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Abstract. Let A be an n × n matrix, whose entries are inde-
pendent copies of a centered random variable satisfying the sub-
gaussian tail estimate. We prove that the operator norm of A−1

does not exceed Cn3/2 with probability close to 1.

1. Introduction.

Let A be an n× n matrix, whose entries are independent identically
distributed random variables. The spectral properties of such matrices,
in particular invertibility, have been extensively studied (see, e.g. [M]
and the survey [DS]). While A is almost surely invertible whenever its
entries are absolutely continuous, the case of discrete entries is highly
non-trivial. Even in the case, when the entries of A are independent
random variables taking values ±1 with probability 1/2, the precise
order of probability that A is singular is unknown. Komlós [K1, K2]
proved that this probability is o(1) as n → ∞. This result was im-
proved by Kahn, Komlós ans Szemerédi [KKS], who showed that this
probability is bounded above by θn for some absolute constant θ < 1.
The value of θ has been recently improved in a series of papers by
Tao and Vu [TV1, TV2] to θ = 3/4 + o(1) (the conjectured value is
θ = 1/2 + o(1)).

However, these papers do not address the quantitative character-
ization of invertibility, namely the norm of the inverse matrix, con-
sidered as an operator from Rn to Rn. Random matrices are one of
the standard tools in geometric functional analysis. They are used,
in particular, to estimate the Banach–Mazur distance between finite-
dimensional Banach spaces and to construct sections of convex bodies
possessing certain properties. In all these questions condition number
or the distortion ‖A‖ · ‖A−1‖ plays the crucial role. Since the norm of
A is usually highly concentrated, the distortion is determined by the
norm of A−1. The estimate of the norm of A−1 is known only in the
case when A is a matrix with independent N(0, 1) Gaussian entries.
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In this case Edelman [Ed] and Szarek [Sz2] proved that ‖A−1‖ ≤ c
√

n
with probability close to 1 (see also [Sz1] where the spectral proper-
ties of a Gaussian matrix are applied to an important question from
geometry of Banach spaces). For other random matrices,including a
random ±1 matrix, even a polynomial bound was unknown. Proving
such polynomial estimate is the main aim of this paper.

More results are known about rectangular random matrices. Let Γ
be an N × n matrix, whose entries are independent random variables.
If N > n, then such matrix can be considered as a linear operator Γ :
Rn → Y , where Y = ΓRn. If we consider a family Γn of such matrices
with n/N → α for a fixed constant α > 1, then the norms of (Γn|Y )−1

converge a.s. to (1 −
√

α)−1n−1/2, provided that the fourth moments
of the entries are uniformly bounded [BY]. The random matrices for
which n/N = 1− o(1) are considered in [LPRT]. If the entries of such
matrix satisfy certain moment conditions and n/N > 1− c/ log n, then
‖(Γ|Y )−1‖ ≤ C(n/N) · n−1/2 with probability exponentially close to 1.

The proof of the last result is based on the ε-net argument. To
describe it we have to introduce some notation. For p ≥ 1 let Bn

p

denote the unit ball of the Banach space `n
p . Let E ⊂ Rn and let

B ⊂ Rn be a convex symmetric body. Let ε > 0. We say that a set
F ⊂ Rn is an ε-net for E with respect to B if

E ⊂
⋃
x∈F

(x + εB).

The smallest cardinality of an ε-net will be denoted by N(E, B, ε). For
a point x ∈ Rn, ‖x‖ stands for the standard Euclidean norm, and for
a linear operator T : Rn → Rm, ‖T‖ denotes the operator norm of
T : `n

2 → `m
2 .

Let E ⊂ Sn−1 be a set such that for any fixed x ∈ E there is a good
bound for the probability that ‖Γx‖ is small. We shall call such bound
the small ball probability estimate. If N(E, Bn

2 , ε) is small, this bound
implies that with high probability ‖Γx‖ is large for all x from an ε-net
for E. Then the approximation is used to derive that in this case ‖Γx‖
is large for all x ∈ E. Finally, the sphere Sn−1 is partitioned in two
sets for which the above method works. This argument is applicable
because the small ball probability is controlled by a function of N ,
while the size of an ε-net depends on n < N .

The case of a square random matrix is more delicate. Indeed, in
this case the small ball probability estimate is too weak to produce a
non-trivial estimate for the probability that ‖Γx‖ is large for all points
of an ε-net. To overcome this difficulty, we use the ε-net argument for
one part of the sphere and work with conditional probability on the
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other part. Also, we will need more elaborate small ball probability
estimates, than those employed in [LPRT]. To obtain such estimates we
use the method of Halász, which lies in the foundation of the arguments
of [KKS], [TV1], [TV2].

Let P (Ω) denote the probability of the event Ω, and let Eξ denote
the expectation of the random variable ξ. A random variable β is called
subgaussian if for any t > 0

(1.1) P (|β| > t) ≤ C exp(−ct2).

The class of subgaussian variables includes many natural types of ran-
dom variables, in particular, normal and bounded ones. It is well-
known that the tail decay condition (1.1) is equivalent to the moment

condition
(
E|β|p

)1/p ≤ C ′√p for all p ≥ 1.
The letters c, C, C ′ etc. denote unimportant absolute constants,

whose value may change from line to line. Besides these constants,
the paper contains many absolute constants which are used through-
out the proof. For reader’s convenience we use a standard notation for
such important absolute constants. Namely, if a constant appears in
the formulation of Lemma or Theorem x.y, we denote it Cx.y or cx.y.

The main result of this paper is the polynomial bound for the norm
of A−1. We shall formulate it in terms of the smallest singular number
of A:

sn(A) = min
x∈Sn−1

‖Ax‖ .

Note if the matrix A is invertible, then ‖A−1‖ = 1/sn(A).

Theorem 1.1. Let β be a centered subgaussian random variable of
variance 1. Let A be an n × n matrix whose entries are independent
copies of β. Then for any ε > c1.1/

√
n

P
(
∃x ∈ Sn−1 | ‖Ax‖ <

ε

C1.1 · n3/2

)
< ε

if n is large enough.

More precisely, we prove that the probability above is bounded by
ε/2 + 4 exp(−cn) for all n ∈ N.

The inequality of Theorem 1.1 means that ‖A−1‖ ≤ C1.1 · n3/2/ε
with probability greater than 1− ε. Equivalently, the smallest singular
number of A is at least ε/(C1.1 · n3/2).

An important feature of Theorem 1.1 is its universality. Namely,
the probability estimate holds for all subgaussian random variables,
regardless of their nature. Moreover, the only place, where we use the
assumption that β is subgaussian, is Lemma 3.3 below.
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2. Overview of the proof.

The strategy of the proof of Theorem 1.1 is based on the step by step
exclusion of the points with a singular small ball probability behav-
ior. Since all coordinates of the vector Ax are identically distributed,
it will be enough to consider the distribution of the first coordinate,
which we shall denote by Y . If the entries of A have absolutely con-
tinuous distribution with a bounded density function, then for any
t > 0 P (|Y | < t) ≤ Ct. However, for a general random matrix, in par-
ticular, for a random ±1 matrix, this estimate holds only for t > t(x),
where the cut-off level t(x) is determined by the distribution of the
coordinates of x. We shall divide the sphere Sn−1 into several parts
according to the values of t(x). For each part, except for the last one,
we use the small ball probability estimate combined with the ε-net ar-
gument. However, the balance between the bound for the probability
and the size of the net will be different at each case. More regular dis-
tribution of the coordinates of the vector x will imply bounds for the
small ball probability P (‖Ax‖ < ρ) for smaller values of ρ. To apply
this result to a set of vectors, we shall need a finer ε-net. Proceeding
this way, we establish a uniform lower bound for ‖Ax‖ for the set of
vectors x whose coordinates are distributed irregularly. This leaves the
set of vectors x ∈ Sn−1 with very regularly distributed coordinates.
This set contains most of the points of the sphere, so the ε-net argu-
ment cannot be applied here. However, for such vectors x the value of
t(x) will be exceptionally small, so their small ball probability behav-
ior will be close to that of an absolutely continuous random variable.
This, together with the conditional probability argument will allow us
to conclude the proof.

Now we describe the exclusion procedure in more details. First, we
consider the peaked vectors, namely the vectors x, for which a substan-
tial part of the norm is concentrated in a few coordinates. For such
vectors t(x) is a constant. Translating this into the small ball proba-
bility estimate for the vector Ax, we obtain P (‖Ax‖ < C

√
n) ≤ cn for

some c < 1. Since any peaked vector is close to some coordinate sub-
space of a small dimension, we can construct a small ε-net for the set of
peaked vectors. Applying the union bound we show that ‖Ax‖ > C

√
n

for any vector x from the ε-net, and extend it by approximation to all
peaked vectors.

For the set of spread vectors, which is the complement of the set of
peaked vectors, we can lower the cut-off level t(x) to c/

√
n. This in turn

implies the small ball probability estimate P (‖Ax‖ < C) ≤ (c/
√

n)n.
This better estimate allows to construct a larger ε-net for the set of
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the spread vectors. However, an ε-net for the whole set of the spread
vectors will be to large to guarantee that the inequality ‖Ax‖ ≥ C
hods for all of its vectors with high probability. Therefore, we shall
further divide the set of the spread vectors into two subsets and apply
the ε-net argument to the smaller one.

To this end we consider only the coordinates of the vector x whose
absolute values lie in the interval [r/

√
n,R/

√
n] for some absolute con-

stants 0 < r < 1 < R. We divide this interval into subintervals of the
length ∆. If a substantial part of the coordinates of x lie in a few such
intervals, we call x a vector of a ∆-singular profile. Otherwise, x is
called a vector of a ∆-regular profile. At the first step we set ∆ = c/n.
For such ∆ the set of vectors of a ∆-singular profile admits an ε net of
cardinality smaller than (c

√
n)n. Therefore, combining the small ball

probability estimate for the spread vectors with the ε-net argument, we
prove that the estimate ‖Ax‖ ≥ C holds for all vectors of a ∆-singular
profile with probability exponentially close to 1.

Now it remains to treat the vectors of a ∆-regular profile. For such
vectors we prove a new small ball probability estimate. Namely, we
show that for any such vector x, the cut-off level t(x) = ∆, which
implies that P (‖Ax‖ < C∆

√
n) ≤ (c∆)n. The proof of this result is

much more involved than the previous small ball probability estimates.
It is based on the method of Halász which uses the estimates of the
characteristic functions of random variables. To take advantage of this
estimate we split the set of vectors of a c/n-regular profile into the set
of vectors of ∆-singular and ∆-regular profile for ∆ = ε/n. For the
first set we repeat the ε-net argument with a different ε. This finally
leads us to the vectors of ε/n-regular profile.

For such vectors we employ a different argument. Assume that ‖A−1‖
is large. This means that the rows a1, . . . , an of A are almost linearly
dependent. In other words, one of the rows, say the last, is close to the
linear combination of the other. Conditioning on the first n− 1 rows,
we fix a vector x of a ε/n-regular profile for which ‖A′x‖ is small, where
A′ is the matrix consisting of the first n − 1 rows of A. Such vector
depends only on a1, . . . , an−1. The almost linear dependence implies
that the random variable Z =

∑n
j=1 an,jxj belongs to a small interval

I ⊂ R, which is defined by a1, . . . , an−1. Since x has a ε/n-regular
profile, the small ball probability estimate implies that the probability
that Z ∈ I, and therefore the probability that ‖A−1‖ is large will be
small.
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3. Preliminary results.

Assume that l balls are randomly placed in k urns. Let V ∈ {1, . . . , k}l

be a random vector whose i-th coordinate is the number of balls con-
tained in the i-th urn. The distribution of V , called random allocation,
has been extensively studied, and many deep results are available (see
[KSC]). We need only a simple combinatorial lemma.

Lemma 3.1. Let k ≤ l and let X(1), . . . , X(l) be i.i.d. random vari-
ables uniformly distributed on the set {1, . . . , k}. Let η < 1/2. Then
with probability greater than 1 − ηl there exists a set J ⊂ {1, . . . , l}
containing at least l/2 elements such that

(3.1)
k∑

i=1

|{j ∈ J | X(j) = i}|2 ≤ C(η)
l2

k
.

Remark 3.2. The proof yields C(η) = η−16. This estimate is by no
means exact.

Proof. Let X = (X(1), . . . , X(l)). For i = 1, . . . , k denote

Pi(X) = |{j | X(j) = i}|.

Let 2 < α < k/2 be a number to be chosen later. Denote

I(X) = {i | Pi(X) ≥ α
l

k
}.

For any X we have
∑k

i=1 Pi(X) = l, so |I(X)| ≤ k/α. Set

J(X) = {j | X(j) ∈ I(X)}.

Assume that |J(X)| ≤ l/2. Then for the set J ′(X) = {1, . . . , l} \ J(X)
we have |J ′(X)| ≥ l/2 and

k∑
i=1

|{j ∈ J ′(X) | X(j) = i}|2 =
∑

i/∈I(X)

P 2
i (X) ≤ k ·

(
α

l

k

)2

=
α2l2

k
.

Now we have to estimate the probability that |J(X)| ≥ l/2. To this
end we estimate the probability that J(X) = J and I(X) = I for fixed
subsets J ⊂ {1, . . . , l} and I ⊂ {1, . . . , k} and sum over all relevant
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choices of J and I. We have

P (|J(X)| ≥ l/2) ≤
∑

|J |≥l/2

∑
|I|≤k/α

P (J(X) = J, I(X) = I)

≤
∑

|J |≥l/2

∑
|I|≤k/α

P (X(j) ∈ I for all j ∈ J)

≤ 2l(k/α) ·
(

k

k/α

)
· (1/α)l/2

≤ k · (eα)k/α · (4/α)l/2,

since the random variables X(1), . . . , X(l) are independent. If k ≤ l
and α > 100, the last expression does not exceed α−l/8. To complete
the proof, set α = η−8 and C(η) = α2. If η > (2/k)1/8, then the
assumption α < k/2 is satisfied. Otherwise, we can set C(η) > (k/2)2,
for which the inequality (3.1) becomes trivial.

�

The following result is a standard large deviation estimate (see e.g.
[DS] or [LPRT], where a more general result is proved).

Lemma 3.3. Let A = (ai,j) be an n× n matrix whose entries are i.i.d
centered subgaussian random variables of variance 1. Then

P (‖A : Bn
2 → Bn

2 ‖ ≥ C3.3

√
n) ≤ exp(−n).

We will also need the volumetric estimate of the covering numbers
N(K,D, t) (see e.g. [P]). Denote by |K| the volume of K ⊂ Rn.

Lemma 3.4. Let t > 0 and let K, D ⊂ Rn be convex symmetric bodies.
If tD ⊂ K, then

N(K, D, t) ≤ 3n|K|
|tD|

.

4. Halász type lemma.

Let ξ1, . . . , ξn be independent centered random variables. To obtain
the small ball probability estimates below, we have to bound the prob-
ability that

∑n
j=1 ξj is concentrated in a small interval. One standard

method of obtaining such bounds is based on Berry-Esséen Theorem
(see, e.g. [LPRT]). However, this method has certain limitations. In
particular, if ξj = tjεj, where tj ∈ [1, 2] and εj are ±1 random variables,
then Berry-Esséen Theorem does not “feel” the distribution of the co-
efficients tj, and thus does not yield bounds better than c/

√
n for the

small ball probability. To obtain better bounds we use the approach
developed by Halász [Ha1, Ha2].
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Lemma 4.1. Let c > 0, 0 < ∆ < a/(2π) and let ξ1, . . . , ξn be in-
dependent random variables such that Eξi = 0, P (ξi > a) ≥ c and
P (ξi < −a) ≥ c. For y ∈ R set

S∆(y) =
n∑

j=1

P (ξj − ξ′j ∈ [y − π∆, y + π∆]),

where ξ′j is an independent copy of ξj. Then for any v ∈ R

P

(∣∣∣∣∣
n∑

j=1

ξj − v

∣∣∣∣∣ < ∆

)
≤ C

n5/2∆

∫ ∞

3a/2

S2
∆(y) dy + ce−c′n.

Proof. For t ∈ R define

ϕk(t) = E exp(iξkt)

and set

ϕ(t) = E exp

(
it

n∑
k=1

ξk

)
=

n∏
k=1

ϕk(t).

Then by a Lemma of Esséen [E], for any v ∈ R

Q = P

(∣∣∣∣∣
n∑

j=1

ξj − v

∣∣∣∣∣ < ∆

)
≤ c

∫
[−π/2,π/2]

|ϕ(t/∆)| dt.

Let ξ′k be an independent copy of ξk and let νk = ξk − ξ′k. Then
P (|νk| > 2a) ≥ 2c2 = c̄. We have

(4.1) |ϕk(t)|2 = E cos νkt

and since |x|2 ≤ exp(−(1− |x|2)) for any x ∈ C,

|ϕ(t)| ≤

(
n∏

k=1

exp
(
−1 + |ϕk(t)|2

))1/2

= exp

(
−1

2

n∑
k=1

(1− |ϕk(t)|2)

)
.

Define a new random variable τk by conditioning on |νk| > 2a. For a
Borel set A ⊂ R put

P (τk ∈ A) =
P (νk ∈ A \ [−2a, 2a])

P (|νk| > 2a)
.

Then by (4.1),

1− |ϕk(t)|2 ≥ E(1− cos τkt) · P (|νk| > 2a) ≥ c̄ · E(1− cos τkt),

so

|ϕ(t)| ≤ exp(−c′f(t)),
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where

f(t) = E
n∑

k=1

(1− cos τkt).

Let T (m, r) = {t | f(t/∆) ≤ m, |t| ≤ r} and let

M = max
|t|≤π/2

f(t/∆).

Then, obviously, M ≤ n. To estimate M from below, notice that

M = max
|t|≤π/2

f(t/∆) ≥ 1

π

∫ π/2

−π/2

E
n∑

k=1

(1− cos(τk/∆)t) dt

= E
n∑

k=1

(
1− 2

π
· sin(τk/∆)π/2

τk/∆

)
≥ cn,

since |τk|/∆ > 2a/∆ > 4π.
To estimate the measure of T (m, π/2) we use the argument of [Ha1].

For reader’s convenience we present a complete proof.

Lemma 4.2. Let 0 < m < M/4. Then

|T (m, π/2)| ≤ c

√
m

M
· |T (M/4, π)|.

Proof. Let l =
√

M/4m. Taking the integer part if necessary, we may
assume that l is an integer. For k ∈ N set

Sk = {
k∑

j=1

tj | tj ∈ T (m, π/2)}.

Note that S1 = T (m, π/2). Since

1− cos α = 2 sin2(α/2)

and

sin2

(
k∑

j=1

αj

)
≤

(
k∑

j=1

| sin αj|

)2

≤ k
k∑

j=1

sin2 αj,

we conclude that

(4.2) Sk ⊂ T (k2m, kπ/2).

For k ≤ l we have k2m < M , so (−π/2, π/2) \ T (k2m, kπ/2) 6= ∅. For
a Borel set A set µ(A) = |A∩ [−π, π]|, where |B| denotes the Lebesgue
measure of B. Now we shall prove by induction that for all k ≤ l

µ(Sk) ≥ (k/2) · µ(S1).
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Obviously, µ(S2) = |S2| ≥ 2 · |S1|, so this inequality holds for k = 2.
Assume that µ(Sk−1) ≥ (k − 1)/2 · µ(S1). Note that the sets Sk are
closed. Let v ∈ (−π/2, π/2) be a boundary point of Sk. Such point
exists since Sk ⊂ T (k2m, π/2), and so (−π/2, π/2) \ Sk 6= ∅. Let
{vj}∞j=1 be a sequence of points in (−π/2, π/2) \ Sk converging to v.
Then (vj − S1) ∩ Sk−1 = ∅, so by continuity we have

µ((v − S1) ∩ Sk−1) = 0.

Since the set S1 is symmetric, this implies

µ((v + S1) ∪ Sk−1) = µ(v + S1) + µ(Sk−1).

Both sets in the right hand side are contained in Sk+1 (to see it for Sk−1

note that 0 ∈ S2). Since v + S1 ⊂ [−π, π], the induction hypothesis
implies

µ(Sk+1) ≥ µ(v +S1)+µ(Sk−1) ≥ µ(S1)+
k − 1

2
·µ(S1) =

k + 1

2
·µ(S1).

Finally, by (4.2), Sl ∩ [−π, π] ⊂ T (l2m,π), so we get

|T (l2m, π)| ≥ µ(Sl) ≥
l

2
· µ(S1) =

l

2
· |T (m, π/2)|. �

We continue to prove Lemma 4.1. Recall that

Q ≤ C

∫
[−π/2,π/2]

|ϕ(t/∆)| dt ≤ C

∫
[−π/2,π/2]

exp(−c′f(t/∆)) dt

≤ C̄

∫ n

0

|T (m, π/2)|e−c′m dm,

Applying Lemma 4.2 for 0 ≤ m ≤ M/4 and using the trivial bound
|T (m, π/2)| ≤ π for m > M/4, we obtain

(4.3) Q ≤ C ′
√

M
· |T (

M

4
, π)|+ ce−C′M/16 ≤ C ′

√
M

· |T (
M

4
, π)|+ ce−c′n.

To complete the proof we have to estimate the measure of T =
T (M/4, π) from above. For any t ∈ T we have

g(t) =
n∑

k=1

E cos(τkt/∆) ≥ n−M/4 ≥ n/2.
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Let w(x) = (1− |x|/π) · χ[−π,π](x) and put W = ŵ. Then W ≥ 0 and
W (t) ≥ c for |t| ≤ π. Hence by Parceval’s equality,

|T | ≤
(n

2

)−2
∫

T

|g(t)|2 ≤ C
(n

2

)−2
∫

R
W 2(t)|g(t)|2 dt

=
C

n2

∫
R

∣∣∣∣∣E
n∑

k=1

w(τk/∆− y)

∣∣∣∣∣
2

dy.

Since w ≤ χ[−π,π], the last expression does not exceed

C

n2

∫
R

(
n∑

k=1

P (
τk

∆
∈ [y − π, y + π])

)2

dy

≤ C

n2∆

∫
R

(
n∑

k=1

P (τk ∈ [z − π∆, z + π∆])

)2

dz.

Since τk /∈ [−2a, 2a] and π∆ < a/2, we can integrate only over R \
[−3a/2, 3a/2].

Substituting this estimate into (4.3), we get

Q ≤ C

n5/2∆

∫
R\[−3a/2,3a/2]

(
n∑

k=1

P (τk ∈ [z − π∆, z + π∆])

)2

dz+ce−c′n.

To finish the proof, recall that the variables τk are symmetric. This al-
lows to change the integration set in the previous inequality to (3a/2,∞).
Moreover, if z ∈ (3a/2,∞), then

P (τk ∈ [z − π∆, z + π∆]) ≤ 1

c̄
· P (νk ∈ [z − π∆, z + π∆]),

so the random variables τk can be replaced by νk = ξk − ξ′k.
�

Remark 4.3. A more delicate analysis shows that the term ce−c′n in
the formulation of Lemma 4.1 can always be eliminated. However, we
shall not prove it since this term does not affect the results below.

We shall apply Lemma 4.1 to weighted copies of the same random
variable. To formulate the result we have to introduce a new notion.

Definition 4.4. Let x ∈ Rm. For ∆ > 0 define the ∆-profile of the
vector x as a sequence {Pk(x, ∆)}∞k=1 such that

Pk(x, ∆) = |{j | |xj| ∈ (k∆, (k + 1)∆]}.
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Theorem 4.5. Let β be a random variable such that Eβ = 0 and
P (β > c) ≥ c′, P (β < −c) ≥ c′ for some c, c′ > 0. Let β1 . . . βm

be independent copies of β. Let ∆ > 0 and let (x1 . . . xm) ∈ Rm be a
vector such a < |xj| < λ a for some a > 0 and λ > 1. Then for any
∆ < a/(2π) and for any v ∈ R

P

(∣∣∣∣∣
m∑

j=1

βjxj − v

∣∣∣∣∣ < ∆

)
≤ C4.5

m5/2

∞∑
k=1

P 2
k (x, ∆).

Here C4.5 depends only on λ.

Proof. We shall apply Lemma 4.1 to the random variables ξj = xjβj.
Let M(R) be the set of all probability measures on R. Consider the

function F : M(R) → R+ defined by

F (µ) =

∫ ∞

3a/2

S̃2
∆(y) dy,

where

S̃∆(y) =
m∑

j=1

µ(
1

|xj|
· [y − π∆, y + π∆]).

Since F is a convex function on M(R), it attains the maximal value
at an extreme point of this set, i.e. at some delta-measure δt, t ∈ R.
Note that in this case

S̃∆(y) = |{j | t|xj| ∈ [y − π∆, y + π∆]} =
m∑

j=1

χ(t|xj| − y),

where χ = χ[−π∆,π∆] is the indicator function of [−π∆, π∆]. For t < 1
2λ

we have t|xj| < a/2, so S̃∆(y) = 0 for any y ≥ 3a/2, and thus F (δt) = 0.
If t ≥ 1

2λ
, then

F (δt) =
m∑

j=1

m∑
l=1

∫ ∞

3a/2

χ(t|xj| − y)χ(t|xl| − y) dy

≤ 2π∆|{(j, l) | t
∣∣|xj| − |xl|

∣∣ ≤ π∆}| = g(t).

Since the function g is decreasing,

F (δt) ≤ g(
1

2λ
) ≤ 2π∆

∞∑
l=1

|{j |
∣∣∣|xj| − l∆

∣∣∣ ≤ 2π∆ · λ}|2

≤ C̄∆
∞∑

k=1

|{j | |xj| ∈ (k∆, (k + 1)∆]}|2.
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The last inequality holds since we can cover each interval [l∆−2π∆λ, l∆+
2π∆λ] by at most 2πλ + 2 intervals (k∆, (k + 1)∆].

Let µ be the distribution of the random variable β−β′, where β′ is an
independent copy of β. Applying Lemma 4.1 to the random variables
ξj = xj · βj, we have

P

(∣∣∣∣∣
m∑

j=1

βjxj − v

∣∣∣∣∣ < ∆

)
≤ C

m5/2∆
F (µ) + ce−c′m

≤ C ′

m5/2

∞∑
k=1

|{j | |xj| ∈ (k∆, (k + 1)∆]}|2 + ce−c′m.

Since the sum in the right hand side is at least m, the second term is
negligible compare to the first one. Thus,

P

(∣∣∣∣∣
m∑

j=1

βjxj − v

∣∣∣∣∣ < ∆

)
≤ 2C ′

m5/2

∞∑
k=1

|{j | |xj| ∈ (k∆, (k + 1)∆]}|2.

�

5. Small ball probability estimates.

Let G be an n× n Gaussian matrix. If x ∈ Sn−1 is any unit vector,
then y = Gx is the standard Gaussian vector in Rn. Hence for any
t > 0 we have P (|yj| < t) ≤ t ·

√
2/π for any coordinate. Moreover,

P (‖y‖ ≤ t ·
√

n) ≤ (2π)−n/2vol(t
√

nBn
2 ) ≤ (Ct)n.

We would like to have the same small ball probability estimates for the
random vector y = Ax. However, it is easy to see that it is impossible
to achieve such estimate for all directions x ∈ Sn−1. Indeed, if A is a
random ±1 matrix and x = (1/

√
2, 1/

√
2, 0 . . . 0), then P (yj = 0) =

1/2 and P (y = 0) = 2−n. Analyzing this example, we see that the
reason that the small ball estimate fails is the concentration of the
Euclidean norm of x on a few coordinates. If the vector x is “spread”,
we can expect a more regular behavior of the small ball probability.

Although we cannot prove the Gaussian type estimates for all di-
rections and all t > 0, it is possible to obtain such estimates for most
directions provided that t is sufficiently large (t > t0). Moreover, the
more we assume about the regularity of distribution of the coordinates
of x, the smaller value of t0 we can take. This general statement is
illustrated by the series of results below.

The first result is valid for any direction. The following Lemma is a
particular case of [LPRT], Proposition 3.4.
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Lemma 5.1. Let A be an n×n matrix with i.i.d. subgaussian entries.
Then for every x ∈ Sn−1

P (‖Ax‖ ≤ C5.1

√
n) ≤ exp(−c5.1n).

The example considered at the beginning of this section shows that
this estimate cannot be improved for a general random matrix.

If we assume that all coordinates of the vector x are comparable, then
we have the following Lemma, which is a particular case of Proposition
3.4 [LPRTV2] (see also Proposition 3.2 [LPRT]).

Lemma 5.2. Let β be a random variable such that Eβ = 0, Eβ2 = 1
and let β1, . . . , βm be independent copies of β. Let 0 < r < R and let
x1, . . . , xm ∈ R be such that r/

√
m ≤ |xj| ≤ R/

√
m for any j. Then

for any t ≥ c5.2/
√

m and for any v ∈ R

P

(∣∣∣∣∣
m∑

j=1

βjxj − v

∣∣∣∣∣ < t

)
≤ C5.2t.

Here c5.2 and C5.2 depend only on r and R.

Proof. The proof is based on Berry-Esséen theorem (cf., e.g., [St], Sec-
tion 2.1).

Theorem 5.3. Let (ζj)
m
i=1 be a sequence of independent random vari-

ables with expectation 0 and finite third moments, and let A2 :=
∑m

j=1 E|ζj|2.
Then for every τ ∈ R one has∣∣∣P( m∑

j=1

ζj < τA
)
− P (g < τ)

∣∣∣ ≤ (c/A3)
m∑

j=1

E|ζj|3,

where g is a Gaussian random variable with N(0, 1) distribution and
c ≥ 1 is a universal constant.

Let ζj = βjxj. Then A2 :=
∑m

j=1 Eζ2
j = ‖x‖2 ≥ r2. Since the random

variables βj are copies of a subgaussian random variable β, E|β|3 ≤ C
for some absolute constant C. Hence, E

∑m
j=1 |ζj|3 ≤ C

∑m
j=1 |xj|3 ≤

C ′/
√

m. By Theorem 5.3 we get

P

(∣∣∣∣∣
m∑

j=1

βjxj − v

∣∣∣∣∣ < t

)
≤ P

(
v − t

c
≤ g <

v + t

c

)
+

c′√
m

≤ C ′′t +
c′√
m
≤ 2C ′′t,

provided t ≥ C′′

c′
√

m
. �
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If x = (1/
√

m, . . . , 1/
√

m), then

P

(∣∣∣∣∣
m∑

j=1

βjxj

∣∣∣∣∣ = 0

)
≥ C/

√
m.

This shows that the bound t ≥ c5.2/
√

m in Lemma 5.2 is necessary.
The proofs of Lemma 5.1 and Lemma 5.2 are based on Paley–Zygmund

inequality and Berry–Esséen Theorem respectively. To obtain the lin-
ear decay of small ball probability for t ≤ c5.2/

√
m, we use the third

technique, namely Halász method. However, since the formulation of
the result requires several technical assumptions on the vector x, we
postpone it to Section 7, where these assumptions appear.

To translate the small ball probability estimate for a single coordi-
nate to a similar estimate for the norm we use the Laplace transform
technique, developed in [LPRT]. The following Lemma improves the
argument used in the proof of Theorem 3.1 [LPRT].

Lemma 5.4. Let ∆ > 0 and let Y be a random variable such that for
any v ∈ R and for any t ≥ ∆,

P (|Y − v| < t) ≤ Lt.

Let y = (Y1, . . . , Yn) be a random vector, whose coordinates are inde-
pendent copies of Y . Then for any z ∈ Rn

P
(
‖y − z‖ ≤ ∆

√
n
)
≤ (C5.4L∆)n.

Proof. We have

P
(
‖y − z‖ ≤ ∆

√
n
)

= P

(
n∑

i=1

(Yi − zi)
2 ≤ ∆2n

)

= P

(
n− 1

∆2

n∑
i=1

(Yi − zi)
2 ≥ 0

)

≤ E exp

(
n− 1

∆2

n∑
i=1

(Yi − zi)
2

)

= en ·
n∏

i=1

E exp(− 1

∆2
(Yi − zi)

2).

To estimate the last expectation we use the small ball probability esti-
mate for the random variable Y , assumed in the Lemma. Note that if
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t < ∆, then P (|Y − z| < t) ≤ L∆ for any z ∈ R. Hence,

E exp(− 1

∆2
(Yi − zi)

2) =

∫ 1

0

P
(

exp
(
− 1

∆2
(Yi − zi)

2
)

> s

)
ds

=

∫ ∞

0

2ue−u2P (|Yi − zi| < ∆u) du

≤
∫ 1

0

2ue−u2

L∆ du

+

∫ ∞

1

2ue−u2

L∆u du

≤ C̄L∆.

Substituting this into the previous inequality, we get

P
(
‖y − z‖ ≤ ∆

√
n
)
≤ (e · C̄L∆)n.

�

6. Partition of the sphere.

To apply the small ball probability estimates proved in the previous
section we have to decompose the sphere into different regions depend-
ing on the distribution of the coordinates of a point. We start by
decomposing the sphere Sn−1 in two parts following [LPRT, LPRTV1,
LPRTV2]. We shall define two sets: VP – the set of vectors, whose
Euclidean norm is concentrated on a few coordinates, and VS – the set
of vectors whose coordinates are evenly spread. Let r < 1 < R be
the numbers to be chosen later. Given x = (x1, . . . , xn) ∈ Sn−1, set
σ(x) = {i | |xi| ≤ R/

√
n}. Let PI be the coordinate projection on the

set I ⊂ {, . . . , n}. Set

VP = {x ∈ Sn−1 |
∥∥Pσ(x)x

∥∥ < r}
VS = {x ∈ Sn−1 |

∥∥Pσ(x)x
∥∥ ≥ r}.

First we shall show that with high probability ‖Ax‖ ≥ C
√

n for any
x ∈ VP .

For a single vector x ∈ Rn this probability was estimated in Lemma
5.1. We shall combine this estimate with an ε-net argument.

Lemma 6.1. For any r < 1/2

log N(VP , Bn
2 , 2r) ≤ n

R
· log

(
3R

r

)
.
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Proof. If x ∈ Bn
2 , then |{1, . . . , n} \ σ(x)| ≤ n/R. Hence, the set VP is

contained in the sum of two sets: rBn
2 and

WP = {x ∈ Bn
2 | |supp(x)| ≤ n/R2}.

Since WP is contained in the union of unit balls in all coordinate sub-
spaces of dimension l = n/R, Lemma 3.4 implies

N(WP , Bn
2 , r) ≤

(
n

l

)
·N(Bl

2, B
l
2, r) ≤

(
n

l

)
·
(

3

r

)l

.

Finally,

log N(VP , Bn
2 , 2r) ≤ log N(WP , Bn

2 , r) ≤ l · log

(
3n

lr

)
≤ n

R
· log

(
3R

r

)
.

�

Recall that C5.1 < C3.3. Set r = C5.1/2C3.3 and choose the number
R > 1 so that

1

R
· log

(
3R

r

)
<

c5.1

2
.

For these parameters we prove that the norm of Ax is bounded below
for all x ∈ VP with high probability.

Lemma 6.2.

P
(
∃x ∈ VP | ‖Ax‖ ≤ C5.1

√
n/2
)
≤ 2 exp(−c5.1n).

Proof. By Lemma 6.1 and the definition of r and R, the set VP contains
a (C5.1/2C3.3)-netN in the `2-metric of cardinality at most exp(c5.1n/2).
Let

Ω0 = {ω | ‖A‖ > C3.3

√
n}

and let

ΩP = {ω | ∃x ∈ N ‖A(ω)x‖ ≤ C5.1

√
n}.

Then Lemma 5.1 implies

P (Ω0) + P (ΩP ) ≤ exp(−n) + exp(−c5.1n) ≤ 2 exp(−c5.1n).

Let ω /∈ ΩP . Pick any x ∈ VP . There exists y ∈ N such that
‖x− y‖2 ≤ C5.1/2C3.3. Hence

‖Ax‖ ≥ ‖Ay‖ − ‖A(x− y)‖ ≥ C5.1

√
n− ‖A : Bn

2 → Bn
2 ‖ · ‖x− y‖2

≥ C5.1

2

√
n.

�



18 MARK RUDELSON

For x = (x1, . . . , xn) ∈ VS denote

(6.1) J(x) =

{
j | r

2
√

n
≤ |xj| ≤

R√
n

}
.

Note that ∑
j∈J(X)

x2
j ≥

∑
j∈σ(X)

x2
j −

r2

2
≥ r2

2
,

so
|J(x)| ≥ (r2/2R2) · n =: m.

Let 0 < ∆ < r/2
√

n be a number to be chosen later. We shall cover
the interval [ r

2
√

n
, R√

n
] by

k =

⌈
R− r/2√

n∆

⌉
consecutive intervals (j∆, (j+1)∆], where j = k0, (k0+1), . . . , (k0+k),
and k0 is the largest number such that k0∆ < r/2

√
n. Then we shall

decompose the set VS in two subsets: one containing the points whose
coordinates are concentrated in a few such intervals, and the other
containing points with evenly spread coordinates. This will be done
using the ∆-profile, defined in 4.4. Note that if m coordinates of the
vector x are evenly spread among k intervals, then

∞∑
i=1

P 2
i (x, ∆) ∼ m2

k
∼ m5/2∆.

This observation leads to the following

Definition 6.3. Let ∆ > 0 and let Q > 1. We say that a vector
x ∈ VS has a (∆, Q)-regular profile if there exists a set J ⊂ J(x) such
that |J | ≥ m/2 and

∞∑
i=1

P 2
i (x|J , ∆) ≤ Qm5/2∆ =: C6.3Q · m2

k
.

Here x|J is the restriction of x to the set J .
If such set J does not exist, we call x a vector of (∆, Q)-singular

profile.

Note that
∑∞

i=1 P 2
i (x|J , ∆) ≥ m/2. Hence, if ∆ < m−3/2/2, then

every vector in VS will be a vector of a (∆, Q)-singular profile.
Vectors of regular and singular profile will be treated differently.

Namely, in Section 7 we prove that vectors of regular profile satisfy the
small ball probability estimate of the type Ct for t ≥ ∆. This allows
to use conditioning to estimate the probability that ‖Ax‖ is small for
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some vector x of regular profile. In Section 8 we prove that the set
of vectors of singular profile admits a small ε-net. This fact combined
with Lemma 5.2 allows to estimate the probability that there exists a
vector x of singular profile such that ‖Ax‖ is small using the standard
ε-net argument.

7. Vectors of a regular profile.

To estimate the small ball probability for a vector of a regular profile
we apply Theorem 4.5.

Lemma 7.1. Let ∆ ≤ r
4π
√

n
. Let x ∈ VS be a vector of (∆, Q)-regular

profile. Then for any t ≥ ∆

P

(∣∣∣∣∣
n∑

j=1

βjxj − v

∣∣∣∣∣ < t

)
≤ C7.1Q · t.

Proof. Let J ⊂ {1, . . . , n}, |J | ≥ m/2 be the set from Definition 6.3.
Denote by EJc the expectation with respect to the random variables
βj, where j ∈ J c = {1, . . . , n} \ J . Then

P

(∣∣∣∣∣
n∑

j=1

βjxj − v

∣∣∣∣∣ < t

)

= EJcP

(∣∣∣∣∣∑
j∈J

βjxj − (v +
∑
j∈Jc

βjxj)

∣∣∣∣∣ < t | βj, j ∈ J c

)
Hence, it is enough to estimate the conditional probability.

Recall that β is a centered subgaussian random variable of variance
1. It is well-known that such variable satisfies P (β > c) ≥ c′, P (β <
−c) ≥ c′ for some absolute constants c, c′. Moreover, a simple Paley–
Zygmund type argument shows that this estimates hold if we assume
only that Eβ = 0 and the second and the fourth moment of β are
comparable. Hence, for t = ∆ the Lemma follows from Theorem 4.5,
where we set a = r/

√
n, λ = R/r.

To prove the Lemma for other values of t, assume first that t = ∆s =
2s∆ < r

4π
√

n
for some s ∈ N. Consider the ∆s-profile of x|J :

Pl(x|J , ∆s) = |{j ∈ J | |xj| ∈ (l∆s, (l + 1)∆s]}|.
Notice that each interval (l∆s, (l + 1)∆s] is a union of 2s intervals
(i∆, (i + 1)∆]. Hence

∞∑
l=1

P 2
l (x|J , ∆s) ≤ 2s

∞∑
i=1

P 2
i (x|J , ∆) ≤ 2sQm5/2∆ = Qm5/2t.
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Applying Theorem 4.5 with ∆ replaced by ∆s and v′ = v+
∑

j∈Jc βjxj,
we obtain

P

(∣∣∣∣∣∑
j∈J

βjxj − (v +
∑
j∈Jc

βjxj)

∣∣∣∣∣ < t | βj, j ∈ J c

)
≤ C4.5Qt.

For 2s∆ < t < 2s+1∆ the result follows from the previous inequality

applied for t = 2s∆. If t ≥ c5.2/
√

m =
√

2 c5.2R
r
√

n
, Lemma 5.2 implies

P

(∣∣∣∣∣∑
j∈J

βjxj − (v +
∑
j∈Jc

βjxj)

∣∣∣∣∣ < t | βj, j ∈ J c

)
≤ C5.2t ≤ C5.2Qt.

Finally, if r
4π
√

n
< t <

√
2 c5.2R
r
√

n
, the previous inequality applied to t0 =

√
2 c5.2R
r
√

n
implies

P

(∣∣∣∣∣∑
j∈J

βjxj − (v +
∑
j∈Jc

βjxj)

∣∣∣∣∣ < t | βj, j ∈ J c

)
≤ C5.2Qt0 ≤ CQt,

where C = C5.2 ·
√

2 c5.2R
r

· 4π
r

. �

Now we estimate the probability that ‖A(ω)x‖ is small for some
vector of a regular profile.

Theorem 7.2. Let ∆ > 0 and let U be the set of vectors of (∆, Q)-
regular profile. Then

P
(
∃x ∈ U | ‖Ax‖ ≤ ∆

2
√

n

)
≤ C7.1Q∆n.

Proof. Set

s =
∆

2
√

n
.

Let Ω be the event described in Theorem 7.2. Denote the rows of A by
a1, . . . , an. Note that since

min
x∈Sn−1

‖Ax‖ = min
u∈Sn−1

∥∥AT u
∥∥ ,

for any ω ∈ Ω there exists a vector u = (u1, . . . , un) ∈ Sn−1 such that

u1a1 + . . . + unan = z,

where ‖z‖ < s. Then Ω = ∪n
k=1Ωk, where Ωk is the event |uk| ≥ 1/

√
n.

Since the events Ωk have the same probability, it is enough to estimate
P (Ωn).

To this end we condition on the first n − 1 rows of the matrix A =
A(ω):

P (Ωn) = Ea1,...,an−1P (Ωn | a1, . . . , an−1).
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Here Ea1,...,an−1 is the expectation with respect to the first n − 1 rows
of the matrix A. Take any vector y ∈ U such that

n−1∑
j=1

〈aj, y〉2 < s2.

If such vector does not exist, then ‖Ay‖ ≥ s for all y ∈ U , and so
ω /∈ Ω. Note that the vector y can be chosen using only a1, . . . , an−1.
We have

an =
1

un

(u1a1 + . . . + un−1an−1 − z),

so for ω ∈ Ωn

|〈an, y〉| =
1

|un|

∣∣∣∣∣
n−1∑
j=1

uj〈aj, y〉 − 〈z, y〉

∣∣∣∣∣
≤
√

n

(n−1∑
j=1

u2
j

)1/2(n−1∑
j=1

〈aj, y〉2
)1/2

+ ‖z‖

 ≤ 2
√

n · s = ∆.

The row an is independent of a1, . . . , an−1. Hence, Lemma 7.1 implies

P (Ωn | a1, . . . , an−1) ≤ P (|〈an, y〉| ≤ ∆ | a1, . . . , an−1)

= P

(∣∣∣∣∣
n∑

j=1

βn,jyj

∣∣∣∣∣ ≤ ∆ | a1, . . . , an−1

)
≤ C7.1Q∆.

Taking the expectation with respect to a1, . . . , an−1, we obtain P (Ωn) ≤
C7.1Q∆, and so

P (Ω) ≤ n · P (Ωn) ≤ C7.1Q∆n.

�

8. Vectors of a singular profile.

We prove first that the set of vectors of singular profile admits a
small ∆-net in the `∞-metric.

Lemma 8.1. Let C8.1n
−3/2 ≤ ∆ ≤ n−1/2, where C8.1 = 2R3

r2 and let WS

be the set of vectors of (∆, Q)-singular profile. Let η < 1 be such that

C(η) < C6.3Q,

where C(η) is the function defined in Lemma 3.1. Then there exists a
∆-net N in WS in `∞-metric such that

|N | ≤
(

C8.1

∆
√

n
ηc8.1

)n

.
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Remark 8.2. Lemma 3.4 implies that there exists a ∆-net for Sn−1 in
the `∞-metric with less than (C/∆

√
n)n points. Thus, considering only

vectors of a singular profile, we gain the factor ηc8.1·n in the estimate
of the size of a ∆-net.

Proof. Let J ⊂ {1, . . . , n} and denote J ′ = {1, . . . , n} \ J . Let WJ ⊂
WS be the set of all vectors x of a (∆, Q)-singular profile for which
J(x) = J . We shall construct ∆-nets in each WJ separately. To this
end we shall use Lemma 3.1 to construct a ∆-net for the set PJWJ ,
where PJ is the coordinate projection on RJ . Then the product of this
∆-net and a ∆-net for the ball BJ ′

2 will form a ∆-net for the whole WJ .
Assume that J = {1, . . . , l}, where l ≥ m. Let I1, . . . , Ik be consecu-

tive subintervals (i∆, (i+1)∆], i = k0, . . . , k0 +k, covering the interval
[ r
2
√

n
, R√

n
], which appear in the definition of profile. Recall that

k =

⌈
R− r/2√

n∆

⌉
The restriction on ∆ implies that k ≤ m. Let di be the center of the
interval Ii. Set

MJ = {x ∈ RJ | |xj| ∈ {d1, . . . , dk} for j ∈ J}.

Then |MJ | = (2k)l. Let NJ be the set of all x ∈ MJ for which there
exists a vector y ∈ WJ such that −∆/2 < yj − xj ≤ ∆/2 for all j ∈ J .
The set NJ forms a ∆-net for WJ in the `∞ metric. To estimate its
cardinality we use the probabilistic method.

Let X(1), . . . , X(l) be independent random variables uniformly dis-
tributed on the set {1, . . . , k}. Let N ⊂ {1, . . . , k}l be the set of all
l-tuples (v(1), . . . , v(l)) such that |xj| = dv(j), j = 1, . . . , l for some
x = (x1, . . . , xl) ∈ NJ . Since both MJ and NJ are invariant under
changes of signs of the coordinates,

P ((X(1), . . . , X(l)) ∈ N) =
|NJ |
|MJ |

.

Let (X(1), . . . , X(l)) ∈ N and let x ∈ Rl be such that xj = dX(j). Let
y ∈ WJ be a vector such that −∆/2 < yj − xj ≤ ∆/2 for all j ∈ J .
Then for any j ∈ J, yj ∈ Ii implies that X(j) = i. Let E ⊂ J be any
set containing at least m/2 elements. Then

∞∑
i=1

P 2
i (y|E, ∆) =

k∑
i=1

|{j ∈ E | X(j) = i}|2.
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Since y is a vector of a singular profile, this implies

k∑
i=1

|{j ∈ E | X(j) = i}|2 ≥ Qm5/2∆ = C6.3 ·Q
m2

k
> C(η) · m2

k
.

Now Lemma 3.1 implies that P ((X(1), . . . , X(l)) ∈ N) ≤ ηl, so

|NJ | ≤ (2kη)l =

(
R− 2r

∆
√

n
η

)l

.

To estimate the cardinality of the ∆-net for the whole WJ we use
Lemma 3.4. Since ∆ ≤ 1/

√
|J |, ∆BJ

∞ ⊂ BJ
2 , so

N(PJ ′WJ , BJ ′

∞, ∆) ≤ N(BJ ′

2 , BJ ′

∞, ∆) ≤ 3n−l |BJ ′
2 |

|∆BJ ′
∞|

≤
(

c

∆
√

n− l

)n−l

.

Since the function f(t) = (a/t)t is increasing for 0 < t < a/e, the
right-hand side of the previous inequality is bounded by (c/∆

√
n)

n
.

Hence,

N(WJ , Bn
∞, ∆) ≤ N(PJWJ , BJ

∞, ∆) ·N(PJ ′WJ , BJ ′

∞, ∆)

≤ |NJ | ·
(

c

∆
√

n

)n

≤
(

c′

∆
√

n
ηl/n

)n

Finally, set

N =
⋃

|J |≥m

NJ .

Then

|N | ≤
n∑

l=m

∑
|J |=l

|NJ | ≤ 2n

(
c′

∆
√

n
ηm/n

)n

.

Thus, Lemma 8.1 holds with c8.1 = m/n = r2

2R2 . �

Now we are ready to show that ‖Ax‖ ≥ c for all vectors of a (∆, Q)-
singular profile with probability exponentially close to 1.

Theorem 8.3. There exists an absolute constant Q0 with the following
property. Let ∆ ≥ C8.3n

−3/2, where C8.3 = max(c5.2, C8.1). Denote by
Ω∆ the event that there exists a vector x ∈ VS of (∆, Q0)-singular profile
such that ‖Ax‖ ≤ ∆

2
n. Then

P (Ω∆) ≤ 3 exp(−n).

Proof. We consider two cases. First, we assume that ∆ ≥ ∆1 = c5.2/n.
In this case we estimate the small ball probability using Lemma 5.2
and the size of the ε-net using Lemma 8.1. Note that only the second
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estimate uses the the profile of the vectors. Then we conclude the proof
with the standard approximation argument.

The case ∆ ≤ ∆1 is more involved. From Case 1 we know that
there exists Q1 such that all vectors of (∆1, Q1)-singular profile satisfy
‖Ax‖ ≥ ∆1

2
n with probability at least 1 − e−n. Hence, it is enough

to consider only vectors whose profile is regular on the scale ∆1 and
singular on the scale ∆. For these vectors we use the regular profile in
Lemma 7.1 to estimate the small ball probability and singular profile in
Lemma 8.1 to estimate the size of the ε-net. The same approximation
argument finishes the proof.

Case 1. Assume first that ∆ ≥ ∆1 = c5.2/n. Let Q1 > 1 be a
number to be chosen later. Let M be the smallest ∆

2C3.3
-net in the set

of the vectors of (∆, Q1)-singular profile in `∞ metric.
Let x ∈ VS and let J = J(x) defined in (6.1). Denote J c =

{1, . . . , n} \ J . Then Lemma 5.2 implies

P

(∣∣∣∣∣
n∑

j=1

βjxj

∣∣∣∣∣ ≤ t

)
= EJcP

(∣∣∣∣∣∑
j∈J

βjxj +
∑
j∈Jc

βjxj

∣∣∣∣∣ ≤ t | βj, j ∈ J c

)
≤ C5.2t

for all t ≥ c5.2/
√

n. Since ∆
√

n ≥ c5.2/
√

n, by Lemma 5.4 we have

P (‖Ax‖ ≤ ∆n) ≤ (C5.4∆
√

n)n

and so,

P (∃x ∈M | ‖Ax‖ ≤ ∆n) ≤ |M|(C5.4∆
√

n)n.(8.1)

We shall show that Q1 can be chosen so that the last quantity will be
less than e−n. Recall that by Lemma 8.1, there exists a ∆-net N for
the set of vectors of (∆, Q1)-singular profile satisfying

|N | ≤
(

C8.1

∆
√

n
ηc8.1

)n

,

provided

(8.2) C(η) < C6.3Q1.

Covering each cube of size ∆ with the center in N by the cubes of size
∆

2C3.3
and using Lemma 3.4, we obtain

|M| ≤ |N | ·N(∆Bn
∞, ∆Bn

∞,
1

2C3.3

) ≤
(

6C8.1 · C3.3

∆
√

n
ηc8.1

)n

.
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Substitution of this estimate into (8.1) yields

P (∃x ∈M | ‖Ax‖ ≤ ∆n) ≤
(

6C8.1 · C3.3

∆
√

n
ηc8.1

)n

· (C5.4∆
√

n)n

≤ (C ′ηc8.1)n.

Now choose η so that C ′ηc8.1 < 1/e and choose Q1 satisfying (8.2). With
this choice the probability above is smaller than e−n. Combining this
estimate with Lemma 3.3, we have that ‖A‖ ≤ C3.3

√
n and ‖Ax‖ ≥ ∆n

for all x ∈M with probability at least 1− 2e−n.
Let y ∈ VS be a vector of (∆, Q1)-singular profile. Choose x ∈ M

such that ‖x− y‖∞ ≤ ∆
2C3.3

. Then ‖x− y‖ ≤ ∆
√

n
2C3.3

and

‖Ay‖ ≥ ‖Ax‖ − ‖A(x− y)‖ ≥ ∆n− ‖A‖ ‖x− y‖ ≥ ∆

2
n.

Case 2 Assume that C8.3n
−3/2 ≤ ∆ < ∆1 = c5.2/n. Let Ω1 be the

event that ‖Ax‖ < ∆1

2
n = c5.2/2 for some vector of (∆1, Q1)-singular

profile. We proved in Case 1 that

(8.3) P (Ω1) < 2e−n.

Let Q2 > 1 be a number to be chosen later and let W be the set of
all vectors of (∆1, Q1)-regular and (∆, Q2)-singular profile. By Lemma
7.1 any vector x ∈ W satisfies

P

(∣∣∣∣∣
n∑

j=1

βjxj

∣∣∣∣∣ ≤ t

)
≤ C7.1Q1t

for all t ≥ ∆1.
Now we can finish the proof as in Case 1. Since ∆

√
n ≥ ∆1, Lemma

5.4 implies

P (‖Ax‖ ≤ ∆n) ≤ (C ′∆
√

n)n

for any x ∈ W . Here C ′ = C5.4 · C7.1Q1.
Let N be the smallest ∆

2C3.3
-net in W in `∞ metric. Note that ∆ ≥

C8.3n
−3/2 ≥ C8.1n

−3/2. Arguing as in the Case 1, we show that

|N | ≤
(

6C8.1 · C3.3

∆
√

n
ηc8.1

)n

for any η satisfying

(8.4) C(η) < C6.3Q2.

Hence,

P (∃x ∈ N | ‖Ax‖ ≤ ∆n) ≤ |N |(C ′∆
√

n)n ≤ (C ′′ηc8.1)n.
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Choose η so that the last quantity is less than e−n and choose Q2 so
that (8.4) holds. Then the approximation argument used in Case 1
shows that the inequality

‖Ay‖ ≥ ∆

2
n

holds for any y ∈ W with probability greater than 1− e−n. Combining
it with (8.3), we complete the prof of Case 2. Finally, we unite two
cases setting Q0 = max(Q1, Q2). �

9. Proof of Theorem 1.1.

To prove Theorem 1.1 we combine the probability estimates of the
previous sections. Let ε > c1.1/

√
n, where the constant c1.1 will be

chosen later. Define the exceptional sets:

Ω0 = {ω | ‖A‖ > C3.3

√
n},

ΩP = {ω | ∃x ∈ VP ‖Ax‖ < C5.1

√
n }.

Then Lemma 3.3 and Lemma 6.2 imply

P (Ω0) + P (ΩP ) ≤ 3 exp(−c5.1n).

Let Q0 be the number defined in Theorem 8.3. Set

∆ =
ε

2C7.1Q0 · n
.

The assumption on ε implies ∆ ≥ C8.3n
−3/2 if we set c1.1 = 2C7.1Q0 ·

C8.3. Denote by WS the set of vectors of (∆, Q0)-singular profile and
by WR the set of vectors of (∆, Q0)-regular profile. Set

ΩS = {ω | ∃x ∈ WS ‖Ax‖ <
∆

2
n =

1

4C7.1Q0

ε},

ΩR = {ω | ∃x ∈ WR ‖Ax‖ <
∆

2
√

n
=

1

4C7.1Q0

ε · n−3/2}.

By Theorem 8.3, P (ΩS) ≤ 3e−n, and by Theorem 7.2, P (ΩR) ≤ ε/2.
Since Sn−1 = VP ∪WS ∪WR, we conclude that

P (ω | ∃x ∈ Sn−1 ‖Ax‖ <
1

2C7.1Q0

ε · n−3/2} ≤ ε/2 + 4 exp(−c5.1n) < ε

for large n. �

Remark 9.1. The proof shows that the set of vectors of a regular
profile is critical. On the other sets the norm of Ax is much greater
with probability exponentially close to 1.
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