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Abstract

Random {−1, 1}-polytopes demonstrate extremal behavior with re-
spect to many geometric characteristics. We illustrate this by showing
that the combinatorial dimension, entropy and Gelfand numbers of
these polytopes are extremal at every scale of their arguments.

1 Introduction

The goal of this article is to investigate some geometric properties of {−1, 1}-
polytopes, which are symmetric convex hulls of subsets of the combinatorial
cube {−1, 1}n. Formally, let n ≥ 1 and N ≥ 1 be integers. For any set
{ωi : 1 ≤ i ≤ N} ⊂ {−1, 1}n, define

Kn,N = Kn,N (ω1, . . . , ωN ) = conv(±ω1, . . . ,±ωN ) = absconv(ω1, . . . , ωN ).

Our focus is on random {−1, 1}-polytopes, where the randomness is gen-
erated by the uniform (counting) probability measure on {−1, 1}n, and a
certain property is satisfied by a random {−1, 1}-polytope, if the set of
polytopes Kn,N satisfying this property has probability larger than 1 − cn,
where c ∈ (0, 1) is a numerical constant which is independent of n and N .

Equivalently, one can consider the random structure at hand in the fol-
lowing manner. Let ξ be a symmetric {−1, 1}-valued random variable and
let (ξi,j), 1 ≤ i ≤ N , 1 ≤ j ≤ n, be independent copies of ξ. If e1, ..., en
denotes the standard unit vectors, each Xi =

∑n
j=1 ξi,jej is a random point

in {−1, 1}n and Kn,N = absconv(X1, ..., XN ).
Throughout this article, we denote by ‖ · ‖ the canonical Euclidean norm

and the corresponding unit ball and the unit sphere are denoted by Bn
2 and
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Sn−1, respectively. For any Lebesgue measurable set L ⊂ Rn, put vol (L) to
be the volume of L and for a set T ⊂ Rn, let absconv(T ) be its symmetric
convex hull.

It is well known that random polytopes generated by random points on
the sphere demonstrate the extremal behavior with respect to many geomet-
ric characteristics (see for instance [23] and an extensive survey [12]). The
investigation of the complexity of random {−1, 1}-polytopes or equivalently,
0/1-polytopes is more recent (see the survey [26]). For example, see [3] for
the study of the number of facets and [9] where it is established that the
volume of a random {−1, 1}-polytope with N vertices is the largest possible
(rate wish) among all polytopes Kn,N .

The main results of this article show that this extremal behavior is true
for three important geometric parameters - the combinatorial dimension,
the entropy and the Gelfand numbers (defined below). All three parameters
are scale-sensitive, and our results show that random polytopes are the
“worst possible” among all polytopes Kn,N at every scale of the parameter
in question. Indeed, we show that the behavior in the random case matches
the upper bounds that hold for any polytope KN,n.

The significance of such results is the fact that the parameters in question
play a central role in Asymptotic Geometric Analysis, Empirical Processes
theory and Nonparametric Statistics (see, e.g., [1], [8], [13, 16, 17, 18] and
references therein), where they serve as a way of measuring the richness or
the complexity of a given set. Hence, our results is yet another indication
that random polytopes are the “most complicated” in the class Kn,N .

Definition 1.1 If (Y, d) is a metric space and K ⊂ Y , then for every ε > 0,
N(K, ε, d) is the minimal number of open balls (with respect to the metric
d) needed to cover F .

Usually, we use the `n2 metric, in which case we denote the covering num-
bers by N(K, εBn

2 ), that is, the number of translates of the n-dimensional
Euclidean ball of radius ε needed to cover K. More generally, N(A,B) is
the number of translates of B needed to cover A.

Definition 1.2 A set is ε-separated with respect to a metric d if the dis-
tance between every two distinct points in the set is larger than ε. We
denote the maximal cardinality of an ε-separated subset of Y by D(Y, ε, d).

It is easy to see that the cardinality of a maximal ε-separated subset
of Y is equivalent to the covering numbers of Y , namely, for every ε > 0,
N(Y, ε, d) ≤ D(Y, ε, d) ≤ N(Y, ε/2, d).
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The second parameter we study is the combinatorial dimension, which
measures the tradeoff between the size of a cube contained in a coordinate
projection of a set F and the dimension of the projection.

This parameter was introduced independently by several authors - par-
ticularly in the context of empirical processes (see, for example, [17, 22]).

Definition 1.3 Let F be a set of functions f : Ω → R. For every ε > 0,
a set σ = {x1, ..., xn} ⊂ Ω is said to be ε-shattered by F if there is some
function s : σ → R, such that for every I ⊂ {1, ..., n} there is some fI ∈ F
for which fI(xi) ≥ s(xi) + ε if i ∈ I, and fI(xi) ≤ s(xi)− ε if i 6∈ I. Define
the shattering dimension at scale ε as

VC(F,Ω, ε) = sup {|σ| | σ ⊂ Ω, σ is ε−shattered by F} .

In cases where the underlying space is clear we denote the combinatorial
dimension by VC(F, ε). If F is {−1, 1}-valued, we denote its combinatorial
dimension by VC(F ).

Observe that the combinatorial dimension is a scale sensitive version of the
Vapnik-Chervonenkis (VC) dimension [24], which is defined for subsets of
the combinatorial cube as the largest dimension of a coordinate projection
of F which is the entire combinatorial cube of that dimension.

In our case, the underlaying space will always be the set of coordinates
given by the standard unit basis {e1, ..., en} and each vector in Rn is a
function on this set in the natural way. Also, since we are only interested in
convex symmetric sets (as F = Kn,N is convex and symmetric), it is possible
to take the level function s ≡ 0, (see, e.g. [15]). Hence, the combinatorial
dimension of Kn,N at scale ε is simply the largest dimension of a subset
σ ⊂ {1, ..., n} such that the coordinate projection Pσ satisfies

εB|σ|
∞ ⊂ PσKn,N =

{
(k(i))i∈σ : k ∈ Kn,N

}
,

where Bd
∞ is the cube of dimension d.

Since our results only hold for a certain range of N and n, we require
the following assumption:

Assumption 1 2n ≤ N ≤ 2n.

A result we shall use throughout this article was recently proved in [11],
and shows that a random polytope contains the interpolation body generated
by the cube and a “large” Euclidean ball.
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Theorem 1.4 There exist absolute positive constants c1 and c2 for which
the following holds. Let n and N be integers such that n < N ≤ 2n and let
α = α(N,n) = n/(N − n). For every 0 < β ≤ 1/2 one has

Pr
({
KN,n ⊃ C(α)

(√
β log(2N/n)Bn

2 ∩Bn
∞

)})
≥ 1− exp

(
−cnβN1−β

)
,

where C(α) = c1c
α
2 .

Let us mention that a similar result was obtained by Giannopoulos and
Hartzoulaki [9], though for a slightly more restrictive range of N namely, for
N ≥ n log 2n, and with a weaker probability estimate - only 1− exp(−cn).

Observe that

C(α)
(√

β log(2N/n)Bn
2 ∩Bn

∞

)
⊃ C(α)

√
β log(2N/n)

n
Bn
∞,

and in particular, Theorem 1.4 implies that if Assumption 1 is satisfied and
indeed N ≥ 2n, then with probability at least 1− exp

(
−cnβN1−β),

vol1/n(KN,n) ≥ c1

√
β log(2N/n)

n
(1)

The article is organized as follows. The next section is devoted to the
proof of some deterministic upper bounds on the entropy and the combi-
natorial dimension of symmetric convex hulls of subsets of cardinality N
of
√
nSn−1; hence, these estimates hold true for any {−1, 1}-polytope. In

particular, we prove a complementary result to the Carl-Pajor Theorem [6],
by obtaining an entropy estimate for scales smaller than c

√
log(N/n). In

section 3 we show that both upper bounds are sharp as they are attained
by a random {−1, 1}-polytope in both cases. We end the article by proving
a similar result for Gelfand numbers (defined below).

Finally, a notational convention. Throughout, all absolute constants are
positive numbers and are denoted by c, C, K and κ. Their values may
change from line to line, or even in the same line. cp is a constant which
depends only on p and we write a ∼ b if there are absolute positive constants
c and C such that ca ≤ b ≤ Ca.

2 Deterministic upper bounds

The first deterministic upper bound we require is on the `n2 entropy of any
{−1, 1}-polytope, and was established in [6].
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Theorem 2.1 There exist absolute positive constants c0 and c1 for which
the following holds. Set N ≥ n, let T ⊂

√
nSn−1 with |T | ≤ N and put

K = absconv(T ). Then, for any ε ≥ c0
√
n/N ,

logN(K, εBn
2 ) ≤ c1

n

ε2
log
(
c1Nε

2

n

)
.

A result of a similar flavor is a volumetric estimate on K, which was
established independently in [2], [6] and [10].

Theorem 2.2 There exists an absolute positive constant c such that for any
K as above,

vol(K)1/n ≤ c

(
log(cN/n)

n

)1/2

.

An immediate corollary which follows from Theorem 2.2 is an estimate
on the combinatorial dimension of any {−1, 1}-polytope.

Corollary 2.3 There exists an absolute positive constant C such that for
any polytope Kn,N and any 0 < ε ≤ 1,

VC(Kn,N , ε) ≤ min
{
C

log(CNε2)
ε2

, n

}
.

Proof. Since a projection onto k coordinates of a {−1, 1}-polytope in Rn is
a {−1, 1}-polytope in Rk, then by the volumetric estimate of Theorem 2.2,
it is clear that a k-projection of such a polytope cannot contain rBk

∞ for r

larger than c
(

log(N/k)
k

)1/2
, from which the estimate easily follows.

It is evident from the formulation of Theorem 2.1 that it does not hold
for all scales of ε. The main result of this section is an entropy estimate for
any polytope KN,n and ε ≤ c

√
log(N/n). This estimate will later be shown

to be sharp.

Theorem 2.4 There exist absolute positive constants c0, and c1 for which
the following holds. Let T ⊂

√
nSn−1 with |T | ≤ N and set K to be its

symmetric convex hull. Then for any ε ≤
√

log(c0N/n),

logN(K, εBn
2 ) ≤ n log

(
c1
√

log(c1N/n)
ε

)
.
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Before presenting the proof, we introduce some volumetric parameters
of a convex body K which are related to its mixed volumes (see [18, 20]).

Definition 2.5 For every 1 ≤ d ≤ n and a body K, set

wd(K) =

(
1

vol(Bd
2)

∫
Gn,d

vol(PEK)dE

)1/d

,

where PE is the orthogonal projection onto E and dE is the Haar measure
on the Grassman manifold of subspaces of dimension d of Rn. We also set
w0(K) = 1.

The well known Alexandrov inequalities state that for d ≥ 1, wd(K) is
non-increasing.

For a convex symmetric set, let K◦ = {x : 〈x, y〉 ≤ 1 for any y ∈ K}.
Set M∗(K) =

∫
Sn−1 ‖x‖K∗dσ, where σ is the Haar measure on the sphere

and ‖ · ‖K∗ is the norm for which K◦ is its unit ball. It is easy to verify
that w1(K) = M∗(K), and thus, for 1 ≤ d ≤ n, wd(K) ≤ M∗(K) (see [18],
Chapter 9 or [20], Chapter 6).

Finally, recall the Steiner-Minkowski formula (see [18, 20]), that for any
t > 0,

vol(K + tBn
2 )

vol(Bn
2 )

=
n∑
d=0

(
n

d

)
tn−dwdd(K). (2)

Lemma 2.6 Let T and K be as in Theorem 2.4. Then for every 1 ≤ d ≤ n,

wd(K) ≤ c

√
log
(
cN

d

)
,

where c is an absolute positive constant.

Proof. Fix 1 ≤ d ≤ n and for u ≥ 1 set

Ωu =
{
E ∈ Gn,d : u

√
d ≤ sup

t∈T
‖PEt‖ < (u+ 1)

√
d

}
.

By a standard concentration argument for Lipschitz functions on the sphere
and the connection between the Haar measure on the sphere and on the
Grassman manifold [16], there exist κ > 0, such that for every d ≥ κ logN
and u ≥ 1, Pr(Ωu+1) ≤ exp(−cu2d). Applying Theorem 2.2, it is evident
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that if T ⊂
√
dBd

2 and |T | ≤ N then vol (absconv(T )) ≤ cd
(

log(cN/d)
d

)d/2
.

Hence, if E ∈ Ωu then

PEK = absconv(PET ) ⊂ (u+ 1)
√
dBd

2 ,

and∫
Gn,d

vol(PEK)dE ≤
∫

Ω0

vol(PEK)dE +
∞∑
u=1

∫
Ωu

vol(PEK)dE

≤ cd
(

log(cN/d)
d

)d/2(
1 +

∞∑
u=1

(u+ 1)d exp(−cu2d)

)

≤ cd1

(
log(c1N/d)

d

)d/2
.

The claim now follows for d ≥ κ logN because vol(Bd
2)1/d ∼ 1/

√
d.

It is well known (see for instance, [18], Lemma 4.14) that if T ⊂
√
nSn−1

and |T | ≤ N then M∗(K) ≤ c2
√

logN , and since wd(K) ≤M∗(K) then for
d ≤ κ logN ,

wd(K) ≤M∗(K) ≤ c2
√

logN ≤ c3

√
log
(
c3N

d

)
,

which concludes the proof.

Proof of Theorem 2.4. It is standard to verify that if A and B are convex
and symmetric sets in Rn and B ⊂ A then N(A,B) ≤ 3nvol(A)/vol(B). In
particular,

N(K, εBn
2 ) ≤ N (K + εBn

2 , εB
n
2 ) ≤ 3n

vol (K + εBn
2 )

vol(εBn
2 )

.

By the Steiner-Minkowski formula (2) and the previous lemma,

vol
(

1
εK +Bn

2

)
vol(Bn

2 )
=

n∑
d=0

(
n

d

)(
wd(K)
ε

)d
≤

n∑
d=0

(
n

d

)(
c2
ε2

log
(
cN

d

))d/2
=

n∑
d=0

(
n

d

)
ρd,
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where ρd depends also on N and ε. A straightforward computation shows

that there exists an absolute positive constant c1 such that if ε ≤
√

log
(
cN
n

)
,

then for every 1 ≤ d ≤ n and every N and ε,

ρd ≤
(
c1

log(c1N/n)
ε2

)n/2
.

Hence, for some absolute constant c2, we have

logN(K, εBn
2 ) ≤ n log

(
c2

√
log(c2N/n)

ε

)
,

as claimed.

It is convenient to use the terminology of the so-called s-numbers (see
[18]). For a subset K ⊂ Rn and any j ≥ 1, the j-th Gelfand number is
defined by cj(K) = inf{maxx∈K∩E ‖x‖ : E ⊂ Rn, codim(E) < j} and the
j-th entropy number is defined by ej(u) = inf{ε : N(K, εBn

2 ) ≤ 2j−1}.
Thus, the k-th Gelfand number of a body is the smallest diameter of a
k − 1-codimensional section of K and the entropy numbers are the discrete
inverse of the logarithm of the covering numbers.

Just like the upper bound on the entropy (and thus on ek), one can prove
the following upper estimate on the Gelfand numbers.

Theorem 2.7 [6] There exist absolute positive constants c0 such that the
following holds. Let N ≥ n, let T ⊂

√
nBn

2 and put K = absconv(T ). Then,
for any 1 ≤ k ≤ n,

ck(K) ≤ c0 min

√n ,
(
n log

(
2N
k

)
k

)1/2
 .

3 Lower bounds for random polytopes

Let us start by formulating and proving the lower bound on the combinato-
rial dimension of a random polytope.

Theorem 3.1 There exist absolute positive constants c and c1 for which
the following holds. Let n and N be integers which satisfy Assumption 1.
Then, for any 0 < β < 1/2 and N ≥ n, with probability of at least 1 −
exp(−cnβN1−β), for every 0 < ε < 1,

VC(Kn,N , ε) ≥ min
{
Cβ

log(c1Nε2)
ε2

, n

}
,
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where Cβ depends only on β.

A well known bound on the cardinality of subsets of the combinatorial
cube is the Sauer-Shelah Lemma [19, 21, 24].

Theorem 3.2 If T ⊂ {−1, 1}n and d = VC(T ), then

|T | ≤
d∑
i=0

(
n

i

)
≤
(en
d

)d
,

where the last inequality holds if n ≥ d. In particular, if |T | ≥ 2αn then
VC(T ) ≥ Cαn, where Cα depends only on α.

Proof of Theorem 3.1. We will prove a lower bound on the inverse
function of the combinatorial dimension of a convex symmetric set A. For
1 ≤ d ≤ n, let fA(d) be the largest ε such that, for some σ ⊂ {1, ..., n}
with |σ| = d, εBd

∞ ⊂ PσA =
{
(a(i))i∈σ : a ∈ A

}
. Clearly, our claim will

follow if we show that with high probability, for any 1 ≤ d ≤ n, fKn,N
(d) ≥

min
{
Cβ

√
log(2N/d)

d , 1
}

.

First, suppose that 4d ≤ log2N and divide the set {1, . . . n} into subsets
of cardinality 2d. Consider one of these subsets, say J = {1, . . . 2d}, and
denote by PJ the coordinate projection from Rn onto RJ . Let Tn,N be the
set of vertices of Kn,N . Then

Pr
({
|PJTn,N | ≤ 22d−1

})
≤

22d−1∑
`=1

(
22d

`

)
·
(

`

22d

)N
≤ 222d ·

(
1
2

)N
.

Since 4d ≤ log2N , the last expression does not exceed 2−N/2. Note that
the projections PJTn,N are independent for disjoint subsets J , so the prob-
ability that all such projections contain less than 22d−1 distinct elements
is at most 2−(n/2d)N/2. Assume now that the projection on at least one
subset J contains more than 22d−1 elements. By the Sauer–Shelah Lemma,
VC(PJTn,N ) ≥ d and thus VC(Tn,N ) ≥ d. Therefore, when 4d ≤ log2N ,
we have fKn,N

(d) ≥ 1 with probability higher than 1 − 2−(n/2d)N/2 ≥ 1 −
exp(−cnβN1−β) for some absolute constant c.

Next, fix d ≥ log2N and thus 2d ≥ N ≥ 2n ≥ 2d. Again, we divide
{1, ..., n} into disjoint subsets with d elements, and since the coordinate
projections onto these subsets are “independent” random Kd,N polytopes,
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then by Theorem 1.4 at least one of these polytopes contains a cube of size

C

√
β log(2N/d)

d with probability greater than

1− exp(−c(n/d)dβN1−β) ≥ 1− exp(−cnβN1−β).

Hence, with that probability, fKn,N
(d) ≥ C

√
β log(2N/d)

d .
Since the function fKn,N

is non-increasing, for (1/4) log2N ≤ d < log2N
and 1 ≤ d ≤ n, we have

fKn,N
(d) ≥ fKn,N

(log2N) ≥ c ≥ C

√
β log(2N/d)

d

with probability at least 1− exp(−cnβN1−β).

Theorem 3.1 can be used to resolve the following question. It was shown
in [14] that there are absolute positive constants c and C such that for any
class of functions bounded by 1,

VC(conv(F ), ε) ≤ C · VC(F, cε)
ε2

.

It was also shown that this estimate is sharp up to a logarithmic factor, in
the following sense:

Theorem 3.3 There exist absolute positive constants C and c for which
the following holds. For every 0 < ε < 1/2 there is a class Fε of functions
bounded by 1 such that

VC(conv(Fε), ε) ≥ C · VC(Fε, cε)
ε2 log(1/ε)

.

Now, one can remove the logarithmic factor and construct a set for which
the lower bound matches the upper one for “most” values of ε.

Theorem 3.4 There exist absolute positive constants c1 and c2 for which
the following holds. Let T be a random subset of {−1, 1}n with 2n elements
and set F = T ∪−T . Then, with probability at least 1− exp(−c1n), for any
γ < 1/2 and ε ≥ c2/n

γ,

VC(conv(F ), ε) ≥ c3(γ) ·
VC(F, ε)

ε2
,

where c3 is a constant depending only on γ.
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Proof. Since F consists of {−1, 1}-valued functions (on the coordinates
{e1, ..., en}), then for any ε > 0, VC(F, ε) ≤ c log n. On the other hand, by
Theorem 3.1 for β = 1/2, with probability at least 1 − exp(−cnβN1−β) ≥
1− exp(−cn) for any γ < 1/2 and ε ≥ c2/n

γ ,

VC(conv(F ), ε) ≥ c

ε2
log(cnε2) ≥ c′(γ)

ε2
log n ≥ c3(γ)

VC(F, ε)
ε2

.

Next, we turn to the question of entropy. We will show that at a scale
below c

√
log(N/n), a lower bound on the entropy follows from the fact that

Kn,N contains the interpolation body αBn
2 ∩Bn

∞ for an appropriate value of
α, and thus must have a large entropy. But for larger scales, one needs an
additional argument in order to construct a large separated subset in Kn,N .

Theorem 3.5 There exist absolute positive constants C, κ, c, c1 and c2
for which the following holds. For any κ

√
log(N/n) ≤ ε ≤ C

√
n, with

probability at least 1− exp(−cn),

logD (Kn,N , εB
n
2 ) ≥ c1

n

ε2
log
(
c2Nε

2

n

)
.

The proof of the theorem requires some preparation.

Lemma 3.6 Let 0 < λ ≤ 1/2 and for every integer N fix m ≤ N/2. Let
B(N,m) be the family of subsets of {1, ..., N} of cardinality m. Then, there
exists a subset P ⊂ B(N,m) which satisfies that log |P | ≥ (1−λ)m log

(
cλ

N
n

)
and if I, J ∈ P and I 6= J then |I M J | ≥ λm. In other words,

logD (B(N,m), λm, dH) ≥ (1− λ)m log
(
cλ
N

m

)
where dH is the Hamming metric (that is, dH(I, J) = |I M J |).

Proof. Without loss of generality, assume that λm is an integer. Pick any
subset of cardinality m of {1, ..., N} and throw away all subsets of size m
such that |I M J | ≤ λm. There are at most

m∑
k=(1−λ)m

(
m

k

)(
N −m

m− k

)
≤ 2m max

(1−λ)m≤k≤m

(
N −m

m− k

)
≤ 2m

(
N

λm

)

such subsets, since m ≤ N/2. Now, select a new subset of size m from
the remaining subsets. Repeating this argument, we obtain a family P of
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subsets of size m which are λm-separated in the Hamming metric and with
cardinality larger than(

N

m

)/
2m
(
N

λm

)
≥ (N/2m)m

2m(Ne/λm)λm

which concludes the proof.

Next, we shall use the following formulation of Bernstein’s inequality:

Theorem 3.7 [4, 25] Let Z1, ..., Zn be independent random variables with
zero mean, such that for every i and every k ≥ 2, E|Zi|k ≤ k!Mk−2vi/2.
Then, for any v ≥

∑n
i=1 vi and any u > 0,

Pr

({∣∣∣∣∣
n∑
i=i

Zi

∣∣∣∣∣ > u

})
≤ 2 exp

(
− u2

2(v + uM)

)
.

One can formulate Theorem 3.7 using the ψ1 norm of the random variable
Z. Recall that ‖Z‖ψ1 = infb>0 E exp(|Z|/b) ≤ 2. Random variables with a
bounded ψ1 norm display an exponential tail (see, for example, [25]) and
the sum of independent copies of such a variable is highly concentrated.
Indeed, it is easy to see that if E exp(|Z|/b) ≤ 2, that is, if ‖Z‖ψ1 ≤ b,

then
∑∞

k=1
E|Z|k
bkk!

≤ 2. Hence, if Zi are distributed as Z, the assumptions of
Theorem 3.7 are satisfied for M = ‖Z‖ψ1 and v = 4n‖Z‖2

ψ1
, implying that

Pr

({∣∣∣∣∣ 1n
n∑
i=i

Zi

∣∣∣∣∣ > u

})
≤ 2 exp

(
−cnmin

{
u2

‖Z‖2
ψ1

,
u

‖Z‖ψ1

})
(3)

As an example, consider Zi =
(∑l

j=1 ξi,j

)2
− l where, as before, (ξi,j) are in-

dependent, symmetric, {−1, 1}-valued random variables. It is easily verified
that E exp(Zi/l) ≤ 2, and thus (3) is satisfied with ‖Z‖ψ1 ≤ l.
Proof of Theorem 3.5. Let m ≤ N/2 to be defined later and set P as
in Lemma 3.6 for λ = 1/2. Let Xi =

∑n
j=1 ξi,jej and define the random

vectors YI = 1
m

∑
i∈I Xi. Thus, each Xi is a random point in {−1, 1}n and

YI is a convex combination of points Xi out of the set {Xi, 1 ≤ i ≤ N}. If
I, J ∈ P and I 6= J then

YI − YJ =
1
m

∑
i∈I\J

Xi −
∑
i∈J\I

Xi

 .
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Since the random variables ξi,j are symmetric the same holds for each Xi,
implying that YI − YJ has the same distribution as 1

m

∑
i∈IMJ Xi. Thus,

m2

n · ‖YI − YJ‖2
`n2

has the same distribution as 1
n

∑n
j=1

(∑
i∈IMJ ξi,j

)2.
Note that this random variable is highly concentrated. Indeed, setting

Zj =
(∑

i∈IMJ ξi,j
)2, it is easy to see that ‖Zj‖ψ1 ≤ |I M J | ≤ m. Hence, by

(3),

Pr
({∣∣∣‖YI − YJ‖2

`n2
− E‖YI − YJ‖2

`n2

∣∣∣ > un

m2

})
(4)

= Pr


∣∣∣∣∣∣ 1n

n∑
j=1

(Zi − EZi)

∣∣∣∣∣∣ > u


 ≤ 2 exp

(
−cnmin

{
u2

m2
,
u

m

})
.

Since E‖YI − YJ‖2
`n2

= n|IMJ |
m2 ≥ λn

m = n
2m , then applying (4) with u = m/4 it

follows that

Pr

({
‖YI − YJ‖`n2 ≤

1
2

E‖YI − YJ‖`n2

})
≤ 2 exp(−c0n)

for some absolute constant c0. Moreover, by (4), for any t > 0

Pr
({
‖YI − Yj‖`n2 ≥ (1 + 2t) E‖‖YI − Yj‖`n2

})
≤ 2 exp(−c0nt),

and by a standard integration argument all the Lp norms of ‖YI − YJ‖`n2
are equivalent to the L1 norm with a constant depending only on p. In
particular,

E‖YI − YJ‖`n2 ≥ c
(
E‖YI − YJ‖2

`n2

)1/2
≥ c1

√
n

m
.

Therefore, with probability at least 1− 2 exp(−c0n), ‖YI − YJ‖`n2 ≥ c2
√

n
m .

Set m = c22n/ε2 and κ = c2√
log 2

. Fix ε ≥ κ
√

log(N/n), and thus m ≤ n ≤
N/2 as required in Lemma 3.6.

Also,
log |P | = (1− λ)m log(cλN/m) =

m

2
log(c′N/m)

and thus 2 log |P | ≤ c0n/8. Hence, for every such ε, with probability at least
1 − exp(−c0n/4) for every I, J ∈ P , ‖YI − YJ‖`n2 ≥ ε, implying that Kn,N

contains an ε-separated set whose cardinality satisfies that

log |P | ≥ m

2
log(c0N/m) = c1

n

ε2
log
(
c2Nε

2

n

)
,

as claimed.
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To handle scales below κ
√

log(N/n), we prove the following

Lemma 3.8 Let κ, N and n be as in Theorem 3.5. There exist absolute
positive constants c, c1, c2 and c3 for which the following holds. For any ε ≤
min

{
κ
√

log(N/n), c
√
n
}
, with probability at least 1− exp(−c1N1/2n1/2),

logD(Kn,N , εB
n
2 ) ≥ c2n log

(
c3

√
log(N/n)
ε

)
.

Observe that the constant κ appearing in the restriction ε ≥ κ
√

log(N/n)
is of no particular significance, and we could have chosen to use any other
absolute constant. Indeed, this follows from the fact that the cardinality
of an ε-separated set is monotone in the scale and since the estimates of
Theorem 3.5 and of Lemma 3.8 coincide for ε ∼

√
log(N/n).

Proof. Recall that for any two convex, symmetric bodies A and B in Rn,
the covering number N(A,B) satisfies that N(A,B) ≥ vol(A)/vol(B).

Hence, if we apply the volumetric estimate (1) which holds for a random
{−1, 1}-polytope, it is evident that with probability 1− exp(−c1N1/2n1/2),

(N(Kn,N , εB
n
2 ))1/n ≥

(
vol(Kn,N )
vol(εBn

2 )

)1/n

≥ c2

√
log(2N/n)

ε
.

Corollary 3.9 There exist absolute positive constants ci, 0 ≤ i ≤ 4, and κ
such that if n and N satisfy Assumption 1, and if we set

H(ε) = c3n


√

log(2N/n)

ε if ε ≤ κ
√

log(N/n),
1
ε2

log
(
c4Nε2

n

)
if κ
√

log(N/n) ≤ ε ≤
√
n.

then with probability at least 1 − exp(−c0n), for any c1 exp(exp(−c2n)) ≤
ε ≤

√
n,

logD(Kn,N , εB
n
2 ) ≥ H(ε).

Proof. By the previous results it is evident that for any fixed 0 ≤ ε <
√
n,

with probability at least 1− exp(−cn), logD(Kn,N , εB
n
2 ) ≥ H(ε). Fix ε0 =

exp(− exp(cn)) and k = exp(c′n/2), and let εi = 2iε0 for 0 ≤ i ≤ k. Then,
with probability at least 1 − exp(c′′n), logD(Kn,N , εiB

n
2 ) ≥ H(εi), which

implies that with the same order of probability, for any ε ∈ [ε0,
√
n],

logD(Kn,N , εB
n
2 ) ≥ cH(ε)

for a suitable constant c.
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We conclude by applying Theorem 3.5 to obtain a lower estimate on the
Gelfand numbers of a random Kn,N . Recall that the upper estimate holds
for any polytope KN,n and was established in [6].

Theorem 3.10 There exist absolute positive constants c1, c2 and c3 for
which the following holds. For any 1 ≤ k ≤ n with probability at least
1− exp(−c1n),

c2 min

1 ,

(
log
(

2N
k

)
k

)1/2
 ≤

ck(Kn,N )√
n

≤ c3 min

1 ,

(
log
(

2N
k

)
k

)1/2
 .

Before presenting the proof let us recall the following application of a
general inequality from [5].

Lemma 3.11 There exists an absolute constant ρ such that for any convex
body K ⊂ Rn and 1 ≤ k ≤ n,

sup
1≤j≤k

jej(K) ≤ ρ sup
1≤j≤k

jcj(K). (5)

Observe that in terms of entropy numbers, Theorem 3.5 states that there
exist absolute constants c1, and c2 such that, for any 1 ≤ k ≤ n, with
probability at least 1− exp(−c1n), one has

ek(Kn,N ) ≥ c2 min

√n ,
(
n log

(
2N
k

)
k

)1/2
 . (6)

Proof of Theorem 3.10: To prove the lower estimate we can assume that
k ≥ k0 = c logN . Indeed, if k < k0, then ck(Kn,N ) ≥ ck0(Kn,N ), while
for k = k0 the minimum in Theorem 3.10 is a constant. Fix k in that
range and let α be a parameter larger than 1, to be defined later. From the
reformulation (6) of Theorem 3.5 and from (5),

c3

(
nαk log

(
2N
αk

))1/2

≤ αkeαk(Kn,N ) ≤ ρ sup
1≤j≤αk

jcj(Kn,N ) (7)

for some absolute constant c3. Clearly, one has

sup
1≤j≤αk

jcj(Kn,N ) ≤ sup
1≤j<k

jcj(Kn,N ) + sup
k≤j≤αk

jcj(Kn,N ).
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Applying the upper bound of Theorem 2.7 for the first term on the right-
hand side, it is evident that

sup
1≤j≤k

jcj(Kn,N ) ≤ c4

(
nk log

(
2N
k

))1/2

. (8)

Since for all j ≥ k, cj(Kn,N ) ≤ ck(Kn,N ) then

αkck(Kn,N ) ≥ sup
k≤j≤αk

jcj(Kn,N ),

and combining this with (7) and (8) implies

c3

(
nαk log

(
2N
αk

))1/2

− c4ρ

(
nk log

(
2N
k

))1/2

≤ ραkck(Kn,N ).

To conclude, it is evident that one can choose α such that the term on
the left hand side is larger than c4ρ

(
nk log

(
2N
k

))1/2.
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