . ,m (4b)

Bi =
X
j∈Vi

(1− xj) ∀i = 1, . . . ,m. (4c)
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Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Valid Inequalities from Partitions

Example 1: Solving MaxNum
Given a 20-node graph G and B = 10, solving the 1st partition G1 (10-node):
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Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Valid Inequalities from Partitions

Example 1: Solving MaxNum
Given a 20-node graph G and B = 10, solving the 2nd partition G2 (10-node):

21 / 27



Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Valid Inequalities from Partitions

Example 1: Solving MaxNum

Inequalities (4a) and (4c) are:

η ≤ η1 + η2, B1 =
X
i∈G1

(1− xi), B2 =
X
i∈G2

(1− xi). (5)

Associated with the three-segment g1(B1), for G1, we generate (4b) as

η1 ≤ 2B1 + 1, η1 ≤ B1 + 4, η1 ≤ 10. (6)

Similarly, corresponding to each segment of g2(B2), for G2, (4b) become

η2 ≤ (4/3)B2 + 1, η2 ≤ B2 + 3, η2 ≤ 10. (7)

21 / 27



Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Valid Inequalities from Partitions

Example 2: Solving MinMaxC
g′i(Bi) is the convex envelop of η′i (Bi), and signs in (4a) and (4b) are flipped.
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Node Deletion and Node Disconnection

MIP Bounds and Inequalities

Valid Inequalities from Partitions

Example 2: Solving MinMaxC

Inequalities (4a) and (4c) are:

η′ ≥ η′1 + η′2, B1 =
X
i∈G1

(1− xi), B2 =
X
i∈G2

(1− xi). (8)

The following two sets of inequalities are generated to describe g′i(Bi), for i = 1, 2:

η′ ≥ −3B1 + 10, η′ ≥ −2B1 + 9,

η′ ≥ −B1 + 6, η′ ≥ −0.5B1 + 4, η′ ≥ 1 (9)

η′ ≥ −1.5B2 + 10, η′ ≥ −B2 + 8, η′ ≥ 1 (10)
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Node Deletion and Node Disconnection

MIP Bounds and Inequalities

CPU Time Comparison

CPU Times for 20-node Instances Using 2-Partition

Instance Prob.
B = 4 B = 8

Orig. 2-Partition Orig. 2-Partition

20-1
MaxNum 24.62 [34.52] 5.94 [16.85]
MinMaxC 16.56 8.15 1.27 [1.90]

20-2
MaxNum 49.67 43.28 79.48 42.52
MinMaxC 8.17 6.53 16.22 12.53

20-3
MaxNum 51.94 44.24 16.34 [33.84]
MinMaxC 19.55 15.66 13.57 [19.29]

20-4
MaxNum 41.77 [88.48] 36.81 34.13
MinMaxC 30.71 24.06 15.26 7.72

20-5
MaxNum 71.06 54.73 21.55 [34.65]
MinMaxC 33.40 22.19 14.76 14.49
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Node Deletion and Node Disconnection

MIP Bounds and Inequalities

CPU Time Comparison

CPU Times for 30-node Instances Using 3-Partition

Instance Prob.
B = 4 B = 8

Orig. 3-Partition Orig. 3-Partition

30-1
MaxNum 467.92 384.43 289.14 235.28
MinMaxC 462.93 391.20 166.24 [204.12]

30-2
MaxNum 467.93 452.96 209.58 [218.07]
MinMaxC 331.22 [334.29] 98.64 87.35

30-3
MaxNum 502.85 479.30 725.49 623.58
MinMaxC 217.05 172.45 117.54 [121.11]

30-4
MaxNum 516.72 446.82 202.18 183.71
MinMaxC 345.67 [351.84] 94.25 [96.36]

30-5
MaxNum 432.40 328.66 189.62 171.55
MinMaxC 479.24 443.74 143.82 143.30
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CPU Time Comparison

40-node Instances Using 2- and 4-Partition

None 40-node instances can be solved within a one-hour time limit.
Thus, we report gaps (%) reported by CPLEX instead

Instance Prob.
B = 4 B = 8

Orig. 2-Partition 4-Partition Orig. 2-Partition 4-Partition

40-1
MaxNum 131.39% 58.12% 131.35% 87.82% 48.07% 87.79%
MinMaxC 27.82% 11.11% 27.85% 62.47% 32.82% [62.49%]

40-2
MaxNum 124.51% 124.51% 110.29% 84.68% 33.78% 74.97%
MinMaxC 26.19% 6.95% 20.42% 58.52% 21.10% [58.68%]

40-3
MaxNum 122.56% 44.99% 112.14% 85.94% 85.92% [88.85%]
MinMaxC 25.92% 25.77% 25.85% 58.17% 57.09% 47.38%

40-4
MaxNum 114.68% 59.95% [128.20%] 95.47% 49.98% 86.80%
MinMaxC 27.93% 27.93% 27.87% 61.52% 47.38% 47.50%

40-5
MaxNum 125.26% 44.99% 120.01% 84.15% 53.76% [100.18%]
MinMaxC 26.25% 26.21% 26.20% 59.17% 44.65% 51.80%
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Future Research

Vary partition patterns, and test the computational efficacy of
different valid inequalities

Dynamically update partitions within a branch-and-bound
(B&B) tree

The locally valid inequalities may lead to a quicker termination
and more effective fathoming rules for the B&B algorithm
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Thank you

Questions? . . .
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