Tables S5-S8: Photochemical reactions involving mercury

SANFORD SILLMAN, FRANK MARSIK, KHALID I. AL-WALI, GERALD J. KEELER AND MATTHEW S. LANDIS* Department of Atmospheric, Oceanic and Space Sciences University of Michigan Ann Arbor, Michigan 48109-2143

*Office of Research and Development, USEPA, Research Triangle Park, NC 27711

The tables listed here give the reactions used to represent atmospheric mercury in the model described by *Sillman et al.* [2007] (Reactive mercury in the troposphere: Model formation and results for Florida, the northeastern U.S. and the Atlantic Ocean, *J. Geophys. Res.*, 10.1029/2006JD008227, 2007).

Aqueous reactions for other species and gas-phase halogen chemistry is described in Tables S1-S4. The mechanism for gas-phase photochemistry (other than mercury or halogens) is described in Appendix A of *Ito et al.* [2007].

This file includes the following tables:

- Table S5: Henry's law coefficients for species containing mercury.
- Table S6: Aqueous equilibrium coefficients for species containing mercury.
- Table S7: Aqueous reactions for species containing mercury.
- Table S8: Gas-phase reactions for species containing mercury.

Henry's Law coefficients for species containing mercury

Values here represent the physical Henry constants (K_H) and do not take into account enhanced solubilities due to dissociation equilibria.

Abbreviations and units:

K_{H298}=Henry's law coefficient at 298 K, expresed in M atm⁻¹.

 ΔH = enthalpy of solution, expressed as $\Delta H/R$ (where R represents the gas constant) in units °K.

The temperature dependence is represented by $K_{\rm H} = K_{\rm H298} \exp[-\Delta H/R(1/T - 1/298)]$ for temperature T in °K.

Species	K _{H298}	ΔH/R	Reference
Hg	0.11E+00	0.	
Hg(OH) ₂	1.2E+04	0.	
HgO	1.4E+06	0.	
HgCl ₂	1.4E+06	0.	
HgBr ₂	1.4E+06	0.	
$Hg(SO_3)_2^1$	1.0E+08 ¹		see note 1.

1. Species such as $Hg(SO_3)_2$ that form soluble aerosols are represented by a gas-phase pseudo-species with a very high Henry constant, which insures rapid incorporation into the aqueous phase. This is used in model calculations that do not include explicit treatment of aerosols.

Aqueous equilibrium coefficients for species containing mercury

 K_{aq} represents the equilibrium constant for reactions with the form C<=>A+B, with

format Kaq = [A][B]/[C], in M.

Abbreviations and units:

K_{aq298}=equilibrium constant at 298 K, in M.

 ΔH = reaction enthalpy, expressed as $\Delta H/R$ (where R represents the gas constant) in units °K.

The temperature dependence is represented by $K_{aq} = K_{aq298} \exp[-\Delta H/R(1/T - 1/298)]$ for temperature T in °K.

Reaction	K _{aq298}	ΔH/R	Reference
Hg(OH) ₂ ↔OH ⁻ +HgOH ⁺	2.344E-11	0.	Lin, 1997, 1998a, 2005
HgOH ⁺ ↔OH ⁻ +Hg ⁺²	2.455E-12	0.	Lin, 1997, 1998a, 2005,
			see note 1
HgOHCl↔OH ⁻ +HgCl ⁺	1.122E-11	0.	Lin, 1997, 1998a, 2005
			see note 2
$HgCl^+ \leftrightarrow Cl^- + Hg^{+2}$	6.012E-08	0.	Lin, 1997, 1998a, 2005
$HgCl_2 \leftrightarrow Cl^+ HgCl^+$	1.995E-07	0.	Lin, 1997, 1998a, 2005,
			see note 3
HgOHBr↔OH ⁻ +HgBr ⁺	1.122E-11	0.	Lin, 1997, 1998a, 2005,
			see note 2
$HgBr^+ \leftrightarrow Br^- + Hg^{+2}$	6.012E-08	0.	Lin, 1997, 1998a, 2005
$HgBr_2 \leftrightarrow Br^+ HgBr^+$	1.995E-07	0.	Lin, 1997, 1998a, 2005,
			see note 3
$HgSO_3 \leftrightarrow SO_3^{-2} + Hg^{+2}$	1.995E-13	0.	van Loon, 2001
$Hg(SO_3)_2^{-2} \leftrightarrow SO_3^{-2} + HgSO_3$	3.981E-12	0.	van Loon, 2001

Notes

1. The equilibrium coefficient K_e for HgOH⁺ \leftrightarrow OH⁻+Hg⁺² was derived from reported coefficients for Hg(OH)₂ \leftrightarrow 2OH⁻+Hg⁺² (K₁) and Hg(OH)₂ \leftrightarrow OH⁻+HgOH⁺ (K₂) The value shown here for K_e is K_1/K_2 and is mathematically equivalent to the reported values.

2. The equilibrium coefficient K_e for HgOHCl \leftrightarrow OH⁻+HgCl⁺ was derived from reported coefficients for HgOHCl \leftrightarrow OH⁻+Hg⁺²+Cl⁻ (K₁) and HgCl⁺ \leftrightarrow Cl⁻+Hg⁺² (K₂). The value shown here for K_e is K_1/K_2 and is mathematically equivalent to the reported values. The equivalent derivation was used for HgOHBr.

3. The equilibrium coefficient K_e for $HgCl_2 \leftrightarrow Cl^+HgCl^+$ was derived from reported coefficients for $HgCl_2 \leftrightarrow 2Cl^+HgCl^+$ (K₁) and $HgCl^+ \leftrightarrow Cl^+Hg^{+2}$ (K₂). The value shown here for K_e is K_1/K_2 and is mathematically equivalent to the reported values. The equivalent derivation was used for $HgBr_2$.

Aqueous reactions of species containing mercury

 k_{298} : rate constant at 298 K, in M s⁻¹ (for reactions involving two species) or s⁻¹ for reactants involving a single species.

 E_a : activation energy, expressed as E_a/R (where R represents the gas constant) in units °K.

The temperature dependence is represented by $k_T = k_{298} \exp[-E_a/R(1/T - 1/298)]$ for temperature T in °K.

Reaction	k ₂₉₈	E _a /R	References
$Hg^0 + O_3 \rightarrow Hg^{+2} + 2OH^{-1}$	4.7E+07	0.	Munthe, 1992
$Hg^0 + OH \rightarrow Hg^{+2} + 2OH^{-1}$	2.0E+09	0	Lin, 1997.
			see note 1.
$HgSO_3 \rightarrow Hg+SO_2$	1.06E-02	0.	van Loon, 2000
$HgO+H^+ \rightarrow Hg^{+2}+OH^-$	1.0E+10	0.	Pleijel and Munthe,
			1995; Hedgecock, 2005
$Hg^0 + HOCI \rightarrow Hg^{+2} + 2OH^{-1}$	2.09E+06	0.	Lin, 1998b
$Hg^0 + OCI^- \rightarrow Hg^{+2} + OH^-$	1.990E+06	0.	Lin, 1998b
$Hg^{+2}+HO_2 \rightarrow Hg^0+2H^+$	1.7E+04		Pekhonen, 1998;
			challenged by
			Gartfeldt, 2003
$Hg^{+2}+O_2 \rightarrow Hg^0+H^+$	1.7E+04		Pekhonen, 1998;
			challenged by
			Gartfeldt, 2003

$HgCl^+ + HO_2 \rightarrow Hg^0 + Cl^- + 2H^+$	1.7E+04	Pekhonen,	1998;
		challenged	by
		Gartfeldt, 2003	
		see note 2	
$HgCl^++O_2^- \rightarrow Hg^0+Cl^-+H^+$	1.7E+04	Pekhonen,	1998;
		challenged	by
		Gartfeldt, 2003.	
		see note 2.	
$HgSO_3+HO_2 \rightarrow Hg^0+SO_3^{-2}+2H^+$	1.7E+04	Pekhonen,	1998;
		challenged	by
		Gartfeldt, 2003.	
		see note 2	
$HgSO_3+O_2 \rightarrow Hg^0+SO_3^{-2}+H^+$	1.7E+04	Pekhonen,	1998;
		challenged	by
		Gartfeldt, 2003.	
		see note 2.	

1. It is unclear how to include the reaction of Hg with OH(aq). *Lin and Pekhonen* [1997] report this reaction in two stages: $Hg^0+OH \rightarrow Hg^+$; $Hg^++OH \rightarrow Hg^{+2}$. However, *Pekhonen and Lin* [1998] also report the reaction $Hg^++O_2^- \rightarrow Hg^0$, and the equivalent reaction with HO₂, both with an indeterminate fast rate. *Hedgecock et al* [2005] omit this reaction. If included, the result of the reaction sequence would depend on the relative rate of the two pathways for H₊. Other models have approximated the forward reaction as $Hg^0+OH \rightarrow Hg^{+2}$ [*Ryaboshapko et al.*, 2002], which is what we have done here. See also the summary in *Lin et al.*, 2006.

2. Analogous reactions are included for all species containing Hg^{II}.

Gas-phase reactions for species containing mercury

Units are molec. $\text{cm}^{-3} \text{ s}^{-1}$ for reactions involving two species and s^{-1} for reactants involving a single species.

Abbreviations:

 k_0 =equilibrium constant at 0 K, in M.

 E_a = activation energy, expressed as E_a/R (where R represents the gas constant) in units °K.

The temperature dependence is represented by $k_T = k_0 \exp[-E_a/R(1/T)]$ for temperature T in °K.

Reaction	k ₀	E _a /R	References
Hg+ O ₃ → HgO	2.1E-18	1256.	Hall, 1995
$Hg+Cl_2 \rightarrow HgCl_2$	2.6E-18	0.	Ariya, 2002
$Hg+Cl \rightarrow HgCl^{1}$	1.0E-11	0.	Ariya, 2002, Hedgecock et
			al., 2005; see note 1
$Hg+HCl \rightarrow HgCl^{1}$	1.0E-19	0.	Hall and Bloom, 1993
$Hg+Br_2 \rightarrow HgBr_2$	9.0E-17	0.	Ariya, 2002
$Hg+Br \rightarrow HgBr^{1}$	3.2E-12	0.	Ariya, 2002, Hedgecock et
			al., 2005; see note 1
$Hg+HBr \rightarrow HgBr^{1}$	1.0E-19	0.	Hall and Bloom, 1993
$Hg+H_2O_2 \rightarrow HgO$	1.0E-19	0.	<i>Tokos</i> , 1998;
			Hedgecock, 2005
Hg+ OH→ HgO	8.0E-14	0.	Sommar, 2001;
			Hedgecock, 2005

1. The reactions Hg+Cl and Hg+Br are represented as forming $HgCl_2$ and $HgBr_2$ in most studies. We have represented them by the pseudo-species HgCl and HgBr in order to insure mass conservation for Cl and Br.

References

- Ariya, P. A., A. Khalizov, and A. Gidas, Reactions of Gaseous Mercury with Atomic and Molecular Halogens: Kinetics, Product Studies, and Atmospheric Implications, J. Phys. Chem. A, 106 (32); 7310-7320, 2002.
- Gardfeldt, K., and M. Jonsson, Is Bimolecular Reduction of Hg(II) Complexes Possible in Aqueous Systems of Environmental Importance, *J. Phys. Chem. A.* 107 (22); 4478-4482, 2003.
- Gardfeldt, K., J. Sommar, D. Stromberg, and X. Feng, Oxidation of atomic mercury by hydroxyl radicals and photoinduced decomposition of methylmercury in the aqueous phase. *Atmos. Environ.* 35, 3039-3047, 2001.
- Hall, B., The gas-phase oxidation of elemental mercury by ozone. *Water Air and Soil Pollution* 80, 301-315, 1995.
- Hall, B. and N. Bloom, Report to EPRI, Palo Alto, CA, USA, 1993.
- Hedgecock, I. M., G. A. Trunfio, N. Pirrone and F. Sprovieri, Mercury chemistry in the MBL: Mediterranean case and sensitivity studies using the AMCOTS (Atmospheric Mercury Chemistry over the Sea) model, *Atmos. Environ.*, 39 (38), 7217-7230, 2005.
- Khalizov, A. F., B. Viswanathan, P. Larregaray, and P. A. Ariya, A Theoretical Study on the Reactions of Hg with Halogens: Atmospheric Implications, *J. Phys. Chem. A.* 107 (33), 6360-6365, 2003.
- Lin, C-J., P. Pongprueks, S. E. Lindberg, S. O. Pehkonen, D. Byun, and C. Jang, Scientific uncertainties in atmospheric mercury models I: Model science evaluation. *Atmos. Environ.*, 40, 2911-2928, 2006.
- Lin, C-J., and S. O. Pehkonen, Two-phase model of mercury chemistry in the atmosphere. Atmos. Environ., 32(14/15), 2543-2558, 1998a.
- Lin, C-J., and S. O. Pehkonen, Oxidation of elemental mercury by aqueous chlorine (HOCl/OCL-): implications for troposphere mercury chemistry. J. Geophys. Res. 103(D21), 28093-28102, 1998b.
- Munthe, J., The aqueous oxidation of elemental mercury by ozone. Atmos. Environ., 26A, 1461-1468, 1991.
- Pehkonen, S. O. and Lin C-J., Aqueous photochemistry of divalent mercury with organic acids. *Journal of AWMA*. 48, 144-150, 1998.
- Pleijel, K. and J. Munthe, Modeling the atmospheric mercury cycle-chemistry in fog droplets. *Atmos. Environ.* 29(12), 1441-1457, 1995.
- Ryaboshapko, A., . Bullock, R. Ebinghaus, I. Ilyin, K. Lohman, J. Munthe, G. Petersen, C. Seigneur and I. Wängberg, Comparison of mercury chemistry models, *Atmos. Environ.* 36 (24,) 3881-3898, 2002.
- Tokos, J. J. S., B. Hall, J. A. Calhoun, E. M. Prestbo, Homogeneous gas-phase reduction of Hg⁰ with H2O2, O3, CH3I, and (CH3)2S: implications for atmospheric Hg cycling. *Atmos. Environ.*, 32, 823-827, 1998.

- Sommar, J., K. Gardfeldt, D. Stromberg, and X. Feng, A kinetic study of the gas-phase reaction between the hydroxyl radical and atomic mercury. *Atmos. Environ.* 35, 3049-3054, 2001
- Van Loon, L., E. Mader, and S. Scott, Reduction of the aqueous mercuric ion by sulfite: UV spectrum of HgSO₃ and its intramolecular redox reaction. *Journal of Physical Chemistry*. 104, 1621-1626, 2000.