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SM1. Relaxation of a-rectangularity. In this section, we investigate a vari-
ant of DR-POMDP where we relax the rectangularity condition of the ambiguity set
in the actions. So far, we have only considered the setting where the ambiguity set
is rectangular in terms of the states in S and the actions in A. This is known as
(s, a)-rectangular set in the literature of [3], who defined the term in the context of
robust MDP. Ref. [3] also considered s-rectangular set in robust POMDP, which is
only rectangular in terms of the states S. This setting has randomized policy as the
optimal policy. We take a similar approach and formulate the Bellman equation:

V t(b) = max
φ∈∆(A)

min
µ∈D

EP∼µ

[∑
a∈A

φa
∑
s∈S

bs

(
ras + β

∑
z∈Z

JzpasV
t+1 (f (b, a,pa, z))

)]
,

(SM1.1)

where φa is the probability for selecting action a. We define the ambiguity set to be

D̃s =

µ̃s
psrs
ũs

∣∣∣∣∣∣ E(ps,rs,ũs)∼µ̃s [Fsps +Gsrs +Hsũs] = cs,
µ̃s (Xs) = 1

 ,(SM1.2)

where ũs ∈ RQ is a vector of auxiliary variables, and

Xs =


psrs
ũs

 ∈ R|A|×|S|×|Z|
R|A|
RL

∣∣∣∣∣∣ Bsps + Csrs + Esũs �Ks ds

 .(SM1.3)

Here, Fs ∈ Rk×(|A|×|S|×|Z|), Gs ∈ Rk×|A|, Hs ∈ Rk×L, cs ∈ Rk, Bs ∈ R`×(|A|×|S|×|Z|),
Cs ∈ R`×|A|, Es ∈ R`×L, and ds ∈ R`.

The value function is also convex in the form (4.10), since for t < T ,

V t(b) = max
φ∈∆(A)

max
αaz∈Conv(Λt+1)
∀a∈A, z∈Z

∑
s∈S

bs min
(p̂s,r̂s, ˆ̃us)

φ>

(
β
∑
z∈Z

[(
α>azJaz

)>
, a ∈ A

]>
p̂s + r̂s

)

s.t. Fsp̂s +Gsr̂s +Hs
ˆ̃us = cs, ∀s ∈ S

Bsp̂s + Csr̂s + Es ˆ̃us �Ks ds, ∀s ∈ S
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where Jaz ∈ R|S|×(|A|×|S|×|Z|) is a matrix of zeros and ones that maps ps to pasz.
For an exact algorithm, we solve the inner minimization problem for all φ ∈ ∆(A),
αaz ∈ Conv(Λt+1), ∀z ∈ Z, a ∈ A. The optimal objective is used for constructing
the set Λt, at each time step t.

SM2. General Ambiguity Set. In this section, we provide a general form of
the ambiguity set where the mean values are on an affine manifold, and the supports
are conic representable. For all a ∈ A and s ∈ S, we define a non-empty ambiguity
set

D̃as =

µ̃as
pasras
ũas

∣∣∣∣∣∣ E(pas,ras,ũas)∼µ̃as [Faspas +Gasras +Hasũas] = cas,
µ̃as (Xas) = 1

 ,

(SM2.1)

where ũas ∈ RL is a vector of auxiliary variables, and a support with a non-empty
relative interior

Xas =


pasras
ũas

 ∈ R|S|×|Z|
R
RL

∣∣∣∣∣∣ Baspas + Casras + Easũas �Kas das

 .(SM2.2)

Here, Fas ∈ Rk×(|S|×|Z|), Gas ∈ Rk×1, Has ∈ Rk×L, cas ∈ Rk, Bas ∈ R`×(|S|×|Z|),
Cas ∈ R`×1, Eas ∈ R`×L, and das ∈ R`. The symbol �Kas represents a generalized
inequality with respect to a proper cone Kas. We denote the marginal distribution
by µas =

∏
(pas,ras)

µ̃as, and also extend the definition to the ambiguity set so that

Das =
∏

(pas,ras)
D̃as =

⋃
µ̃as∈D̃as

∏
(pas,ras)

µ̃as. The auxiliary variables ũas are used
for “lifting” techniques, enabling the representation of nonlinear constraints to linear
ones.

SM3. Proofs of Theorems 4.3 and 4.4.
First, we provide a detailed proof for Theorem 4.3 below.

Proof. We show the result by induction. When t = T , V T (b) = 0 satisfies (4.10).
For t < T , the inner problem Qt(b, a) described in (4.7) becomes

min
µ̃a∈P(X̃a)

E(pa,ũa)∼µ̃a

[∑
s∈S

bs

(
ras + β

∑
z∈Z

1>JzpasV
t+1 (f(b, a,pa, z))

)]
(SM3.1a)

s.t. E(pa,ũa)∼µ̃a [ũas] = cas, ∀s ∈ S(SM3.1b)

E(pa,ũa)∼µ̃a

[
I
(

(pas, ũas) ∈ X̃as
)]

= 1, ∀s ∈ S(SM3.1c)

for all a ∈ A. Here I(·) is an indicator function, such that if event · is true, it returns
value 1 and 0 otherwise. Associating the dual variables ρas and ωas with constraints
(SM3.1b) and (SM3.1c), respectively, we formulate the dual of (SM3.1) as

max
ρa,ωa

∑
s∈S

c>asρas +
∑
s∈S

ωas(SM3.2a)

s.t.
∑
s∈S

ũ>asρas +
∑
s∈S

ωas(SM3.2b)

≤
∑
s∈S

bs

ras + β
∑
z∈Z

1>JzpasV
t+1 (f(b, a,pa, z))

 ∀(pa, ũa) ∈ X̃a

ρas ∈ R|S|×|Z|, ωas ∈ R ∀s ∈ S.(SM3.2c)
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Constraints (SM3.2b) are further equivalent to the following inequality with a mini-
mization problem on the right-hand side (RHS).∑

s∈S

ωas ≤(SM3.3a)

min
(pa,ũa)

∑
s∈S

bs

(
ras + β

∑
z∈Z

1>JzpasV
t+1 (f(b, a,pa, z))

)
−
∑
s∈S

ũ>asρas

s.t. ũas ≥ pas − p̄as ∀s ∈ S(SM3.3b)

ũas ≥ p̄as − pas ∀s ∈ S(SM3.3c)

1>pas = 1 ∀s ∈ S(SM3.3d)

pas ≥ 0 ∀s ∈ S.(SM3.3e)

Substituting (4.10) for V t+1 and (4.1) for f(b, a,pa, z), we obtain

RHS of (SM3.3) = min
(pa,ũa)

∑
s∈S

bsras + β
∑
z∈Z

max
αaz∈Λt+1

[
α>az

∑
s∈S

Jzpasbs

]
−
∑
s∈S

ũ>asρas(SM3.4)

s.t. (SM3.3b)–(SM3.3e).

Since the objective of the maximization problem is linear in terms of αaz,∀z ∈ Z, the
optimal objective value does not change by taking the convex hull of Λt+1, denoted
as Conv

(
Λt+1

)
. Bringing the maximization to the front, we have

(SM3.4) = min
(pa,ũa)

max
αaz∈Conv(Λt+1)

∀z∈Z

[∑
s∈S

bsras + β
∑
z∈Z

α>az
∑
s∈S

Jzpasbs−
∑
s∈S

ũ>asρas

]
(SM3.5)

s.t. (SM3.3b)–(SM3.3e)

The expression in the bracket is convex (linear) in (pa, ũa) for fixed αaz, z ∈ Z, and
concave (affine) inαaz, z ∈ Z given fixed values of (pa, ũa). Moreover, (SM3.3b)–(SM3.3e)
and Conv

(
Λt+1

)
are convex sets. The minimax theorem (see, e.g., [2], [1]) ensures

that the problem is equivalent to

(SM3.5) = max
αaz∈Conv(Λt+1)

∀z∈Z

min
(pa,ũa)

∑
s∈S

bsras + β
∑
z∈Z

α>az
∑
s∈S

Jzpasbs −
∑
s∈S

ũ>asρas

(SM3.6)

s.t. (SM3.3b)–(SM3.3e)

We take the dual of the inner minimization by associating dual variables κ1
as, κ

2
as,

σas with constraints (SM3.3b)–(SM3.3d), respectively. We thus have the following
equivalence:

(SM3.6) = max
αaz∈Conv(Λt+1)

∀z∈Z

max
κ1
a,κ

2
a,σa

∑
s∈S

bsras +
∑
s∈S

(
−p̄>asκ1

as + p̄>asκ
2
as + σas

)(SM3.7a)

s.t. βbs
∑
z∈Z

Jz
>αaz + κ1

as − κ2
as − 1σas ≥ 0, ∀s ∈ S(SM3.7b)

κ1
as + κ2

as + ρas = 0, ∀s ∈ S(SM3.7c)

κ1
as,κ

2
as ∈ R|S|×|Z|+ , σas ∈ R, ∀s ∈ S,(SM3.7d)
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Due to (SM3.3), we substitute
∑
s∈S ωas in the objective function (SM3.2a) with

(SM3.7). As a result, the value function (4.5) is equivalent to

V t(b) = max
a∈A

max
αaz∈Conv(Λt+1)

∀z∈Z

(SM3.8a)

max
ρa,κ1

a,κ
2
a,σa

∑
s∈S

c>asρas +
∑
s∈S

bsras +
∑
s∈S

(
−p̄>asκ1

as + p̄>asκ
2
as + σas

)
s.t. (SM3.7b)–(SM3.7d)

ρas ∈ R|S|×|Z| ∀s ∈ S,(SM3.8b)

and after taking the dual of the most inner maximization problem, we have

V t(b) = max
a∈A

max
αaz∈Conv(Λt+1)

∀z∈Z

∑
s∈S

bs × Ξ(a,αaz ∀z ∈ Z, s),(SM3.9)

where

Ξ(a,αaz ∀z ∈ Z, s) = min
(pas,ũas)

β
∑
z∈Z

α>azJzpas + ras(SM3.10a)

s.t. cas ≥ pas − p̄as(SM3.10b)

cas ≥ p̄as − pas(SM3.10c)

1>pas = 1(SM3.10d)

pas ≥ 0.(SM3.10e)

Defining set Λt as

{
(Ξ(a,αaz ∀z ∈ Z, s), s ∈ S)

>
∣∣∣∣ ∀a ∈ A,
∀αaz ∈ Conv

(
Λt+1

)
, ∀z ∈ Z

}
,

it follows that the above value function in (SM3.9) is of the form (4.10). Furthermore,
by induction, this is true for all t. This completes the proof.

The proof of Theorem 4.4 is given as follows.

Proof. Consider two arbitrary value functions V1 and V2. Given belief state b, let

a?i = arg max
a∈A

min
µa∈D̃a

E(pa,ra)∼µa

[∑
s∈S

bs

(
ras + β

∑
z∈Z

1>JzpasVi (f(b, a,pa, z))

)]
,

for i = 1, 2, and for all actions a ∈ A, denote

µ?a,i = arg min
µa∈D̃a

E(pa,ra)∼µa

[∑
s∈S

bs

(
ras + β

∑
z∈Z

1>JzpasVi (f(b, a,pa, z))

)]
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for i = 1, 2. First, suppose that LV1(b) ≥ LV2(b). Then,

0 ≤ LV1(b)− LV2(b)

= E(pa?1
,ra?1

)∼µ?
a?1 ,1

∑
s∈S

bs

ra?1s + β
∑
z∈Z

1
>
Jzpa?1s

V1

(
f(b, a

?
1 ,pa?1

, z)
)

− E(pa?2
,ra?2

)∼µ?
a?2 ,2

∑
s∈S

bs

ra?2s + β
∑
z∈Z

1
>
Jzpa?2s

V2

(
f(b, a

?
2 ,pa?2

, z)
)

≤ E(pa?1
,ra?1

)∼µ?
a?1 ,2

∑
s∈S

bs

ra?1s + β
∑
z∈Z

1
>
Jzpa?1s

V1

(
f(b, a

?
1 ,pa?1

, z)
)

− E(pa?1
,ra?1

)∼µ?
a?1 ,2

∑
s∈S

bs

ra?1s + β
∑
z∈Z

1
>
Jzpa?1s

V2

(
f(b, a

?
1 ,pa?1

, z)
)

= βE(pa?1
,ra?1

)∼µ?
a?1 ,2

[∑
s∈S

bs
∑
z∈Z

1
>
Jzpa?1s

×
(
V1

(
f(b, a

?
1 , z,pa?1

)
)
− V2

(
f(b, a

?
1 ,pa?1

, z)
))]

.

(SM3.11)

The inequality follows that we replace the nature’s optimal decision µ?a?1 ,1 for V1 by

µ?a?1 ,2, and replace the DM’s optimal solution a?2 for V2 by a?1. Then, by changing the

difference between V1 and V2 to the absolute value of the difference, we have

(SM3.11) ≤ βE(pa?1
,ra?1

)∼µ?
a?1 ,2

[∑
s∈S

bs
∑
z∈Z

1
>
Jzpa?1s

×
∣∣∣V1

(
f(b, a

?
1 ,pa?1

, z)
)
− V2

(
f(b, a

?
1 , z,pa?1

)
)∣∣∣]

≤ βE(pa?1
,ra?1

)∼µ?
a?1 ,2

∑
s∈S

bs
∑
z∈Z

1
>
Jzpa?1s

sup
b′∈∆(S)

∣∣V1(b
′
)− V2(b

′
)
∣∣

= β sup
b′∈∆(S)

∣∣V1(b
′
)− V2(b

′
)
∣∣ .

The second inequality follows that we take the supremum for all belief states b′ ∈
∆(S), and the last equality is because E(pa?1

,ra?1
)∼µ?

a?1 ,2

[∑
s∈S bs

∑
z∈Z 1>Jzpa?1s

]
= 1.

The same result holds for the case where LV1(b) < LV2(b). Thus, for any belief
state value b, it follows that

|LV1(b)− LV2(b)| ≤ β sup
b′∈∆(S)

|V1(b′)− V2(b′)| ,

and therefore,

sup
b∈∆(S)

|LV1(b)− LV2(b)| ≤ β sup
b′∈∆(S)

|V1(b′)− V2(b′)| ,

yielding that L is a contraction under 0 < β < 1. This completes the proof.
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