<u>SCENARIO</u>: A city has 30 low-income housing projects. A large number of vacant units in these projects creates a wide variety of problems (reduced revenues, vandalism, lower morale of existing tenants, etc.) There is a wide range of vacancy rates, from less than 10 percent to over 30 percent. The city officials believe that drug trafficking in the housing projects is discouraging people from either moving into or staying in the projects. To prove the key role of drug dealing in shaping housing project vacancy rates, the city releases data showing that vacancy rates in projects with **anti-drug programs (run by the police department)** have a lower vacancy rate:

Vacancy rate (projects <u>with</u> anti-drug programs): <u>19</u> <u>percent</u>

Vacancy rate (projects <u>without</u> anti-drug programs): <u>25 percent</u>

And just to be sure, they ran a difference of means test (see below) to confirm that the results were statistically significant at the 0.05 level.

To further demonstrate the significant role that this policy anti-drug program plays, the city also collects data on (a) housing expenses; (b) family structure (since these two variables also affect vacancy rates). The city then releases the results of their own in-house multiple regression analysis, controlling for these two variables. Even controlling for the other two variables, the police anti-drug program is statistically significant, and seems to reduce the vacancy rate by 6 percentage points

		Percent of Gross	percent 2-	Police Anti-	Active Tenants
Hsg	Vacancy	Hhd Income	parent	Drug	Group? (1 =
Project	Rate	Spent on rent	families	Program?	yes; 0 = no)
1	33%	35%	12%	0	0
2	33%	46%	14%	0	0
3	18%	45%	15%	1	1
4	23%	18%	41%	0	0
5	28%	52%	18%	0	0
6	19%	23%	21%	1	1
7	32%	22%	22%	1	0
8	20%	23%	24%	1	1
9	15%	24%	25%	0	1
10	32%	19%	26%	1	0
11	19%	23%	27%	1	1
12	19%	52%	27%	0	1
13	25%	43%	33%	0	0
14	29%	31%	29%	0	0
15	17%	52%	46%	1	1
16	25%	29%	46%	0	0
17	5%	21%	57%	1	1
18	28%	31%	46%	0	0
19	19%	46%	30%	1	1
20	26%	45%	30%	0	0
21	15%	23%	33%	1	1
22	8%	51%	41%	0	1
23	11%	22%	36%	1	1
24	30%	49%	39%	1	0
25	14%	51%	39%	1	1
26	27%	28%	40%	0	0
27	21%	39%	37%	0	1
28	13%	51%	44%	1	1
29	21%	26%	22%	1	1
30	31%	22%	30%	0	0

(5.93%) -- and then asks for more money for the program. Question: Is the city correct in its conclusion?

t-Test: Two-Sample Assuming Equal Variances								
	vacancy rate	vacancy rate						
	NO drug (drug							
	program)	program)						
Mean	0.248	0.189						
Variance	0.005	0.006						
Observations	15.000	15.000						
Pooled Variance	0.005							
Hypothesized Mean Difference	0.000							
df	28.000							
t Stat	2.215							
P(T<=t) one-tail	0.018							
t Critical one-tail	1.701							
P(T<=t) two-tail	0.035							
t Critical two-tail	2.048							

SUMMARY OUTPUT

Regression Statistics				
Multiple R	0.8067			
R Square	0.6508			
Adjusted R Square	0.6105			
Standard Error	0.0448			
Observations	30			

ANOVA

ANUVA					
					Significan
	df	SS	MS	F	ce F
Regression	3	0.0974	0.0325	16.1513	0.0000
Residual	26	0.0523	0.0020		
Total	29	0.1496			
	Coefficien	Standard			
	ts	Error	t Stat	P-value	
Intercept	0.4925	0.0443	11.1171	0.0000	
Percent of Gross Hhd Income Spe	ent				
on rent	-0.3746	0.0862	-4.3448	0.0002	
percent 2-parent families	-0.3860	0.0776	-4.9768	0.0000	
Police Anti-Drug Program?	-0.0593	0.0166	-3.5711	0.0014	