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Abstract

Marginal (contingency) tables are the method of choice for government agencies releasing statistical
summaries of categorical data. In this paper, we consider lower bounds on how much distortion (noise)
is necessary in these tables to provide privacy guarantees when the data being summarized is sensitive.
We extend a line of recent work on lower bounds on noise for private data analysis [9, 14, 15, 16] to a
natural and important class of functionalities. Our investigation also leads to new results on the spectra
of random matrices with correlated rows.

Consider a database D consisting of n rows (one per individual), each row comprising d binary
attributes. For any subset of T attributes of size |T | = k, the marginal table for T has 2k entries; each
entry counts how many times in the database a particular setting of these attributes occurs. We provide
lower bounds for releasing k-attribute marginal tables under (i) minimal privacy, a general privacy notion
which captures a large class of privacy definitions, and (ii) differential privacy, a rigorous notion of
privacy that has received extensive recent study. Our main contributions are:

• We give efficient polynomial time attacks which allow an adversary to reconstruct sensitive infor-
mation given insufficiently perturbed marginal table releases. Using these reconstruction attacks,
we show that for releasing all k-attribute marginal tables with constant k, �Ω(min{

√
n,
√

dk−1})
average distortion per entry is necessary for any privacy notion satisfying at least a minimalistic
privacy guarantee. Under this privacy guarantee this bound is tight.

• Our above reconstruction-based attacks require a new lower bound on the least singular value of
a random matrix with correlated rows. For a constant k, consider a matrix M (k) with dk rows
which are formed by taking all possible k-way entry-wise products of an underlying set of d
random vectors from {0, 1}n. We show that even if M (k) is nearly square its least singular value
is �Ω(

√
dk) with high probability— asymptotically, the same bound as one gets for a matrix with

independent rows. The proof introduces several new tools for dealing with random matrices with
correlated entries and could be of independent interest.

• We obtain stronger lower bounds for differential privacy. For releasing all k-attribute marginal
tables with constant k, previous work showed that �O(min{n, (n2d)1/3,

√
dk}) average distortion

per entry is sufficient for satisfying differential privacy (ignoring the dependence on privacy param-
eters). We give a lower bound of �Ω(min{

√
n,
√

dk}), which is tight for n = �Ω(dk). Moreover, for
a natural and popular class of mechanisms based on adding instance-independent noise, our lower
bound can be strengthened to Ω(

√
dk), which is tight for all n. Our lower bounds for differential

privacy extend even to non-constant k, losing roughly a factor of
√

2k compared to best-known
upper bounds for large n.
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1 Introduction

The goal of private data analysis is to provide global, statistical properties of a data set of sensitive infor-
mation while protecting the privacy of the individuals whose records the data set contains. There is a vast
body of work on this problem in statistics and computer science. However, until recently, most schemes
proposed in the literature lacked rigor: typically, the schemes had either no formal privacy guarantees or
ensured security only against a specific suite of attacks.

The seminal results of Dinur and Nissim [9] initiated a rigorous study of the tradeoff between privacy and
utility. The notion of differential privacy [14] that emerged from this line of work provides rigorous guar-
antees even in the presence of a malicious adversary with access to arbitrary side information. Differential
privacy requires, roughly, that any single individual’s data have little effect on the outcome of the analysis.
Recently, many techniques have been developed for designing differentially private algorithms (see [10, 11]
for two recent surveys). A typical objective is to release as accurate an approximation as possible to some
function f evaluated on the database D.

A complementary line of work seeks to establish lower bounds on how much distortion (noise) is neces-
sary for particular functions f . Some of these bounds apply only to differential privacy (e.g., [14, 20, 21]);
other bounds rule out any reasonable notion of privacy by showing how to reconstruct almost all of the data
D given sufficiently accurate approximations to f(D) [9, 15, 16]. We refer to the latter works as lower
bounds for minimal privacy.

In this paper, we investigate lower bounds on the distortion necessary for releasing a set of marginal
contingency tables (marginal tables, in short), under both minimal and differential privacy. A database D
in our setting consists of n rows, each row comprising values for d binary attributes x1, . . . , xd. For any
subset of T attributes of size |T | = k, the marginal table for T has 2k entries; each entry counts how many
times in the database a particular setting of these attributes occurs. Alternatively, we may think of the table
as counting the number of rows in the database that satisfy each of the 2k possible conjunctions on the k
attributes in T . We call a marginal table for a set of k attributes a k-attribute marginal table. The d-attribute
marginal table is the “full” contingency table for the data set.

Marginal tables are the workhorses of categorical data analysis and, in particular, of data analysis in the
medical, social and behavioral sciences (e.g., clinical trials, public health studies, and education statistics).
In addition to being easy to interpret, they are sufficient statistics for popular classes of probabilistic mod-
els [4]. (As a simple example: for binary data, the mean vector and covariance matrix, which capture linear
dependencies among attributes, are equivalent to the set of all 2-attribute marginal tables.) Because of this,
they are the format of choice for data release by government statistical bureaus [3]. However, many of the
fields in which categorical data are used generate highly sensitive data. Researchers and government agen-
cies have ethical and legal responsibilities to protect the confidentiality of the individuals whose data they
collect. Consequently, the confidentiality of contingency table releases has been an active topic of research
in statistics for over thirty years (see, for example, [19, 36]). Understanding the extent to which marginal
tables can be released while guaranteeing a rigorous, meaningful notion of privacy is an important problem.

1.1 Our Contributions

Let Ck(D) be the set of all k-attribute marginal tables (equivalently, the frequencies of all possible k-attribute
conjunctions) for a database D ∈ ({0, 1}d)n. There are

�
d

k

�
such tables; however, it is convenient to think

of Ck(D) as a single real vector of length 2k
�
d

k

�
. The �O(·) notation below hides polylogarithmic factors in

n, d, k, and �Ω(·) hides inverse polylogarithmic factors in n, d, k.
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We give lower bounds for simultaneously estimating all the entries of Ck(D) privately. As a point of ref-
erence, for constant k, the best-known differentially private algorithms [5, 6] have an �O(min{n, (n2d)1/3,

√
dk})

average distortion per entry. Our lower bounds match this upper bound in different respects.

(1) Lower Bounds for Minimal Privacy: We show that algorithms that do not sufficiently distort the
marginal tables fail to satisfy a large class of “privacy” definitions. We define two violations of privacy:
attribute non-privacy and row non-privacy.1

Each of these rules out a large class of popular definitions of privacy. Row non-privacy rules out
definitions that protect an entire row of the database even given leakage of other rows; such definitions
include differential privacy as well as several definitions popular in the randomized response litera-
ture [40, 1, 18]. Attribute non-privacy rules out any definition that guarantees the secrecy of a particular
“sensitive” attribute even when all other attributes are known to an attacker; such definitions include K-
anonymity [38] and its variants [27, 26, 7, 28, 43], as well as the notions ruled out by row non-privacy.

Using a “reconstruction” attack outlined below (2), we show that for any constant k, releasing Ck(D)
with distortion o(min{

√
n,
√

dk−1}) per entry allows an adversary to efficiently reconstruct large frac-
tion of the sensitive attribute entries given the nonsensitive values, thus violating attribute privacy (the
bound holds even for releasing only all those k-attribute tables that involve the sensitive attribute and
k − 1 other attributes). Moreover, releasing Ck(D) with distortion o(min{

√
n,
√

dk}) per entry allows
an adversary to efficiently reconstruct large fraction of the rows of D, even though this would not be
possible without the release, thus violating row privacy. Both these bounds are (almost) tight, as there
is an algorithm which is neither attribute non-private nor row non-private and which for every database
D adds �O(min{

√
n,
√

dk}) distortion per entry of Ck(D). The formal bounds for these privacy notions
are stated in Table 1 and discussed in Section 2. We discuss the significance of these bounds below
(Section 1.2).

(2) Reconstruction Attack & the Least Singular Value of Random Matrices with Correlated Rows:

The bounds on minimal privacy (1) above require significantly different techniques from previous work.
Previous lower bounds [9, 15, 16] were based on variants of the following reconstruction problem: given
a real-valued matrix M , and a corrupted “codeword” Ms + e, the goal is to compute an approximation
ŝ to s such that the “reconstruction error” ŝ − s is somehow bounded in terms of the noise vector e.
Typically, assuming some norm �e�p is small, one can bound a related norm of ŝ− s.

The connection to data privacy is that, if s ∈ Rn is a database with one number assigned per person,
we can think of y = Ms + e as a vector of (distorted) estimates of the quantities �Mi, s�, where Mi is
the ith row of M . Thus, any private data release that allows a user to estimate �Mi, s�, allows an attacker
to obtain y. Therefore, an algorithm for approximating s from y can be used to infer sensitive data from
the release.

Previous lower bounds rely heavily on the freedom to design M by selecting the rows of M indepen-
dently (either at random [9, 15, 16] or from an algebraic code [16]). When k = 1 a similar flexibility is
available in our lower bounds; the matrix M (1) that arise in our lower bounds is a {0, 1}d×n matrix with
independent random entries. However, for k > 1 the rows of the matrix M (k) that arise in our lower
bounds are highly correlated: the matrix M (k) has dk rows which are formed by taking all possible k-
way entry-wise products2 of the rows of the random matrix M (1). The techniques of previous work, from
the literature on both privacy and random matrices, break down. We show that reconstruction procedures
using these matrices can in fact be analyzed, by showing for any constant k that a random (0, 1)-matrix

1Alternatively, we might call these “attribute leakage” and “row leakage”. We use “non-privacy” for consistency with [9, 15, 16].
2The entry-wise product of k vectors p1, . . . , pk ∈ Rn is the vector in q ∈ Rn with entries qi =

Qk
j=1 pji .
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with correlated rows has approximately the same least singular value as a random (0, 1)-matrix with
independent rows.

Tight bounds are known on the least singular values of various types of matrices (e.g., square, rect-
angular) with independent random entries (see, e.g., [34, 35, 33] and references therein). The least
singular value of an N × n matrix with (0, 1) independent random entries and N ≥ n is Θ(

√
N) with

exponentially high probability (in fact, even non-asymptotic bounds are known, see Rudelson and Ver-
shynin [35]). To deal with the dependencies, we develop several new tools, which may be of independent
interest. We show that for any constant k if the random matrix M (1) has less than dk/ logk−2 n columns,
then the least singular value of M (k) is �Ω(

√
dk) with exponentially high probability. Therefore, the least

singular value of M (k) is approximately the same as that of a dk × n random matrix with independent
entries, but M (k) (constructed out of M (1)) uses far lower randomness.

The proof is challenging because correlations make powerful measure concentration tools hard to
apply. We first reduce the problem to bounding the least singular value of a (related) random centered
matrix Π̃. The smallest singular value of Π̃ is the minimum of �Π̃x�, over x from the unit sphere. An
important tool in the proof is bounding the small ball probability, which is the probability that �Π̃x� is
small for a fixed vector x. To obtain a uniform lower bound for �Π̃x�, we decompose the unit sphere
into many pieces, and for each piece use epsilon-net arguments tailored according to the small ball
probability. Then, we obtain a uniform lower estimate on the net, which is then extended to the whole
unit sphere by approximation.

In the privacy context, our spectral bound allows for a reconstruction algorithm of the form ŝ =
round(M (k)

inv ·(M (k)s+e)), where s is a (0, 1)-vector and M (k)
inv is an appropriate pseudoinverse of M (k).

We show that releasing M (k)s with distortion o(
√

n) per entry allows the adversary to reconstruct n −
o(n) bits of s (that is, to find ŝ that agrees in almost all entries of s), as long as n = o(dk). One can
extend the result to get a lower bound of �Ω(min{

√
n,
√

dk}) for all n.

(3) Lower Bounds for Differential Privacy: Using a disjoint set of techniques, we show a stronger lower
bound for releasing k-attribute marginal tables under the notion of (�, δ)-differential privacy. The precise
bounds are stated in Table 1 and discussed in Section 4. Here, we treat � and δ as constants.

For constant k, the best-known (�, δ)-differentially private algorithms [5, 6] yield an average distor-
tion per entry of �O(min{n, (n2d)1/3,

√
dk}), while our lower bound is �Ω(min{

√
n,
√

dk}). Our bounds
imply that the technique of Blum et al. [5], which adds carefully calibrated Gaussian noise to each en-
try in Ck is tight for large databases (when n = �Ω(dk)). Moreover, for a natural and popular class of
algorithms based on adding instance-independent noise [5, 14, 3], we strengthen this bound to Ω(

√
dk),

which is tight for all n.
Our lower bounds for differential privacy extend even to non-constant k. Here, we get a lower bound

of �Ω(min{
√

n/2k,
√

mk/2k}) on the average distortion per entry, where mk =
�
d

k

�
. For n = �Ω(mk),

this is loose by a factor of
√

2k when compared to the best-known upper bound. This lower bound can
again be strengthened for the instance-independent case.

Consider any differentially private algorithm A for Ck. The rough idea behind these lower bounds is
to start with a particular database D and bound the projection of the mean squared error (MSE) matrix
of A(D) along a large set of directions. If the algorithm adds instance-independent noise then we show
that this set of directions contains an (almost) orthonormal basis, allowing us to lower bound the trace of
the MSE matrix, and hence the average distortion per entry. In the general case (when the distortion is
instance-dependent), we use concentration inequalities for matrix-valued random variables to show that
for appropriately chosen random databases, the trace of the MSE matrix is large with high probability.

We expect that the linear algebraic techniques developed for this bound should be useful for bound-
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Privacy Guarantee Upper Bound on Noise Lower Bound on Noise

Not attribute non-privacy �O(min{
√

n,
√

dk}) �Ω
�
min

�
√

n,
√

dk−1
��

Not row non-privacy �O(min{
√

n,
√

dk}) �Ω
�
min

�
√

n,
√

dk
��

(�, δ)-diff. privacy (Inst. Ind.) O

�q
(d

k) log(1/δ)
√

2k�

�
[5, 3] Ω

�q
(d

k)(1−δ/�)

2k�

�

(�, δ)-diff. privacy �O
�

min

�
n,

�
n2dk

�

� 1
3

,

q
(d

k) log(1/δ)
√

2k�

��
[5, 3, 6] �Ω

�
min

�
√

n(1−δ/�)
2k
√

�
,

q
(d

k)(1−δ/�)

2k�

��

Table 1: Upper and lower bounds on the average noise per cell entry for releasing all k-attribute marginal
tables (or all k-way conjunction predicates) under various privacy guarantees. The results on attribute non-
privacy and row non-privacy are for k being a constant. The n term in the upper bound for (�, δ)-differential
privacy (last row) comes from an algorithm that releases a vector of n/2’s for all D’s. The �O(·) notation
hides polylogarithmic factors d, n, k, and �Ω(·) hides inverse polylogarithmic factors in d, n, k. All the
uncited results appear in this paper.

ing the required distortion of a wide range of differentially private releases.

1.2 Significance of the Privacy Lower Bounds

We summarize previous and new bounds in Table 1. Dinur and Nissim [9] showed that if a mechanism
answers (or allows the user to compute) O(n log n) arbitrary inner product queries on a database (vector)
s ∈ {0, 1}n with noise o(

√
n) per response, then an adversary can reconstruct n − o(n) entries of s.

Their attack was subsequently extended to use a linear number of queries [15], allow a small fraction of
answers to be arbitrarily distorted [15], and run significantly more quickly [16]. These reconstruction attacks
provide lower bounds for various minimal notions of privacy; our results extend the scope of these bounds
significantly.

There were also several known lower bounds specific to differential privacy, though they are not directly
relevant to marginal tables [14, 32, 20]. Subsequently to our work, Hardt and Talwar [21] gave upper and
lower bounds for releasing a variety of linear functions (including marginal tables) for the special case of
“pure” �-differential privacy (with δ = 0). For the case of 1-attribute marginal tables, their bound of Ω(d/�)
improves on ours; we conjecture that their techniques lead to a bound of Ω̃(dk/�) for releasing constant k-
attribute marginal tables under �-differential privacy. However, their techniques break down for even slightly
relaxed privacy notions such as (�, δ)-differential privacy.

We see our new lower bounds as interesting for several reasons.
Natural symmetric functions. In their simplest form, the inner product queries considered by [9, 15,

16] require the adversary to be able to “name rows”, that is, specify a coefficient for each entry of the
vector s.

Thus, the lower bound does not apply directly to any functionality that is symmetric in the rows of
the data set such as marginal tables. It was pointed out in [8] that in databases with more than one entry
per row, random inner product queries (on, say, attribute xd) can be simulated via hashing: for example,
the adversary could ask for the sum of the function H(x1, ..., xd−1) · xd over the whole database, where
H : {0, 1}d−1 → {0, 1} is an appropriate hash function. This is a symmetric query, but it might seem odd
to a statistician (with, e.g., a 2-wise independent hash function). The lower bounds we give for marginal
table releases are the first for symmetric functions regularly released by official statistics agencies; one can
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think of our reconstruction attacks as using conjunctions as weak hash functions to implement the idea
of [8].

When is distortion acceptably low? It is natural to ask at what point the distortion required for privacy
interferes with statistical analysis. There is no simple answer, but for the “predicate queries” considered
here, where each entry counts the number of occurrences of a predicate in the underlying data set, there is
a large class of statistical models which inherently have “sampling error”, that is standard deviation of the
observed statistics, of Ω(

√
n). A crude rule of thumb, then, is that the distortion interferes seriously when

it is not o(
√

n) [14, 3, 37]. Our lower bounds of �Ω(min(
√

n,
√

dk)) show that for even modest values of d
and k, the data set n must be very large to get distortion o(

√
n).

The “dimension” of marginal tables. The reconstruction attacks [9, 15, 16] above show a lower bound
of roughly min{

√
n,
√

m} on the distortion required to answer a set of m random, independent queries
about a data set of size n. However, the bounds heavily rely on independence of the queries. This raises
the question of whether certain interesting classes of queries could be answered with much less noise. For
example, if a set of queries is linearly dependent, then one can compute noisy answers to only a few queries
(a spanning set), and deduce the rest using the linear relationships. Both of our bounds can be interpreted
as showing that the marginal statistics of a data set are, in a sense that depends on the notion of privacy, far
from any low dimensional subspace. In particular, we show that the

�
d

k

�
2k different entries of the k-attribute

marginal tables hide a set of Ω(dk) “nearly independent” underlying features–as far as privacy is concerned,
they have dimension close to

�
d

k

�
2k. It is natural to ask: what properties of a set of queries lead to this

type of behavior, in general? Our techniques suggest that the right notion is related to inapproximability by
low-dimensional linear spaces; it is still unclear how to formulate this notion precisely and how it relates to
concepts such as VC-dimension that play a role in other works on privacy [6, 22].

1.3 Known Upper Bounds for Differential Privacy

Let mk =
�
d

k

�
. In [5, 14] it was shown that addition of carefully calibrated noise to functions satisfying a

Lipschitz condition is enough to ensure differential privacy. Applied to conjunctions, they show that random
noise drawn from a normal distribution with mean 0 and standard deviation

�
2mk log(1/δ)/� to each entry

in Ck(D) guarantees (�, δ)-differential privacy [5], while adding random noise drawn from a Laplacian
distribution with mean 0 and standard deviation 2mk/� to each entry in Ck(D) guarantees �-differential
privacy (with δ = 0) [14]. Barak et al. [3] improve the dependency on k in these results, saving a factor of
approximately

√
2k in the required distortion.

In a different vein, Blum et al. [6] adapt the exponential sampling technique of [30] to release a synthetic
data set. One can use their techniques to release Ck(D) with distortion �O((n2dk/�)2/3) in each entry (see
Appendix A). The dependency on d and k in [6] is much better than in the additive noise mechanisms,
but the dependency on n is significantly worse; in particular, our results show that one cannot reduce the
dependency on n without incurring a dependency on dk.

1.4 Preliminaries

We use [n] to denote the set {1, 2, . . . , n}. dH(·, ·) measures the Hamming distance, and negl(n) denotes
a function that is asymptotically smaller than 1/nc for all c > 0. Pr[·], E[·], Var [·], and supp(·), denotes
probability, expectation, variance, and support of a random variable, respectively. We often add subscripts
to Pr[·] and E[·] to emphasize the source of randomness.

Vectors used in the paper are by default column vectors. We use (a)n to denote a vector of length n of
all a’s. For a vector v, v� denotes its transpose (row vector) and �v� denotes its Euclidean norm. vi denotes

5



the ith entry of the vector v. We use uv to denote the unit vector corresponding to v (i.e., uv = v/�v�). For
two vectors v1 and v2, �v1, v2� denotes the inner product of v1 and v2. The length of projection of v1 onto v2

is then �v1, v2�/�v2�. For a matrix M , tr(M) denotes the trace and �M�∞ denotes the operator norm. We
use diag(a1, . . . , an) to denote an n × n diagonal matrix with entries a1, . . . , an along the main diagonal.
Let Id denote the identity matrix of dimension d. Let M be an N × n real matrix with N ≥ n. The singular
values σj(M) are the eigenvalues of

√
M�M arranged in non-increasing order. Of particular importance in

this paper is the smallest singular value σn(M) = infz:�z�=1 �Mz�.
In our analysis, we assume that a (private) algorithm A for a function class F on input D releases a

vector
A(D) = (A1(D), . . . ,A|F|(D)),

where each entry in the vector is an estimate of one of predicates in F . This assumption is without loss
of generality, because if A on input D releases some other sanitized structure �D then we can define a new
private algorithm �A that first runs A on D and then releases the vector F( �D) = (f1( �D), . . . , f|F|( �D)).
The perturbation introduced doesn’t change by this second step, therefore, we can think of A as directly
releasing the sanitized vector.

Boolean Conjunctions. It is convenient to describe the results in terms of releasing conjunction predicates
over the domain {0, 1}d. Each x ∈ {0, 1}d is interpreted as an assignment to d Boolean variables x1, . . . , xd.
A conjunction predicate cv : {0, 1}d → {0, 1} for v ∈ {−1, 0, 1}d is defined as cv(x) = 1 iff for all i ∈
[d], xi = 1 if vi = 1 and xi = 0 if vi = −1. The value of vi indicates whether the variable xi appears as
not negated (if vi = 1), negated (if vi = −1), or absent (if vi = 0). The length of a conjunction predicate is
the number of coordinates of v that are non-zero. We will refer to a conjunction predicate of length k as a
k-way conjunction. Let Ck be the function class of all k-way conjunction predicates on variables x1, . . . , xd.
The size of Ck, |Ck| = 2k

�
d

k

�
. Let D ∈ ({0, 1}d)n be a database. Each row of D represents information

contributed by one individual. The ith column of D contains the assignments to variable xi. For a predicate
cv ∈ Ck, define cv(D) =

�
x∈D

cv(x). We use Ck(D) to represent the vector of all predicates in Ck evaluated
on D.

1.5 Organization of the Paper

In Section 2, we define row non-privacy and attribute non-privacy. We present a new reconstruction attack
and analyze the lower bound on noise needed to prevent this attack. We then show how this lower bound
implies that releasing all k-way marginal tables with not enough noise leads to row non-privacy and attribute
non-privacy. A crucial tool in these lower bound analyses is the bound on the least singular value of a random
matrix with correlated rows. In Section 3, we present this least singular value bound. In Section 4, we present
our lower bounds on noise for releasing all k-way marginal tables under the popular notion of differential
privacy. As mentioned earlier, our results are tighter if restricted to differentially private algorithms that add
instance-independent noise. We present our lower bounds for the instance-independent case in Section 4.1,
and in Section 4.2, we present our lower bounds for the general case.

2 Lower Bounds on Noise for Minimal Privacy

In this section, we introduce a new reconstruction attack based on analyzing the least singular value of a
random matrix with correlated entries. We then use the reconstruction attack to establish lower bounds
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on noise needed for releasing k-attribute marginal tables under the notions of attribute non-privacy and row
non-privacy. We treat k as a constant in this section. The upper bounds on noise are discussed in Appendix B.

The lower bounds for our minimal privacy definitions proceed by “reducing” an instance of the recon-
struction problem for a matrix with correlated rows into a marginal table release problem. We now formally
define attribute non-privacy and row non-privacy, and explain the reductions from the reconstruction prob-
lem.

Definition 2.1 (Attribute Non-Privacy). An algorithm A for releasing all k-way conjunction predicates is
attribute non-private if there exists a polynomial time adversary such that for every s ∈ {0, 1}n there exists a
database Dat(s) ∈ ({0, 1}d)n whose last column is s, such that the adversary on given as input A(Dat(s))
and the first d−1 columns of Dat(s), can reconstruct at least �Ω(min{n, dk−1}) entries of s with probability
1− negl(d).

This definition captures a common model in the data privacy literature (e.g., [38, 42, 27, 26, 7, 28, 43])
where one assumes that a database consists of d−1 nonsensitive attributes (e.g., demographic information),
which can be learned from other sources, and one sensitive attribute (e.g., disease). The attribute non-
privacy lower bound applies to any notion of privacy that purports to protect individual values of the sensitive
attribute (the lower bound applies in particular, to differential privacy but also, e.g., to the notion of privacy
implicit in the popular “K-anonymization” scheme [38] and its recent variants [27, 26, 7, 28, 43]).

To define the reduction from the reconstruction problem, we need the following definition of entry-wise
product of vectors and matrices.

Definition 2.2 (Entry-wise Product). The entry-wise product of vectors p, q ∈ Rn is the vector in p⊙q ∈ Rn

with entries (p ⊙ q)i = pi · qi. If A is an N1 × n matrix, and B is an N2 × n matrix, denote by A ⊙ B an
N1N2 × n matrix, whose rows are entry-wise products of the rows of A and B: (A ⊙ B)j,k = Aj ⊙ Bk,
where (A⊙B)j,k, Aj , Bk denote rows of the corresponding matrices.

Reduction from the reconstruction problem to attribute non-privacy. Consider a matrix M ∈ {0, 1}d×n.
Let M (k) = M ⊙M ⊙ . . . ⊙M be the dimension dk × n matrix obtained by applying ⊙ operator k − 1
times. Let s ∈ {0, 1}n. Consider the database D = (M�|s) ∈ ({0, 1}d+1)n. That is, the first d columns
of D are given by the rows of M , and the last column is s. Then Ck(D) contains the vector M (k−1)s. This
reduction holds for every M ∈ {0, 1}d×n, but in the analysis, we use a random matrix M .

Definition 2.3 (Row Non-Privacy). An algorithm A for releasing all k-way conjunction predicates is
row non-private if there exists a distribution of databases D over the domain ({0, 1}d)n under which the
rows of the databases are statistically independent and there exists a set S ⊆ [n] whose size is at least
�Ω(min{n, dk}) satisfying the following properties:

a. For any (not-necessarily polynomial time) adversary if D ∼ D, the adversary can output any row of
D indexed by the elements of S with probability at most a constant (say 2/3);

b. There exists a polynomial time adversary such that if D ∼ D, the adversary on inputA(D) can output
1− o(1) fraction of the rows of D indexed by the elements of S with probability 1− negl(d).

The row non-privacy lower bound applies, roughly, to any notion of privacy that seeks to protect any
complete row of the database (as opposed to only individual entries). This includes differential privacy as
well as its relaxations to metrics on probability distributions such as total variation distance or KL diver-
gence [14, 40, 1, 18].
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Reduction from the reconstruction problem to row non-privacy. Consider a matrix M ∈ {0, 1}d×n.
Consider the database D = diag(s) · M� ∈ ({0, 1}d)n, where diag(s) is an n × n diagonal matrix with
diagonal s. Because s is a (0, 1)-vector, this corresponds to a world where person i’s data is either M�

i
or

0d, according to the ith bit of s (where Mi is the ith row of M ). Then Ck(D) contains the vector M (k)s.
Again, this reduction holds for every M ∈ {0, 1}d×n, but in the analysis, we use a random matrix M .

2.1 Lower Bounds for the Reconstruction Problem

Let s = (s1, . . . , sn) ∈ {0, 1}n be some (secret) vector. Let ck be a constant (we will define it later in
Theorem 2.5). Let a = min{n, ckdk/ log2k−2 n}. Let s|a = (s1, . . . , sa) be the first a entries of s. Let
Φ ∈ {0, 1}a be a vector with independent entries taking values 0 and 1 with probability 1/2 (to simplify
the exposition, we shall ignore rounding issues). Let Φ1, . . . ,Φd ∈ {0, 1}a be d independent copies of Φ.
Let M be a d × a matrix whose rows are Φ1, . . . ,Φd. Again, we consider the matrix M (k) constructed out
of M .

The attack works as follows: for every row R in M (k), the adversary asks inner product of R with s|a,
and receives noisy responses. Consider any privacy mechanism A. Let p = A(M (k)s|a) be the vector of
noisy answers generated by A. Define the error (noise) vector as e = p − M (k)s|a. Let M (k) = PΓQ
be the singular value decomposition of M (k). Here, P is a dk × dk orthogonal matrix, Γ is a dk × a
diagonal matrix, and Q is an a × a orthogonal matrix. Let 0 be a (dk − a) × a matrix with all entries
zero. Define Γ−1 = (diag(σ1(M (k))−1, . . . , σa(M (k))−1)|0�). The dimension of Γ−1 is a × dk. Define
M (k)

inv = Q�Γ−1P�.
Given p, the adversary uses M (k)

inv to construct ŝ = (ŝ1, . . . , ŝa) as follows: ŝi = 1 if the ith entry in
M (k)

inv p ≥ 1/2, and 0 otherwise. Now, the claim is that ŝ is a good reconstruction of s|a. The idea behind the
analysis is that M (k)

inv p = s|a + M (k)
inv e, and therefore (as P and Q are orthogonal matrices),

�M (k)
inv e� = �Q�Γ−1P�e� = �Γ−1P�e� ≤ �Γ−1

�∞�P
�e� = �e�/σa(M (k)).

Corollary 2.6 shows that with high probability σa(M (k)) = �Ω(
√

dk). If an algorithm only adds o(
√

n)
noise to each query (i.e., all the entries in e are o(

√
n)) then �e� = o(

√
dkn), and therefore, �M (k)

inv e� ≈

o(
√

n) with high probability. In particular, if a = n, then this implies that with high probability M (k)
inv e

cannot have Ω(n) entries with absolute value above 1/2, and therefore, the Hamming distance between ŝ
and s|a is o(a) = o(n) (as the adversary only fails to recover those entries of s|a whose corresponding
M (k)

inv e entries are greater than 1/2). The following proposition formalizes this observation. The proof uses
some ideas from a recent reconstruction attack proposed by Dwork and Yekhanin [16].

Proposition 2.4 (k-way reconstruction attack). Let k be a constant. If an algorithm adds

o(min{
√

n/ log(k2+k+1) n,
√

dk/ log(k2+3k−1) n})

noise to each entry in M (k)s|a, then there exists an adversary that can reconstruct 1 − o(1) fraction of s|a
with probability at least 1− negl(d).

Proof. Let PΓQ be the singular value decomposition of M (k). Here, Γ is a diagonal matrix containing the
singular values of M (k), and P,Q are orthogonal matrices. P is a dk × dk matrix, Γ is a dk × a diagonal
matrix, and Q is an a× a matrix. Let Γ =

�
G

0

�
. Here, G is an a× a diagonal matrix of singular values, and

0 is (dk − a)× a matrix with all entries zero.

8



Define a diagonal matrix

G−1 = diag
�

1
σ1(M (k))

, . . . ,
1

σa(M (k))

�
.

Define a matrix Γ−1 = (G−1|0�). The dimension of Γ−1 is a × dk. Now, Γ−1Γ = Ia (identity matrix of
dimension a× a). Define a matrix M (k)

inv = Q�Γ−1P�.
Let p = M (k)s|a + e. Given p, the adversary uses M (k)

inv to construct ŝ = (ŝ1, . . . , ŝa) as follows: ŝi = 1
if the ith entry in M (k)

inv p ≥ 1/2, and 0 otherwise. We have M (k)
inv p = s + M (k)

inv e.
Now, M (k)

inv e = Q�Γ−1P�e and �M (k)
inv e� = �Q�Γ−1P�e� = �Γ−1P�e� (Q is an orthogonal matrix,

therefore, multiplication by it preserves the norm). Now, since �P�e� = �e� (P� is also an orthogonal
matrix) implies

�M (k)
inv e� ≤ �Γ−1

�∞�P
�e� = �Γ−1

�∞�e� = �G−1
�∞�e�.

We break the reminder of the proof into two cases based on the relationship between d and n.

Case 1: n ≤ ckdk/ log2k−2 n. In this case a = n, and s|a = s. Using the bound from Corollary 2.6 for
the least singular value of M (k), implies with probability at least 1− 2 exp(−Ckd/ log2k−2 n),

�M (k)
inv e� ≤ �G−1

�∞�e� =
�e� log(k2+k+1) n

c�
k

√
dk

.

Now if an algorithm adds o(
√

n/ log(k2+k+1) n) noise to each entry in M (k)s then

�e� = o(dk/2√n/ log(k2+k+1) n).

Therefore, �M (k)
inv e� = o(

√
n) with probability at least 1 − 2 exp(−Ckd/ log2k−2 n). So, with probability

at least 1− 2 exp(−Ckd/ log2k−2 n), M (k)
inv e cannot have Ω(n) coordinates with absolute value above 1/2,

and therefore, dH(s, ŝ) = o(n).

Case 2: n > ckdk/ log2k−2 n. In this case a = ckdk/ log2k−2 n. As in the previous case,

�M (k)
inv e� ≤

�e� log(k2+k+1) n

c�
k

√
dk

.

Now if an algorithm adds o(
√

dk/ log(k2+3k−1) n) noise to each entry in M (k)s|a then

�e� = o(dk/ log(k2+3k−1) n).

Therefore, �M (k)
inv e� = o(

√
a) with probability at least 1 − 2 exp(−Ckd/ log2k−2 n). So, with probability

at least 1 − 2 exp(−Ckd/ log2k−2 n), M (k)
inv e cannot have Ω(a) coordinates with absolute value above 1/2,

and therefore, dH(s|a, ŝ) = o(a).

Remark: For k = 1, we can improve the bounds in the above proposition. In this case, if an algorithm
adds o(min{

√
d,
√

n}) noise to each entry in M (1)s|a(= Ms|a) where a = min{n, d/2}, then there exists
an adversary that can reconstruct 1 − o(1) fraction of s|a with exponentially high probability. The reason
being that M (1) = M is a random matrix with independent entries, so in Proposition 2.4, as opposed
to, Theorem 2.5, we can use the least singular value bound of a random matrix with independent entries
from [35].
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Theorem 2.5 (Least Singular Value). Let k, m, d be natural numbers such that m ≤ ckdk/ log2k−2 m
where ck depends only on k, and let A be a d × m matrix with independent entries taking values 0 and
1 with probability 1/2. Then there exists numbers Ck, c�k which depend only on k such that the k-times
entry-wise product Ã = A⊙A⊙ . . .⊙A is a dk ×m matrix satisfying

Pr
�
σm(Ã) ≤ c�

k

√

dk/ log(k2+k+1) m
�
≤ 2 exp

�
−Ckd/ log2k−2 m

�
.

The complete proof of this theorem is presented in Section 3, and an outline of the proof is given in the
Section 3. Now, as M is a d× a matrix with independent entries taking values 0 and 1 with probability 1/2,
and a ≤ ckdk/ log2k−2 n, we can apply the above theorem to conclude the following.

Corollary 2.6. Pr[σa(M (k)) ≥
√

dk/ log(k2+k+1) n] ≥ 1− negl(d).

2.2 Lower Bounds on Noise to Avoid Attribute Non-Privacy

We use the reduction from the reconstruction attack described earlier. For a vector s ∈ {0, 1}n, define a
database Dat(s) ∈ ({0, 1}d)n as follows: the first d columns are Φ1, . . . ,Φd−1, the last column is s, and
if n > a then the last n − a entries in each Φj (j ∈ [d − 1]) are all 0’s. The following theorem uses
Proposition 2.4 to show that there exists an adversary that can reconstruct 1 − o(1) fraction of the first
�Ω(min{n, dk−1}) entries of s if given too accurate vector Ck(Dat(s)).

Theorem 2.7 (Attribute Non-Privacy). Let k be a constant. Any algorithm A for releasing all k-attribute
marginal tables (or all k-way conjunction predicates) that for every database D ∈ ({0, 1}d)n adds

o
�
min

�√
n/ log(k2−k+1) n,

√

dk−1/ log(k2+k−3) n
��

noise to each entry in A(D) is attribute non-private.

Proof. Let Dat(s) be a database with Φ1, . . . ,Φd−1 in its first d columns and s in the last column, and if n >
a then the last n−a entries in each Φj (j ∈ [d−1]) are all 0’s. Let b = min{n, ck−1(d−1)k−1/ log(d−1)}
(where ck−1 is the constant from Theorem 2.5). Now, Ck(Dat(s)) contains all the entries of M (k−1)s|b.
Now consider an algorithm A that releases Ck(Dat(s)) with

o
�
min

�√
n/ log(k2−k+1) n,

√

dk−1/ log(k2+k−3) n
��

noise to each entry. By Proposition 2.4, there exists an adversary that can reconstruct at least �Ω(min{n, dk−1})
entries of s with probability 1− negl(d).

2.3 Lower Bounds on Noise to Avoid Row Non-Privacy

Again, we use the reduction from the reconstruction attack described earlier. For a vector s ∈ {0, 1}n,
define a database Dst(s) ∈ ({0, 1}d)n as follows: (i, j)th entry of Dst(s) is si if the ith entry in Φj = 1 and
0 otherwise, and if n > a then the last n − a entries in each Φj (j ∈ [d]) are all 0’s. The following lemma
is based on the observation that Ck(Dst(s)) contains all the entries of M (k)s|a.

Lemma 2.8. If an algorithm adds o(min{
√

n/ log(k2+k+1) n,
√

dk/ log(k2+3k−1) n}) noise to each entry in
Ck(Dst(s)), then there exists an adversary who if given Φ1, . . . ,Φd can reconstruct 1− o(1) fraction of the
first a rows of Dst(s) with probability at least 1− 2 exp(−Ckd/ log2k−2 n).

Proof. We split the proof into two cases.
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Case 1: n ≤ ckdk/ log2k−2 n. Ck(Dst(s)) contains all the entries of M (k)s. From Case 1 of Proposi-
tion 2.4, if an algorithm adds o(

√
n/ log(k2+k+1) n) noise to each entry in Ck(Dst(s)), then an adversary

can reconstruct 1− o(1) fraction of s (and hence, 1− o(1) fraction of the rows of Dst(s)) with probability
at least 1− 2 exp(−Ckd/ log2k−2 n).

Case 2: n > ckdk/ log2k−2 n. Ck(Dst(s)) contains all the entries of M (k)s|a. From Case 2 of Proposi-
tion 2.4, if an algorithm adds o(

√
dk/ log(k2+3k−1) n) noise to each entry in Ck(Dst(s)), then an adversary

can reconstruct 1 − o(1) fraction of s|a (and hence, 1 − o(1) fraction of the first a rows of Dst(s)) with
probability at least 1− 2 exp(−Ckd/ log2k−2 n).

Define a distribution D over the set of databases as follows: draw a vector sr uniformly at random
from {0, 1}n and output Dst(sr). Let consider some ith row where i ∈ [a]. Let E be the event that there
exists a Φj such that ith entry in Φj is 1. Conditioned on event E, an adversary can only predict the ith
row of Dst(sr) by guessing the ith entry in sr. Since sr is picked uniformly at random, this implies that
conditioned on E no adversary can guess the ith row of Dst(sr) with probability more than 1/2. Finally,
since Pr[E] = 1/2d, therefore, no adversary (even with access to Φ1, . . . ,Φd) can guess the ith row of
Dst(sr) with probability more than 1/2 +1/2d ≤ 2/3. Thus, D satisfies the first condition of Definition 2.3
for every set S. The following theorem uses this distribution D to obtain a lower bound on noise needed for
not row non-privacy.

Theorem 2.9 (Row Non-Privacy). Let k be a constant. Any algorithm for releasing all k-attribute marginal
tables (or all k-way conjunction predicates) that for every database D ∈ ({0, 1}d)n adds

o
�
min

�√
n/ log(k2+k+1) n,

√

dk/ log(k2+3k−1) n
��

noise to each entry in A(D) is row non-private.

Proof. Define a distribution D over the set of databases as follows: draw a vector sr uniformly at random
from {0, 1}n and output Dst(sr). As discussed above, D satisfies the first condition of Definition 2.3. The
set S in the Definition 2.3 is [a].

Consider Dst(sr) ∼ D. Lemma 2.8 shows that if an algorithm adds

o
�
min

�√
n/ log(k2+k+1) n,

√

dk/ log(k2+3k−1) n
��

noise to each entry of Ck(Dst(sr)) then there exists an adversary that if given access to Φ1, . . . ,Φd can
reconstruct 1− o(1) fraction of the first a rows of Dst(sr) with probability 1− negl(d).

3 Lower Bounding the Least Singular Value: Proof of Theorem 2.5

In this section, we present the complete proof of Theorem 2.5. Estimating the smallest singular value of
the matrix Ã presents two challenges. The entries of this matrix are interdependent, which makes powerful
measure concentration tools hard to apply. Also, the entries are non-centered, and hence its (operator) norm
is of order

√
dkn with high probability. The norm of the matrix enters many probabilistic bounds involved in

the proof, and such big norm would render most of these bounds meaningless. To remove these obstacles, we
apply in Section 3.1 a simple decoupling and symmetrization argument to reduce the problem to bounding
the smallest singular value of a matrix Π̃, which is an entry-wise product of k independent random matrices
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with centered {−1, 0, 1} entries. Analysis of the behavior of the least singular value of such matrix is the
core of the argument.

The first step in this analysis is obtaining a probabilistic bound for the norm of this matrix. This bound
is proved in Section 3.2 by induction on k, with Talagrand’s convex concentration inequality (see [24],
Corollary 4.10) applied at each step.

The smallest singular value of Π̃ is the minimum of �Π̃x�, over x from the unit sphere. Before we
analyze this quantity in full generality, we consider in Section 3.3 a simpler question of estimating the small
ball probability. This is the probability that �Π̃x� is small for a fixed vector x. Measure concentration plays
a prominent role in this estimate as well.

We finish the proof in Section 3.4. Instead of obtaining a uniform lower bound for �Π̃x� in one step,
we decompose the sphere in numerous regions, and estimate the probability that �Π̃x� is small for each
part separately. The regions are defined by compressibility of the vectors. A vector is compressible, if its
norm is concentrated on a small number of coordinates. For each part we apply the epsilon-net argument
especially tailored for a certain degree of compressibility. Namely, the region is discretized, by using an
epsilon-net for a certain epsilon. Then we obtain a uniform lower estimate on the net, using the small ball
probability and the union bound. This estimate is extended to the whole region by approximation. This
method requires a careful balance between the small ball probability, and the size of the net. The better the
small ball probability is, the bigger epsilon-net we can consider, and so the bigger region we can cover. This
balance dictates the aforementioned decomposition of the sphere.

We start with obtaining a uniform estimate of �Π̃x� over a set of all vectors x having a given level of
sparsity. This is done in Lemma 3.13, and the argument essentially depends on how sparse the vectors x are.
In Lemma 3.16, we extend the bound from the set of sparse vectors to the set of compressible vectors with
a certain level of compressibility. Finally, in Lemma 3.17 we show that the whole sphere can be assembled
from these sets. This allows to finish the proof by using the union bound.

Remember that the entry-wise product of vectors p, q ∈ Rn is the vector in p ⊙ q ∈ Rn with entries
(p⊙q)i = pi ·qi. If A is an N1×n matrix, and B is an N2×n matrix, A⊙B is an N1N2×n matrix, whose
rows are entry-wise products of the rows of A and B: (A ⊙ B)j,k = Aj ⊙ Bk, where (A ⊙ B)j,k, Aj , Bk

denote rows of the corresponding matrices.
We start off by restating Theorem 2.5.

Theorem 3.1 (Theorem 2.5 Restated). Let K, n, d be natural numbers such that

n ≤
cKdK

log2K−2 n
,

where cK depends only on K and let A be an d × n matrix with independent entries taking values 0 and
1 with probability 1/2. Then there exists numbers c�

K
, CK that depend only on K such that the K-times

entry-wise product Ã = A⊙A⊙ . . .⊙A is a dK × n matrix satisfying

Pr

�
σn(Ã) ≤

c�
K

√
dK

log(K2+K+1) n

�
≤ 2 exp

�
−

CKd

log2K−2 n

�
.

Note that (for convenience) we changed the notation a bit from Theorem 2.5 (n replaces m and K
replaces k). The proof of Theorem 3.1 follows from Theorem 3.4 and is described in Section 3.1. We note
some remarks about this proof.
Remark: The powers of log n can be significantly reduced. Such reduction, however, would make the proof
more complicated.
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Remark: The same proof with minor modifications works for more general random matrices. namely, it is
applicable to a matrix A, whose entries are independent {0, 1} random variables ai,j , taking the value 1 with
probabilities pi,j ∈ (q1, q2), where 0 < q1 < q2 < 1. In this case the parameters CK , cK , c�

K
will depend

on q1 and q2, as well as on K.

Notations. The Euclidean sphere centered at origin is denoted by Sn−1, and by Bn

2 we denote the unit
Euclidean ball in Rn. We use e1, . . . , en to denote the standard basis in Rn. For a vector x ∈ Rn, x(i) rep-
resents the ith entry of the vector (we use this notation in this proof instead of our usual xi for convenience).
For vectors x, y ∈ Rn, y ≥ x if each entry in y is greater than the corresponding entry in x. Throughout
the proof C, c, c�, etc. denote absolute constants, whose value may change from line to line. Denote by
�A� the operator norm of the matrix A (we use this notation in this proof instead of our usual �A�∞ for
convenience). Denote by �A�

HS
the Hilbert–Schmidt norm:

�A�
HS

=




�

j,k

|aj,k|
2




1/2

.

Consider a subset T of Rn, and let α > 0. An α-net of T is a subset N ⊆ T such that for every x ∈ T
one has dist(x,N ) ≤ α. Throughout this section, we would use the following well-known result about
α-nets.

Proposition 3.2 (Bounding the size of an α-Net [31]). Let T be a subset of Sn−1 and let α > 0. Then there
exists an α-net of T of cardinality at most (1 + 2/α)n.

3.1 Reduction of Theorem 3.1 to a Variant

Definition 3.3 (Γ-random variable). Let Γ be a random variable taking values 1 and −1 with probability
1/4, and value 0 with probability 1/2. We will call a copy of this variable a Γ-random variable.

Theorem 3.1 follows from the following decoupled version.

Theorem 3.4. Let K, n, d be natural numbers such that n ≤ cKd
K

log2K−2
n

where cK depends only on K and let
Π1, . . . ,ΠK be d× n matrices with independent Γ-random entries. Then there exists numbers c�

K
, CK that

depend only on K such that the K-times entry-wise product Π̃ = Π1 ⊙Π2 ⊙ . . .⊙ΠK is a dK × n matrix
satisfying

Pr

�
σn(Π̃) ≤

c�
K

√
dK

log(K2+K+1) n

�
≤ 2 exp

�
−

CKd

log2K−2 n

�
.

Over the next few subsections we prove this theorem. Now we use it to derive Theorem 3.1.

Proof of Theorem 3.1. Let d and K be as in Theorem 3.1. Let d = 2Kd� + m, where 0 ≤ m < 2K. For
j = 1, . . . ,K denote by Π1

j
the submatrix of A consisting of rows (2d�(j − 1) + 1), . . . , (2d�(j − 1) + d�),

and by Π0
J

the submatrix consisting or rows (2d�(j − 1) + d� + 1), . . . , 2d�j. Set Πj = Π1
j
− Π0

j
. Then

Π1, . . . ,ΠK are d� × n matrices with independent Γ-random entries.
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For any x ∈ Sn−1

�(Π1 ⊙ . . .⊙ΠK)x� ≤
�

α=(α1,...,αK)∈{0,1}K

��(Παj

1 ⊙ . . .⊙Παj

K
)x

��

≤ 2K
�(A⊙ . . .⊙A)x� ,

because the coordinates of (Παj

1 ⊙ . . . ⊙ Παj

K
)x form a part of coordinates of (A ⊙ . . . ⊙ A)x. Therefore,

for any t > 0
Pr[σn(A⊙ . . .⊙A) < t] ≤ Pr[σn(Π1 ⊙ . . .⊙ΠK) < 2Kt].

To complete the proof we use Theorem 3.4 with d� in place of d, and note that d ≤ 3Kd�.

3.2 Norm Estimates

Lemma 3.5. Let W be an m× n matrix. Let θ ∈ Rn be a vector with independent Γ-random coordinates.
For l ∈ N, let Y1, . . . , Yl be independent copies of the random variable Y = �Wθ�. Then for any s > 0

Pr




l�

j=1

Y 2
j ≥ 2l �W�

2
HS

+ s



 ≤ 2l
· exp

�
−

cs

�W�
2

�
.

Proof. Note that F : Rn → R, F (x) = �Wx� is a Lipschitz convex function with the Lipschitz constant
�W�. By Talagrand’s convex concentration inequality,

Pr[|Y −M | ≥ t] ≤ 2 exp
�
−

ct2

�W�
2

�
,

where M = M(Y ) is the median of Y . For j = 1, . . . , l set Zj = |Yj −M |. Then the previous inequality
means that Zj is a ψ2 random variable, i.e.

E
�
exp

�
c�Z2

j

�W�
2

��
≤ 2

for some constant c� < c. By the Chebychev inequality and independence of Z1, . . . , Zl,

Pr




l�

j=1

Z2
j > t



 = Pr



 c�

�W�
2

l�

j=1

Z2
j >

c�t

�W�
2



 ≤ 2l
· exp

�
−

c�t

�W�
2

�
.

Using the elementary inequality x2 ≤ 2(x− a)2 + 2a2, valid for all x, a ∈ R, we derive that

Pr




l�

j=1

Y 2
j > 2lM2 + 2t



 ≤ Pr




l�

j=1

Z2
j > t



 ≤ 2l
· exp

�
−

c�t

�W�
2

�
.

To finish the proof, notice that M2 = M(Y 2) ≤ E[Y 2] = �W�
2
HS

.

To bound the norms of the matrices we construct a subset of the sphere with a special structure.
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Lemma 3.6. Let N0 ⊂ Sn−1 be the set of all points

x(I, ν) =
1�
|I|

�

j∈I

νjej ,

where e1, . . . , en is the standard basis in Rn, I is a non-empty subset of {1, . . . , n}, and ν ∈ {−1, 1}I .
Then for any linear operator T : Rn → Rm

�T� ≤ 2
�

log n · max
x∈N0

�Tx� .

Proof. Assume that maxx∈N0 �Tx� = M . Let x ∈ Sn−1. Decompose each coordinate of x as follows:

x(k) =
log2 n�

j=1

xj(k)
2j

+ y(k),

where x1(k), . . . , xlog2 n(k) ∈ {−1, 1, 0} are the first log2 n digits of the number x(k) in the dyadic notation,
and |y(k)| ≤ 1/n. Set

xj =
n�

k=1

xj(k)
2j

ek, y =
n�

k=1

y(k)ek.

Then �y� < 1/2, so the set of all vectors
�log2 n

j=1 xj , where x ∈ Sn−1 is a (1/2)-net. Hence,

�T� ≤ 2 sup





������

log2 n�

j=1

Txj

������
| x ∈ Sn−1



 .

Since for any j �Txj� ≤ M �xj�,

������

log2 n�

j=1

Txj

������
≤ M

log2 n�

j=1

�xj� ≤ M
�

log2 n




log2 n�

j=1

�xj�
2




1/2

≤ M
�

log2 n.

The last inequality follows from

log2 n�

j=1

�xj�
2 =

log2 n�

j=1

n�

k=1

xj(k)2

4j
≤ �x�2 = 1.

For k ∈ N denote by Wk the set of all dk × n matrices V satisfying

�V |J� ≤ Ck

�
dk/2 +

�
|J | · logk/2 n

�
· log(k−1)/2 n. (1)

for all non-empty subsets J ⊂ {1, . . . , n}. Here V |J denotes the submatrix of V with columns belonging
to J , and Ck is a constant depending on k only.
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Lemma 3.7. Let d, n, k ∈ N be numbers satisfying d ≥ log n. Let V1, . . . , Vk matrices with independent
Γ-random entries. Define a dk×n matrix W , whose rows are entry-wise products of the rows of V1, . . . , Vk:
W = V1 ⊙ V2 ⊙ . . .⊙ Vk. Then

Pr[W /∈ Wk] ≤ ke−cd.

Proof. We use the induction on k.
Step 1. Let k = 1. Then W = V is a matrix with independent Γ-random entries. Let x ∈ Sd−1, and let
y ∈ Sn−1 ∩ RJ . Then �x, V |Jy� is a subgaussian3 random variable of variance 1/2. Hence,

Pr[|�x, V |Jy�| > t] ≤ e−ct
2

for any t ≥ 1. Let J ⊂ {1, . . . , n}, |J | = m. Let N be a (1/2)-net in Sd−1, and let M be a (1/2)-net in
Sn−1 ∩ RJ . Then

�V |J� ≤ 4 sup
x∈N

sup
y∈M

�x, V |Jy�.

The nets N and M can be chosen so that |N | ≤ 6d and |M| ≤ 6m. Combining this with the union bound,
we get

Pr[�V |J� ≥ 4t] ≤ |N | · |M| · e−ct
2
≤ exp

�
−ct2 + (m + d) log 6

�
≤ e−c

�
t
2

provided that t ≥ C(
√

d +
√

m). Applying the previous inequality with t = tm =
√

d +
√

m
√

log n, and
taking the union bound, we get

Pr[V /∈ W1] ≤
n�

m=1

�

|J |=m

Pr[�V |J� > 4tm] ≤
n�

m=1

nme−ct
2
m

≤

n�

m=1

exp
�
−C

�√
d +

√
m

�
log n

�2
+ m log n

�
≤ e−cd.

Step 2. Let k > 1, and let U = V1 ⊙ . . .⊙ Vk−1. Assume that U ∈ Wk−1 and condition on U . It is enough
to prove that

Pr[U ⊙ Vk /∈ Wk | U ] ≤ e−cd. (2)

Indeed, in this case the induction hypothesis yields

Pr[W /∈ Wk] ≤ Pr[U ⊙ Vk /∈ Wk | U ∈ Wk−1] + Pr[U /∈ Wk−1] ≤ ke−cd.

Fix I ⊂ {1, . . . , n} and ν, and consider the random variable �Wx(I, ν)�, where x(I, ν) was defined in
Lemma 3.6. Let α = (α1, . . . , αn) be a row of the matrix Vk. Then the coordinates of the vector Wx(I, ν)
corresponding to this row form the vector

(U ⊙ α)x(I, ν) = (U ⊙ x(I, ν))α.

Let U � be the dk−1 × |I| matrix defined as

U � = (U ⊙ x(I, ν))|I .
3A random variable Z is subgaussian if there exists b > 0 such that Pr[|Z| > a] ≤ 2 exp(−a2/b2) for all a > 0.
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Since all coordinates of x(I, ν) have absolute value 1/
�
|I|, the assumption U ∈ Wk−1 implies

��U ��� ≤ 1�
|I|
�U |I� ≤

Ck−1�
|I|

�
d(k−1)/2 +

�
|I| · log(k−1)/2 n

�
· log(k−2)/2 n.

Also, since all entries of U have absolute value at most 1,
��U ���2

HS
≤ dk−1.

The sequence of coordinates of the vector Wx(I, ν) consists of d independent copies of U �αI . Therefore,
applying Lemma 3.5 with l = d, we get

p : = Pr[�Wx(I, ν)�2
≥ 2d · dk−1 + s] ≤ 2d exp

�
−

cs

�U ��2

�
(3)

≤ 2d exp

�
−

ck−1s�
(dk−1/|I|) + logk−1 n

�
· logk−2 n

�

with ck−1 = c · C−2
k−1 depending only on k. Choosing

s = (Cd + C|I| log n)
�
(dk−1/|I|) + logk−1 n

�
· logk−2 n

ck−1
,

we get
p ≤ e−cd

· exp (−C|I| log n) .

Since d ≥ log n, we have an estimate

2dk + s ≤ C ��
k
(dk + |I| logk n) · logk−2 n =: s(|I|).

The union bound implies

Pr[∃I ⊂ {1, . . . , n} ∃ν ∈ {−1, 1}I such that �Wx(I, ν)� > s(|I|)] ≤ e−cd
·

�

I⊂J

2|I| exp (−C|I| log n)

≤ e−c
�
d.

Assume now that the complementary event occurs:

∀I ⊂ {1, . . . , n} ∀ν ∈ {−1, 1}I
�Wx(I, ν)� ≤ s(|I|).

Let J ⊂ {1, . . . , n}. By Lemma 3.6,

�W |J� ≤ 2
�

log n · max
I⊂J

Γ∈{−1,1}I

�
s(|I|) = 2

�
log n ·

�
s(|J |),

which concludes the induction step.
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3.3 Small Ball Probability - Bounds for the Lévy concentration function

Starting from the works of Lévy [25], Kolmogorov [23], and Esséen [17] a number of results in probability
theory have been concerned with the question of how spread the sums of independent random variables are.
Lévy concentration is a convenient way to quantify the spread of a random variable.

Definition 3.8. Let ρ > 0. Define the Lévy concentration function of a random vector X ∈ Rn by

L(X, ρ) = sup
x∈Rn

Pr[�X − x� ≤ ρ].

We will use the following standard lemma.

Lemma 3.9. Let X ∈ Rn be a random vector, and let X � be an independent copy of X . Then for any ρ > 0

L(X, ρ) ≤
�

Pr[�X −X �� ≤ 2ρ].

Proof. Let x ∈ Rn. Then

(Pr[�X − x� ≤ ρ])2 = Pr[�X − x� ≤ ρ and
��X �

− x
�� ≤ ρ] ≤ Pr[

��X −X ��� ≤ 2ρ].

Taking the supremum over x ∈ Rn completes the proof.

Lemma 3.10. Let m ∈ N and x ∈ Rm be a vector such that 1 ≤ |x(j)| ≤ 2 for all j = 1, . . . ,m. Let
U = (ui,j) be any N × n matrix satisfying

�U� ≤
1
8
�U�

HS
.

Let α = (α1, . . . , αn) be a vector with independent Γ-random coordinates. Then

L

�
(U ⊙ α)x,

1
8
�U�

HS

�
≤ exp

�
−c
�U�2

HS

�U�2

�
.

Proof. The proof of this lemma uses Talagrand’s inequality for a convex function, in the same way it was
used in the proof of Lemma 3.5. Note that (U ⊙α)x = (U ⊙x)α. Let α�1, . . . , α

�
n be independent copies of

α1, . . . , αn. Applying Lemma 3.9, we obtain

L

�
(U ⊙ x)α,

1
8
√

Nm

�
≤

�

Pr
�
�(U ⊙ x)(α− α�)� ≤

1
8
√

Nm

�
. (4)

Consider a function F : R2m → R, defined by

F (yzy) = �(U ⊙ x)(y − z)� ,

where y, z ∈ Rm. Then F is a convex function with the Lipschitz constant L ≤ 2 �U ⊙ x�. Note that
U ⊙ x = U ·D, where D is the diagonal matrix: D = diag(xj)j∈{1,...,m}. Hence, L ≤ 4 �U�.

By Talagrand’s measure concentration theorem for convex functions

Pr[|F (α, α�)−M(F )| > s] ≤ 2 exp
�
−

cs2

L2

�
,
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where M(F ) is a median of F . This tail estimate implies

|M(F )−
�

E[F 2]
�1/2

| ≤ cL.

By the assumption of the lemma,

�
E[F 2]

�1/2
=
√

2 �(U ⊙ x)�
HS

≥ 4L.

Hence,

Pr
���(U ⊙ x)(α− α�)

�� ≤ 1
8
�U�

HS

�
≤ Pr

�
|F (α, α�)−M(F )| ≥

1
4

�
E[F 2]

�1/2
�

≤ 2 exp
�
−

c E[F 2]
L2

�
≤ exp

�
−c
�U�2

HS

�U�2

�
.

This inequality and (4) finish the proof.

For the next result we need the following standard lemma.

Lemma 3.11. Let s1, . . . , sd be independent non-negative random variables such that Pr[sj ≤ K] ≤ p for
all j. Then

Pr




d�

j=1

s2
j ≤

1
2
K2d



 ≤ (4p)d/2.

Proof. If
�

d

j=1 s2
j
≤

1
2K2d, then sj ≤ K for at least d/2 numbers j.

Combining Lemma 3.10 with this corollary, we obtain the tensorized version of Lemma 3.10.

Corollary 3.12. Let m ∈ N and x ∈ Rm be a vector such that 1 ≤ |x(j)| ≤ 2 for all j = 1, . . . ,m. Let
U = (ui,j) be any N × n matrix satisfying

�U� ≤
1
8
�U�

HS
.

Let V be a d×m matrix with independent Γ-random entries. Then

L

�
(U ⊙ V )x,

1
16
√

d · �U�
HS

�
≤ exp

�
−

cd · �U�2
HS

�U�2

�
.

Proof. The coordinates of the vector (U⊙V )x ∈ RNd consist of d independent blocks (U⊙α1)x, . . . , (U⊙
αd)x, where α1, . . . , αd are the rows of V . The corollary follows from Lemma 3.11, applied to the random
variables sj = �(U ⊙ αj)x− yj�, where y1, . . . , yd ∈ RN are any fixed vectors.

We can use this corollary to obtain a small ball probability estimate for a set of vectors with commensu-
rate coordinates. Let Bn

2 be the unit L2-ball.
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Lemma 3.13. Let m ≤ l ≤ n be natural numbers, and let t > 0. Denote by S(l,m, t) the set of all vectors
u ∈ Bn

2 with at most l non-zero coordinates, and at least m coordinates satisfying the inequality

t ≤ |u(j)| ≤ 2t.

Let U � be an N × n matrix, and denote
��U ���

m
:= max

J

��U �
|J

�� ,
��U ���

HS(m)
:= min

J

��U �
|J

��
HS

,

where the maximum and minimum are taken over all subsets J ⊂ {1, . . . , n} having m elements. Assume
that ��U ���

m
≤

1
8

��U ���
HS(m)

Let V � be a d× n matrix with independent Γ-random entries. Then

Pr[∃u ∈ S(l,m, t) such that
��(U �

⊙ V �)u
�� ≤ ct

√
d ·

��U ���
HS(m)

] ≤
�

cn �U ��
HS

t

�l

· exp

�
−

cd · �U ��2
HS(m)

�U ��2
m

�
.

Proof. Let u ∈ S(l,m, t). Choose an m-element subset J ⊂ {1, . . . , n} such that t ≤ |x(j)| ≤ 2t for
all j ∈ J . Denote x = u|J , U = U �|J , V = V �|J . Condition on the matrix V �|Jc . If �(U � ⊙ V �)u� ≤
ct
√

d · �U ��
HS(m), then

�(U ⊙ V )x− y� ≤ ct
√

d ·
��U ���

HS(m)
,

where the vector y = (U �|Jc ⊙ V �|Jc)u|Jc is fixed after conditioning. Hence, by Corollary 3.12,

Pr[
��(U �

⊙ V �)u
�� ≤ ct

√
d ·

��U ���
HS(m)

| V �
|Jc ]

≤ L((U ⊙ V )x, ct
√

d · �U�
HS

) ≤ exp

�
−

cd · �U ��2
HS(m)

�U ��2
m

�
,

because �U ��
HS(m) ≤ �U�

HS
and �U� ≤ �U ��

m
. Taking the expectation with respect to V �|Jc removes

conditioning.
Obviously, S(l,m, t) ⊂ Sm := {u ∈ Bn

2 | |supp(u)| ≤ l}. Set α = 1
2(ct · �U ��

HS
)−1. By the

volumetric estimate, there exist a α-net N ⊂ S(l,m, t) such that

|N | ≤

�
n

l

�
·

�
3
α

�l

≤

�
Cn

α

�l

.

By the union bound,

Pr[∃u ∈ N such that
��(U �

⊙ V �)u
�� ≤ ct

√
d ·

��U ���
HS(m)

] ≤
�cn

t

�l

· exp

�
−

cd · �U ��2
HS(m)

�U ��2
m

�
.

The result of the lemma follows by approximation. Indeed,
��U �

⊙ V ��� ≤
��U �

⊙ V ���
HS

≤
√

d
��U ���

HS
.
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Let v ∈ S(l,m, t) and assume that �(U � ⊙ V �)v� ≤
1
2ct
√

d · �U ��
HS(m). Choose u ∈ N such that

�v − u� < α. Then
��(U �

⊙ V �)u
�� ≤

��(U �
⊙ V �)v

�� +
��U �

⊙ V ��� · �u− v�

≤
1
2
ct
√

d ·
��U ���

HS(m)
+
√

d
��U ���

HS
α ≤ ct

√
d ·

��U ���
HS(m)

.

The next lemma shows that the row product of Γ matrices contains many rows with a lot of ones.

Lemma 3.14. Let Π1, . . . ,Πs be random d×m matrices with independent Γ-random entries. The ith row
of the matrix Πj is denoted by Πj(i). Denote by I the set of all (i1, . . . , is) ∈ {1, . . . , d}s such that

the vector Π1(i1)⊙ . . .⊙Πs(is) contains at least 2−s−3m non-zero coordinates.

Then

Pr[|I| ≤ 2−s−4ds] ≤ exp
�
−

c2−sdsm

s

�
.

Proof. Denote Π = (Π1, . . . ,Πs). For (i1, . . . , is) ∈ {1, . . . , d}s denote by Fi1,...,is(Π) the sum of the
absolute values of all coordinates of the vector Π1(i1)⊙ . . .⊙Πs(is), and set

F (Π) =
d�

i1,...,is=1

Fi1,...,is(Π)

For given l ∈ {1, . . . , s}, i ∈ {1, . . . , d}, j ∈ {1, . . . ,m} let Π�
i,j

be another collection of s Γ matrices, all
whose entries, except for Πl(i, j) are equal to the corresponding entries of Π. The entry Πl(i, j) will be an
independent Γ-random variable. Then

|F (Π)− F (Πl,i,j)| ≤ ds−1,

since the change in one entry of the Π affects at most ds−1 entries of Π1 ⊙ . . . ⊙ Πs. By the bounded
differences inequality,

Pr[|F (Π)−MF (Π)| > t] ≤ 2 exp
�
−

ct2

M2

�
, (5)

where
M2 =

�

l,i,j

|F (Π)− F (Πl,i,j)|2 ≤ sdsm.

The inequality (5) implies that
|E[F (Π)]−MF (Π)| ≤ cM,

and since E[F (Π)] = 2−sdsm, we conclude that MF (Π) ≥ 2−s−1dsm. Substituting this in (5), we get

Pr[F (Γ) ≤ 2−s−2dsm] ≤ exp
�
−

c2−sdsm

s

�
.
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Assume that Π satisfies F (Π) ≥ 2−s−2dsm. Since for any (i1, . . . , is) ∈ {1, . . . , d}s, Fi1,...,is(Π) ≤ m,
we obtain

2−s−2dsm ≤ F (Π) =
d�

i1,...,is=1

Fi1,...,is(Π) ≤ |I| ·m + (ds
− |I|) · 2−s−3m

≤ |I|m + 2−s−3dsm,

which completes the proof.

The previous lemma implies a lower bound for the Hilbert-Schmidt norm of Π1 ⊙ . . .⊙Πs.

Corollary 3.15. Let Π1, . . . ,Πs be as in Lemma 3.14. Then

Pr[∃J ⊂ {1, . . . ,m} such that �Π1|J ⊙ . . .⊙Πs|J�HS
≤ Cs

�
ds|J |] ≤ m exp(−csd

s).

Proof. Applying Lemma 3.14 with m = 1 to each column of the matrix Π1 ⊙ . . .⊙Πs, we get

Pr[∃j ∈ {1, . . . ,m} such that
��Π1|{j} ⊙ . . .⊙Πs|{j}

��
HS

≤ Cs

√
ds] ≤ m exp(−csd

s),

from which the result immediately follows.

3.4 Assembling the Puzzle: Putting Together the Proof of Theorem 3.4

To prove Theorem 3.4 we use the epsilon-net argument again. However, since the small ball probability for

�(Π1 ⊙ . . .⊙ΠK)x�

depends significantly on the vector x, it is impossible to construct one epsilon-net, which would work for
the whole sphere. Instead, we partition the sphere in many pieces, and construct a separate epsilon-net for
each piece. For each piece we choose a different value of α, which matches the small ball probability.
In Lemma 3.16 we introduce an elementary piece P (l,m, t, r) and prove a lower bound for the norm of
(Π1 ⊙ . . . ⊙ ΠK)x, which is valid for the whole P (l,m, t, r) with probability close to 1. Then in Lemma
3.17 we show that Sn−1 can be covered by a few sets P (l,m, t, r). This fact, combined with the union
bound proves Theorem 3.4.

We combine Lemmata 3.7, 3.13, 3.14 to prove the small ball probability estimate for the row product of
random Γ matrices.

Lemma 3.16. Let d, K, k, l, m, and n be natural numbers such that m ≤ l ≤ n, k ≤ K and d ≥ log n,
≤ dCK

l ≤
ckdk

log2k−2 n
, and m ≥

ckl

d
· logk−1 n. (6)

Let Π1, . . . ,ΠK be d× n matrices with independent Γ-random entries. Let 1/n ≤ t ≤ 1. For

0 < r <
Ckt

√
m

log(k−1)/2 n
. (7)

denote by P (l,m, t, r) the set of all vectors u ∈ Sn−1 which can be decomposed as u = v + w, where the
vector v at most l non-zero coordinates, and at least m coordinates satisfying the inequality

t ≤ |u(j)| ≤ 2t,
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and �w� ≤ r. Then

Pr[∃u ∈ P (l,m, t, r) such that �(Π1 ⊙ . . .⊙ΠK)u� ≤ cKt ·
√

dKm] ≤ exp
�
−

cKd

log2K−3 n

�
.

Proof. To prove the lemma, we rewrite Π1 ⊙ . . . ΠK as Π⊙Πk ⊙Π�, where Π = Π1 ⊙ . . .⊙Πk−1, Π� =
Πk+1 ⊙ . . .⊙ΠK , and use the independence of these three matrices.

Assume first that 1 < k < K. Set s = K−k. Consider first a vector v ∈ S(l,m, t), and a ds×n matrix

D = Πk+1 ⊙ . . .⊙ΠK ⊙ v.

Denote its rows by Di1,...,is , where (i1, . . . , is) ∈ {1, . . . , d}s. Then the coordinates of the vector (Π1 ⊙

. . . ΠK)v consist of ds blocks (Πd ⊙ . . .⊙Πk)Di1,...,is .
Fix an m-element set J ⊂ {1, . . . , n} for which t ≤ |v(j)| < 2t, whenever j ∈ J . Consider a ds ×m

matrix Πk+1|J ⊙ . . . ⊙ ΠK |J . Let I be the set of all rows of Π�� which have at least 2−s−3m ones. By
Lemma 3.14,

Pr[|I| ≤ 2−s−4ds] ≤ exp
�
−

c2−sdm

s

�
.

For any (i1, . . . , is) ∈ I , Di1,...,is ∈ S(l, 2−s−3m, t). Assume that the matrix Πk+1|J ⊙ . . .⊙ΠK |J satisfies
|I| ≥ 2−s−4ds, and condition on the corresponding matrix Π� = Πk+1 ⊙ . . .⊙ΠK .

Set
U � = Π1 ⊙ . . .⊙Πk−1, V � = Πk.

By Lemma 3.7 and Corollary 3.15,

Pr[U � /∈ Wk−1 or
��U ���

HS(m)
≤ Ck

√

dk−1m] ≤ e−ckd.

Fix U � ∈ Wk−1 such that �U ��
HS(m) ≥ Ck

√
dk−1m and condition on it. Set m� = �2−s−3m�. Since

U � ∈ Wk−1, ��U ���2
m� ≤ C �

k

�
dk−1 + m · logk−1 n

�
· logk−2 n.

We use Lemma 3.13 to bound the small ball probability. Denote by Prk the probability with respect to the
random matrix Πk, when the matrix U � ∈ Wk−1, is fixed. Then

p := Pr
k

[∃u ∈ S(l,m�, t) such that �(Π1 ⊙ . . .⊙Πk)u� < ckt
√

dkm]

≤Pr
k

[∃u ∈ S(l,m�, t) such that
��(U �

⊙ V �)u
�� < Ckt

√
d ·

��U ���
HS(m�)

]

≤

�
cn �U ��

HS

t

�l

· exp

�
−

ckdkm

�U ��2
m�

�
.

By the assumption t ≥ 1/n, and �U ��
HS

≤ ndk ≤ nCK , so

p ≤ exp

�
CK l log n−

ckdkm�
dk−1 + m · logk−1 n

�
· logk−2 n

�
.

Consider two cases. First, assume that

dk−1 > m · logk−1 n.
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Then the previous inequality reads

p ≤ exp
�

CK l log n−
ckdm

logk−2 n

�
.

The assumption on m implies

p ≤ exp
�
−

c�
k
dm

logk−2 n

�
.

Assume now that
dk−1

≤ m · logk−1 n.

Then

p ≤ exp
�

CK l log n−
ckdk

log2k−3 n

�
.

The assumptions on d and l imply

p ≤ exp
�
−

c�
k
dk

log2k−3 n

�
.

Also, by Lemma 3.7,
Pr[Π1 ⊙ . . .⊙Πk /∈ Wk] ≤ ke−cd.

Assume now that the matrices Π, . . . ,ΠK satisfy the following conditions:

1. Π1 ⊙ . . .⊙Πk ∈ Wk;

2. ∀u ∈ S(l, 2−s−3m, t) �(Π1 ⊙ . . .⊙Πk)u� ≥ ckt
√

dkm

3. Denote by I the set of all (ik+1, . . . , iK) ∈ {1, . . . , d}K−k such that the vector Πk+1(ik+1) ⊙ . . . ⊙
ΠK(iK) contains at least 2−s−3m non-zero entries. Then |I| ≥ 2−s−4ds.

The proof above shows that the probability that one of these conditions is violated is at most

exp(−ckd) + exp
�
−

c�
k
dm

logk−2 n

�
+ exp

�
−

c�
k
dk

log2k−3 n

�
+ exp (−csdm)

≤ exp
�
−

cKd

log2K−3 n

�
.

Condition (2) implies that for any v ∈ S(l,m, t), and any (ik+1, . . . , iK) ∈ I
���(Π1 ⊙ . . .⊙Πk)

�
Πk+1(ik+1)⊙ . . .⊙ΠK(iK)⊙ v

���� ≥ ckt
√

dkm.

Let u ∈ P (l,m, t, r), and let u = v + w be a decomposition from the definition of this set. Since
�Πk+1(ik+1)⊙ . . .⊙ΠK(iK)⊙ w� ≤ �w� ≤ r, we can use condition (1) to show that

�(Π1 ⊙ . . .⊙Πk)(Πk+1(ik+1)⊙ . . .⊙ΠK(iK)⊙ u)�
≥ �(Π1 ⊙ . . .⊙Πk)(Πk+1(ik+1)⊙ . . .⊙ΠK(iK)⊙ v)� − �(Π1 ⊙ . . .⊙Πk)� · r

≥ ckt
√

dkm− Ck

�
dk/2 +

√
m · logk/2 n

�
· log(k−1)/2 n · r

≥
1
2
ckt
√

dkm.
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The last inequality follows from m ≤ l ≤ Ckd
k

log2k−2
n

, and the assumption on r.
Applying condition (3), we get

�(Π1 ⊙ . . .⊙ΠK)u� =




�

(ik+1,...,iK)∈{1,...,d}K−k

���(Π1 ⊙ . . .⊙Πk)
�
Πk+1(ik+1)⊙ . . .⊙ΠK(iK)⊙ u

����
2




1/2

≥
�
|I| ·

1
2
ckt
√

dkm ≥ cKt
√

dKm,

which completes the proof for 1 < f < K.
The cases k = 1 and k = K are similar, although simpler. If k = K, set D = v. Then automatically

D ∈ S(l,m, t), which replaces condition (3).
Assume that k = 1. Then l ≤ c1d. Making the constant c1 smaller, if necessary, and using a straightfor-

ward epsilon-net argument, we can show that

Pr[∃u ∈ Sn−1 such that|supp(u)| ≤ l and �Π1u� ≤ c
√

d �u�] ≤ e−cd.

Since any u ∈ S(l,m, t) satisfies �u� ≥ t
√

m, we conclude that

Pr[∃u ∈ S(l,m, t) such that �Π1u� ≤ ct
√

dm] ≤ e−cd.

The complementary event ∀u ∈ S(l,m, t) �Π1u� ≥ ct
√

dm replaces condition (2).

To complete the proof of Theorem 3.4 we show that the sphere can be covered by a small number of sets
P (l,m, t, r), where the parameters l,m, t, and r satisfy conditions (6), and (7).

To this end we need another definition. For x ∈ Rn and l ≤ n denote by x|l the vector x, whose l
coordinates with biggest absolute values are replaced by zeros. Note that by Cauchy–Schwartz inequality,

�x|l�∞ ≤ l−1/2
�x� . (8)

For l ≤ n and r > 0 define sets Q(l, r) by

Q(l, r) = {x ∈ Sn−1
| �x|l� ≤ r}.

This definition is similar to that of a set of compressible vectors, which was introduced in [34]. Note that
Q(n, r) = Sn−1 for any r > 0. Let l1 ≤ l2 ≤ . . . ≤ l2K−1 = n and r1 ≥ r2 ≥ . . . ≥ r2K−1 > 0 be any
sequences. For convenience set l0 = 0, r0 = 1, and Q(l0, r0) = ∅. Then

Sn−1 =
2K−1�

s=1

Q(ls, rs) \Q(ls−1, rs−1).

To prove Theorem 3.4 it is enough to choose the sequences {ls}2K−1
s=1 and {rs}

2K−1
s=1 , so that

Pr [∃x ∈ Q(ls, rs) \Q(ls−1, rs−1) such that �(Π1 ⊙ . . .⊙ΠK)x� ≤ ρs]

is small if ρs > 0 is appropriately chosen. We make these choices in the following lemma.
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Lemma 3.17. For s = 1, . . . , (2K − 1) denote ks = �
s+1
2 �. Let Ck, ck be constants from Lemma 3.16. Let

ls =
cksd

(s+1)/2

log2ks−2 n
.

Set r1 = 1
2C1 log−1/2 n, and define the sequence {rs}

2K−1
s=1 inductively:

rs =
1
2
Cksrs−1 · log−ks/2 n.

Then

Pr

�
∃x ∈ Q(ls, rs) \Q(ls−1, rs−1) such that �(Π1 ⊙ . . .⊙ΠK)x� ≤

cK

√
dK

log(K2+K+1) n

�
≤ 2 exp

�
−

CKd

log2K−3 n

�
.

The choice of ls is dictated by the first condition in (6). The choice of rs is defined by condition (7).
The requirement l2K−1 = n leads to the bound on n in the formulations of Theorems 3.1 and 3.4.

Proof. Let j1 be the minimal number such that 2−j1 ≤ l−1/2
s−1 , and let j2 be the minimal number such that

2−j2 ≤ l−1/2
s . Then j2 − j1 ≤ c log d ≤ c log n. For j = j1, . . . , j2 set

tj = 2−j , and mj = t−2
j

r2
s−1 log−1 n.

For k = ks the first condition in (6) holds for l = ls. Moreover, the inductive definition of rs implies that
rs ≥ r2K ≥ c��2K

log−1/2−K(K+1) n. Since tj ≥ 2−j1 ≤
1
2 l−1/2

s−1 ,

mj ≥
ls−1

2
· (c��2K)2 log−1−2K(K+1) n ≥

ls
2d1/2

· (c��2K)2 log−1−2K(K+1) n.

Since by assumption d ≥ n1/K , this inequality implies the second condition in (6). Also, for any j ∈

{j1, . . . , j2}

rs <
Ckstj

√
mj

log(ks−1)/2 n
= Cksrs−1 · log−ks/2 n.

Thus, condition (7) is satisfied for r = rs. By Lemma 3.16,

Pr[∃u ∈ P (ls, mj , tj , rs) such that �(Π1 ⊙ . . .⊙ΠK)u� ≤ cKtj ·
�

dKmj ] ≤ exp
�
−

cKd

log2K−3 n

�
.

Taking into account that

tj
√

mj = r2
s−1 log−1/2 n ≥ r2K−1 log−1/2 n ≥ log−(K2+K+1) n,

we obtain

Pr[∃u ∈ P (ls, mj , tj , rs) such that �(Π1 ⊙ . . .⊙ΠK)u� ≤ cK

√

dK log−(K2+K+1) n] ≤ exp
�
−

cKd

log2K−3 n

�
.

The proof will be complete if we show that

Q(ls, rs) \Q(ls−1, rs−1) ⊂
j2�

j=j1

P (ls, mj , tj , rs).
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Let x ∈ Q(ls, rs) \Q(ls−1, rs−1). Then
��x|ls−1 − x|ls

�� ≥ rs−1 − rs ≥ rs−1/2,

and by (8),
��x|ls−1

��
∞ ≤ l−1/2

s−1 . For j = j1, . . . , j2, let

Ij = {i ∈ {1, . . . , n} | 2−j
≤ |x(i)| < 2−j+1

}.

Set yj =
�

i∈Ij
x(i)ei. Then x|ls−1 − x|ls =

�
j2
j=j1

yj , so there exists j ∈ {j1, . . . , j2} such that

�yj�
2
≥

r2
s−1

4(j2 − j1)
≥

r2
s−1

c log n
.

Hence, |Ij | ≥ 4j · �yj�
2
≥ mj . This shows that x ∈ P (ls, mj , tj , rs).

This completes the proof of Theorem 3.4.

4 Lower Bounds on Noise for Differential Privacy

In this section, we establish a lower bound on noise needed for releasing k-attribute marginal tables under
the notion of (�, δ)-differential privacy. Let D be a database. A database D� is said to be a neighbor of D if
it differs from D in exactly one row. A randomized algorithm is differentially private if neighbor databases
induce nearby distributions on the outputs.

Definition 4.1 ((�, δ)-differential privacy [14, 12]). A randomized algorithmA is (�, δ)-differentially private
if for all neighboring databases D,D�, and for all sets S of possible outputs Pr[A(D) ∈ S] ≤ exp(�) ·
Pr[A(D�) ∈ S] + δ. The probability is taken over the random coins of the algorithm A. If A is (�, 0)-
differentially private (i.e., δ = 0), then we say it is �-differentially private.

Differential privacy composes well as shown by the following claim.

Claim 4.2 (Composition and Post-processing [13, 29]). If a randomized algorithm A runs k algorithms
A1, . . . ,Ak where each Ai is (�i, δi)-differentially private, and outputs a function of the results (that is,

A(z) = G(A1(z),A2(z), . . . ,Ak(z))

for some probabilistic algorithm G), then A is (
�

k

i=1 �i,
�

k

i=1 δi)-differentially private.

Let X and Y be random variables taking values in a set O. We use X ≈�,δ Y to indicate that random
variables X and Y are (�, δ)-indistinguishable, i.e.,

∀S ⊆ O, Pr[X ∈ S] ≤ exp(�) · Pr[Y ∈ S] + δ and Pr[Y ∈ S] ≤ exp(�) · Pr[X ∈ S] + δ.

We also use X ≈� Y to indicate that random variables X and Y are (�, 0)-indistinguishable.
Our bounds are tight under a natural and popular class of differentially private algorithms based on

adding instance-independent noise. This class contains algorithms that for all inputs add noise from a fixed
distribution (i.e., the noise distribution is independent of the input). Formally, if an algorithm A for a
function class F adds instance-independent noise from a distribution Z then for all D, A(D) = F(D) + Z.

27



Therefore, for D� a neighbor of D, A(D�) = A(D) + F(D�)−F(D). The SuLQ algorithm of Blum et al.
[5] is an example of an algorithm that adds instance-independent noise.

In Section 4.1, we consider (�, δ)-differentially private algorithms for Ck that add instance-independent
noise. For an instance-independent differentially private algorithm A, we can measure the perturbation
introduced by A either by using the mean squared error matrix

ΣA(D) = E[(A(D)− Ck(D))(A(D)− Ck(D))�]

or the covariance matrix of A(D), and the results are the same with either choice. Define the average mean
squared error of A(D) as the trace of ΣA(D) divided by the size of A(D). Let mk =

�
d

k

�
. We show if for

every database D, A(D) has an average mean squared error (or variance) of o(mk(1− δ/�)2/(22k�2)), then
A is not (�, δ)-differentially private. To do so, we analyze projections onto various directions. The idea is
to show that for any neighboring databases D and D� with Ck(D�) − Ck(D) = ∆, the indistinguishability
requirement of differential privacy forces both the expected squared length of the projection of A(D) −
Ck(D) on ∆ and the expected squared length of the projection of A(D�)−Ck(D�) on ∆ to be at least square
of the length of ∆. Of particular interest to us are the direction vectors ∆’s with large lengths (close to the
largest possible length of

√
mk). Then, using a careful argument involving geometries of these ∆ vectors

we show that there exists a database D∗ such that the trace of ΣA(D∗) is at least m2
k
(1− δ/�)2/(2k�2). The

result follows by dividing the trace by the size of A(D∗).
In Section 4.2, we consider general (�, δ)-differentially private algorithms for Ck. For a “general” dif-

ferentially private algorithm A, we need4 to use the mean squared error matrix to measure the perturba-
tion. We show that if for every database D, A(D) has an average mean squared error of o(min{mk(1 −
δ/�)2/(22k�2), n(1− δ/�)2/(22k� log mk)}), then A is not (�, δ)-differentially private. Again for neighbor-
ing databases D and D� with Ck(D�) − Ck(D) = ∆, we investigate the expected squared length of projec-
tions of A(D)−Ck(D) and A(D�)−Ck(D�) on ∆. The analysis of the general case is harder, because now
the indistinguishability requirement forces only one among these two projection lengths to be greater than
squared length of ∆. Our proof looks at random databases and shows that for a random database Dr with
high probability the trace of ΣA(Dr) is at least min{m2

k
(1− δ/�)2/(2k�2), nmk(1− δ/�)2/(2k� log mk)}.

In our analysis, (for simplicity) instead of conjunctions, we consider inner products over the domain
{−1, 1}d. An inner product predicate iv : {−1, 1}d → {−1, 1} is defined as iv(x) =

�
i
xi · vi, where the

value of vi indicates whether xi is present (if vi = 1) or not (if vi = 0). Similar to Ck, let Ik be the class of
all k-way inner product predicates. Let D be a database from ({−1, 1}d)n. For a predicate iv ∈ Ik, define
iv(D) =

�
x∈D

iv(x). Let Ik(D) be the vector of all predicates in Ik evaluated on D. In Appendix C, we
provide the relationship between releasing conjunctions and inner products.

4.1 Lower Bounds for the Instance-independent Additive Case

For simplicity, we set δ = 0 in the following analysis (see the proof of Theorem 4.9 for δ > 0). We
start by proving a very useful property about differential privacy. We state the lemma in terms of a general
function class F and later use if for our specific function class Ik. Let A be an �-differentially private
algorithm for F that adds instance-independent noise. The lemma shows that both E[�A(D)−F(D),∆�2]
and E[�A(D�)−F(D�),∆�2] are Ω(�∆,∆�2/�2) where ∆ = F(D�)−F(D). The proof uses the fact that
projections onto direction ∆ need to be �-indistinguishable for A(D) and A(D�).

4This is because an algorithm could always add noise such that the output released is always a 0 vector for every database. This
is clearly not a good algorithm as the deviation from the true answer could be quite big. But this algorithm clearly satisfies all the
privacy requirements and also the variance in each coordinate of A(D) is 0.
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Lemma 4.3. Let F be a function class of Boolean predicates, and let A be an �-differentially private
algorithm for F that adds instance-independent noise. Let A(D) = F(D) + Z. Let ∆ = F(D�)− F(D),
and let A(D) ≈� A(D�) = A(D) + ∆. Then,

E[�A(D)−F(D),∆�2] = E[�A(D�)−F(D�),∆�2] = Ω(�∆,∆�2/�2).

Proof. Since, we are measuring expected squared loss, we can assume without loss of generality that each
coordinate of the noise distribution Z of A is centered at 0 (otherwise, we can shift the noise distribution
to satisfy this property without increasing the mean squared error). Therefore, we can assume without loss
of generality that for all databases D, E[A(D)] = F(D). Hence, in the instance-independent case for all
databases D the mean-squared error matrix is same as the covariance matrix, i.e.,

ΣA(D) = E[(A(D)−F(D))(A(D)−F(D))�] = E[(A(D)−E[A(D)])(A(D)−E[A(D)])�] = E[ZZ�].

We start by proving a simplification of the lemma that illustrates the key ideas.

Lemma 4.4. Let X � and Y � be two random variables over R. Let X � ≈� Y �. Let E[X �] = p and E[Y �] =
p + 1. Then, E[X �2] = Ω(1/�2) + p2 and E[Y �2] = Ω(1/�2) + p2. Therefore, Var [X �] = Ω(1/�2) and
Var [Y �] = Ω(1/�2).

Proof of Lemma 4.4. Define X = X �−p and Y = Y �−p. Define ai = Pr[X ∈ [i, i+1)] and bi = Pr[Y ∈

[i, i + 1)]. Note that �

i∈Z
ai =

�

i∈Z
bi = 1.

By requirements of the differential privacy, we have e−�bi ≤ ai ≤ e�bi for all i ∈ Z. Let Inti = [i, i + 1).
Now,

E[X] =
�

R
z Pr[X = z]dz =

∞�

i=−∞

�

Inti

z Pr[X = z]dz

≥

∞�

i=0

iai +
0�

i=−∞
iai =

∞�

i=0

iai −

∞�

i=0

ia−i

≥ −

∞�

i=0

e�ib−i +
∞�

i=0

e−�ibi = −

∞�

i=0

(e−� + e�
− e−�)ib−i +

∞�

i=0

e−�ibi

= e−�

� ∞�

i=0

ibi −

∞�

i=0

ib−i

�
− (e�

− e−�)
∞�

i=0

ib−i

= e−�

� ∞�

i=0

ibi +
−1�

i=−∞
ibi

�
− (e�

− e−�)
∞�

i=0

ib−i

= e−� E[Y ]− (e�
− e−�)

∞�

i=0

ib−i.

Since E[X] = 0 and E[Y ] = 1, therefore, from the above inequality for small �,

∞�

i=0

ib−i ≥ (e−�)/(e�
− e−�) = Ω(1/�).
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Define a new random variable Y− as

Pr[Y− = z] = Pr[Y = −z |Y ≤ 0].

Then, E[Y−] ≥ 1
Pr[Y≤0]

�∞
i=0 ib−i. Rearranging the terms and using the fact that E[Y−] ≤

�
E[Y 2

−],

∞�

i=0

ib−i ≤ E[Y−] Pr[Y ≤ 0] ≤
�

E[Y 2
−] Pr[Y ≤ 0].

Using the bound for
�∞

i=0 ib−i, we get that

E[Y 2
−] = Ω

��
1

Pr[Y ≤ 0]

�2
�

.

Now, define Pr[X+ = z] = Pr[X = z |X ≥ 1]. Using similar analysis as above gives that

E[X2
+] = Ω

��
1

� Pr[X ≥ 1]

�2
�

.

Now,

E[X2] =
∞�

i=−∞

�

Inti

z2 Pr[X = z]dz.

In particular,

E[X2
+] ≤

E[X2]
Pr[X ≥ 1]

.

Similarly, we get that

E[Y 2
−] ≤

E[Y 2]
Pr[Y ≤ 0]

.

Now substituting the lower bound for E[X2
+] and E[Y 2

−], we get that

Ω
�

1
�2

�
= E[X2] Pr[X ≥ 1] and Ω

�
1
�2

�
= E[Y 2] Pr[Y ≤ 0].

Hence, E[X2] = Ω(1/�2) and E[Y 2] = Ω(1/�2). Re-substituting X and Y in terms of X � and Y � completes
the proof of Lemma 4.4.

We now extend Lemma 4.4. The idea is as follows: Define

X = �A(D)− E[A(D)],∆� = �A(D)−F(D),∆�, and
Y = �A(D�)− E[A(D)],∆� = �A(D�)−F(D),∆�.

Repeating same arguments as in the previous lemma, we get that

E[X] ≥ e−� E[Y ]− (e�
− e−�)

∞�

i=1

ib−i.
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Since E[Y ] = ∆�∆. Therefore, for small �,

∞�

i=1

ib−i = Ω
�

∆�∆
�

�
.

As in Lemma 4.4, we define random variables Y− and X+. By arguments similar to Lemma 4.4 we can
show that

E[X2
+] = Ω

��
∆�∆

� Pr[X ≥ 1]

�2
�

and E[Y 2
−] = Ω

��
∆�∆

� Pr[Y ≤ 0]

�2
�

.

As in Lemma 4.4,

E[X2
+] ≤

E[X2]
Pr[X ≥ 1]

and E[Y 2
−] ≤

E[Y 2]
Pr[Y ≤ 0]

.

Therefore, we now get that

Ω
�
�∆,∆�2

�2

�
= E[X2] Pr[X ≥ 1] and Ω

�
�∆,∆�2

�2

�
= E[Y 2] Pr[Y < 0].

As in Lemma 4.4, we can argue that E[X2] = Ω(�∆,∆�2/�2) and E[Y 2] = Ω(�∆,∆�2/�2). Therefore,

E[�A(D)−F(D),∆�2] = Ω(�∆,∆�2/�2) and E[�A(D�)−F(D),∆�2] = Ω(�∆,∆�2/�2).

Also,

E[�A(D�)−F(D�),∆�2] = E[�A(D�)−F(D)−∆,∆�2]
= E[(∆�(A(D�)−F(D))−∆�∆)2]
= E[(Y −∆�∆)2] = E[Y 2] + (∆�∆)2 − 2∆�∆ E[Y ]
≥ E[Y 2] + (∆�∆)2 − 2∆�∆

�
E[Y 2] = Ω(�∆,∆�2/�2).

The last line follows because E[Y 2] = Ω(�∆,∆�2/�2).

One-way Inner products. If k = 1 (i.e., 1-way inner products), then the remaining analysis is quite
simple. Let De be any database which has at least a row of both (−1)d and (1)d. Consider a vector
∆ ∈ {−2, 2}d, construct D∆ from De by replacing the row (−1)d is replaced by ∆/2 and the row (1)d by
∆/2. The Hamming distance between De and D∆ is 2 and I1(D∆)−I1(De) = ∆. Also, �∆,∆�2 = 16d2.
We use the above construction to create for every ∆ = {−2, 2}d a corresponding database D∆. The
idea now is to use the fact that this set of ∆’s (which contains every vector from {−2, 2}d) contains an
orthogonal (Hadamard) basis ∆1, . . . ,∆d, and therefore, by invoking Lemma 4.3 for I1, and noting that�

d

i=1 ∆i∆�
i

= 4d · Id, we have

Ω
�

d3

�2

�
=

�

∆i

tr(E[�A(De)− I1(De),∆i�
2]) =

�

∆i

tr(∆�
i ΣA(De)∆i)

=
�

∆i

tr(ΣA(De)∆i∆�
i ) = tr(ΣA(De) · 4d · Id) = 4d · tr(ΣA(De)).
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Proposition 4.5 (Instance-independent additive case: 1-way inner products). Let A : ({−1, 1}d)n → Rd be
an �-differentially private algorithm for I1 that adds instance-independent noise. Let De be any database
which has at least a row of both (−1)d and (1)d. Then, tr(ΣA(De)) = Ω(d2/�2).

Proof. Consider any vector ∆ ∈ {−2, 2}d. Since A is differentially private, by Claim 4.2, A(De) ≈2�

A(D∆) (where D∆ is as defined above).
From Lemma 4.35, we know

E[�A(De)− I1(De),∆�2] = Ω(�∆,∆�2/�2) = Ω(d2/�2),

therefore, E[�A(De) − I1(De), u∆�
2] = Ω(d/�2) (where u∆ is the unit vector corresponding to ∆). This

holds for every ∆ ∈ {−2, 2}d. Consider an orthonormal basis u1, . . . , ud (one such example is the
Hadamard basis) such that u�

i
ΣA(De)ui = Ω(d/�2) for all i ∈ [d]. Identity matrix Id =

�
d

i=1 uiu�i .
Now,

Ω
�

d2

�2

�
=

d�

i=1

tr(E[�A(De)− I1(De), ui�
2])

=
d�

i=1

tr(E[u�i (A(De)− I1(De))(A(De)− I1(De))�ui])

=
d�

i=1

tr(u�i ΣA(De)ui) =
d�

i=1

tr(ΣA(De)uiu
�
i )

= tr(ΣA(De) · Id) = tr(ΣA(De)).

The second equality tr(u�
i
ΣA(De)ui) = tr(ΣA(De)uiu�i ) holds because trace is cyclically invariant. This

implies that tr(ΣA(De)) = Ω(d2/�2).

Extension to the k-way inner products. The analysis for k > 1 is trickier, as we don’t get a set of
orthogonal ∆ vectors. Here, we start with a special database Dc = ((1)d)n (a database of all 1’s), and
look at the neighbors of Dc obtained by replacing a row of Dc by a vector from {−1, 1}d. Let D�

c be a
neighbor of Dc, and let z̃ = Ik(D�

c) − Ik(Dc). Assume that D�
c is obtained from Dc by replacing the jth

row of Dc by a vector d�c ∈ {−1, 1}d. Therefore, z̃ = (n)mk − ((n − 1)mk + Ik(d�c)) = (1)mk − Ik(d�c)
has lots of 0 entries making �z̃� “small”. This is true for many different choices of D�

c. To overcome this
problem we analyze projections of A(D) − Ik(D) onto direction πz̃ where π = Imk − oo�/�o, o� (πz̃ is
the orthogonal projection of z̃ onto the orthogonal complement of o = (1)mk ). These kind of projections
have the advantage that �πz̃� = �π · Ik(d�c)� is “big” with probability at least 1/2 over random choices of
z̃. The idea now is to use Lemma 4.3 to show that E[�A(Dc)− Ik(Dc), πz̃�2] = Ω(�πz̃, πz̃�2/�2).

Lemma 4.6. Let A be an �-differentially private algorithm for Ik that adds instance-independent noise. Let
Dc = ((1)d)n. Let D�

c ∈ ({−1, 1}d)n be a neighbor of Dc. Let z̃ = Ik(D�
c)− Ik(Dc), z = Ik(D�

c)− (n−
1)mk , and π = Imk − oo�/�o, o� where o = (1)mk . Then,

E[�A(Dc)− Ik(Dc), πz̃�2] = E[�A(Dc)− Ik(Dc), πz�2] = Ω(�πz̃, πz̃�2/�2) = Ω(�πz, πz�2/�2).

Proof. Arguments similar to Lemma 4.3 shows that (πz̃)�ΣA(Dc)(πz̃) = Ω(�z̃, πz̃�2/�2) = Ω(�πz̃, πz̃�2/�2).
Since πz̃ = πz, we get the desired result.

5Substitute D∆ for D� in Lemma 4.3. As the Hamming distance between D∆ and De is two, � gets replaced by 2�.
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In the proof, we use random directions z. The following lemma analyzes the structure of Ez[zz�] (where
the randomness is over the choice of z).

Lemma 4.7. Let r ∈ {−1, 1}d be a random vector with independent entries taking values −1 and 1 with
probability 1/2. Let mk =

�
d

k

�
. Define a random vector zr of length mk as zr = Ik(r). Define a matrix

B = Ezr [zrz�r ] where the randomness is over zr. Then, B = Imk where Imk is an identity matrix of
dimension mk.

Proof. We prove the lemma for k = 2 (2-way inner products). The proofs for higher k’s follow similarly.
Let ri denote the ith entry in r. Each entry in zr is set to 1 with probability 1/2 and−1 with probability 1/2
(but the entries are not independent of each other). Now, zr = (z1,1, z1,2, . . . , zd−1,d) where zi,j = rirj . We
now show that for e, f, g, h ∈ [d], e �= f , and g �= h,

E
zr

[ze,fzg,h] =
�

1 if {e, f} = {g, h},
0 otherwise.

Note that if {e, f} = {g, h}, then Ezr [ze,fzg,h] = Ezr [z2
e,f

] = 1. If {e, f} �= {g, h}, then there are
three cases: if e, f, g, h are all disjoint then Ezr [ze,fzg,h] = Ezr [ze,f ] Ezr [zg,h] = 0, if e = g then
Ezr [ze,fzg,h] = Ezr [(r2

e)(rf )(rh)] = Ezr [r2
e ] Ezr [rf ] Ezr [rh] = 0, end if f = h then Ezr [ze,fzg,h] =

Ezr [re] Ezr [rg] Ezr [r2
h
] = 0. Therefore, Ezr [zrz�r ] = Im2 .

The following proposition uses Lemmata 4.6 and 4.7 to show that there exists a database Dc such that
every instance-independent differentially private algorithm needs to add a lot of noise to Ik(Dc).

Proposition 4.8 (Instance-independent additive case: k-way inner products). Let A : ({−1, 1}d)n → Rmk

be an �-differentially private algorithm for Ik that adds instance-independent noise. Let Dc = ((1)d)n.
Then, tr(ΣA(Dc)) = Ω(m2

k
/�2).

Proof. Let Dc = ((1)d)n. The set of vectors z = Ik(D�
c) is exactly supp(zr) (where zr is defined in

Lemma 4.7 and supp(zr) denotes the support of zr). With expectation over random zr,

E
zr

[(πzr)�ΣA(Dc)(πzr)] = E
zr

[tr((πzr)�ΣA(Dc)(πzr))]

= E
zr

[tr(π�ΣA(Dc)πzrz
�
r )]

= tr(π�ΣA(Dc)πB). (since trace and expectation commute)

From Lemma 4.7, B = Ezr [zrz�r ] = Imk . Note that π�ΣA(Dc)π and B = Imk are both positive semidef-
inite. Therefore, tr(π�ΣA(Dc)πB) ≤ tr(π�ΣA(Dc)π)�B�∞. Also, since π is an orthogonal projection
matrix

tr(π�ΣA(Dc)π) = tr(ΣA(Dc)π) ≤ tr(ΣA(Dc))�π�∞ = tr(ΣA(Dc)).

Therefore,

E
zr

[(πzr)�ΣA(Dc)(πzr)] = tr(π�ΣA(Dc)πB) ≤ tr(π�ΣA(Dc)π)�B�∞

= tr(π�ΣA(Dc)π) ≤ tr(ΣA(Dc)).

From Lemma 4.6, ∀z ∈ supp(zr),

(πz)�ΣA(Dc)(πz) = Ω(�πz, πz�2/�2).
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Now,

�z, z� = z�πz + z�(Imk − π)z = z�π�πz + �z, o�2/mk = �πz, πz�+ �z, o�2/mk.

If you look at the expected value of z�r πzr,

E
zr

[z�r πzr] = E
zr

[tr(πzrz
�
r )] = tr(πImk) = tr(π) = mk − 1.

Now, for all z ∈ supp(zr), z�πz ≤ z�z = mk. Therefore, z�r πzr is a random variable whose range is
between [0, mk] and with expectation of mk−1. If p is the probability that z�r πzr takes a value greater than
mk − 2, then

mk − 1 = E
zr

[z�r πzr] ≤ pmk + (1− p)(mk − 2) ⇒ 1/2 ≤ p.

We can expand Ezr [(πzr)�ΣA(Dc)(πzr)] as

E
zr

[(πzr)�ΣA(Dc)(πzr)] = E
zr

[(πzr)�ΣA(Dc)(πzr) | z�r πzr ≥ mk − 2] Pr[z�r πzr ≥ mk − 2] +

E
zr

[(πzr)�ΣA(Dc)(πzr) | z�r πzr ≤ mk − 2] Pr[z�r πzr ≤ mk − 2].

From the above arguments we get that Przr [z�r πzr ≥ mk − 2] ≥ 1/2, therefore

E
zr

[(πzr)�ΣA(Dc)(πzr)] ≥ E
zr

[(πzr)�ΣA(Dc)(πzr) | z�r πzr ≥ mk − 2]
1
2

+ 0 = Ω((mk − 2)2/(2�2)).

Since Ezr [(πzr)�ΣA(Dc)(πzr)] ≤ tr(ΣA(Dc)), we get that tr(ΣA(Dc)) = Ω(m2
k
/�2).

The previous result for Ik can be extended to Ck (using Corollary C.2). We get the following result.

Theorem 4.9 (Instance-independent additive case). Let mk =
�
d

k

�
. Any algorithm A for releasing all k-

attribute marginal tables (or all k-way conjunction predicates) that adds instance-independent noise and
that for every database D ∈ ({0, 1}d)n has a root mean squared error (or standard deviation) of o(√mk(1−
δ/�)/(2k�)) for each entry of A(D) is not (�, δ)-differentially private.

Proof. In the case of �-differential privacy (δ = 0), Proposition 4.8 and Corollary C.2 put together give the
claimed result. If δ > 0, we use the following lemma which generalizes Lemma 4.6.

Lemma 4.10. Let A be a (1/2, δ)-differentially private algorithm for Ik that adds instance-independent
noise. Let Dc = ((1)d)n. Let D�

c ∈ ({−1, 1}d)n be a neighbor of Dc. Let z = Ik(D�
c) − (n − 1)mk and

π = Imk − oo�/�o, o�. Then, E[�A(Dc)− Ik(Dc), πz�2] = Ω(�πz, πz�2).

Proof. Let z̃ = Ik(D�
c) − Ik(Dc). In Lemma 4.12, we set X = �A(Dc) − Ik(Dc), πz̃�, Y = �A(D�

c) −
Ik(Dc), πz̃�, and a = �πz̃, πz̃�. Note that Y = X + a and πz = πz̃.

Now, using the above lemma (instead of Lemma 4.6) in the proof of Proposition 4.8 shows that tr(ΣA(Dc)) =
Ω(m2

k
(1 − δ)2). Using the trick explained in Section 4.3 we can introduce � into the lower bound. Finally,

using Corollary C.2 to convert the result about inner products to conjunctions proves the claim. Remem-
ber that |Ck| = 2k

�
d

k

�
, whereas |Ik| =

�
d

k

�
. Therefore, we can establish that any algorithm A for Ck

that adds instance-independent noise and that for every database D has an average mean squared error of
o(mk(1 − δ/�)2/(22k�2)) for A(D) is not (�, δ)-differentially private. By taking a square root we get the
claimed result.
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4.2 Lower Bounds for the General Case

Again our analysis looks at the related problem of releasing inner products. We initially prove the lower
bound by fixing � to 1/2. We start by proving an extension of Lemma 4.3 to general differentially private
algorithms. Let F be a function class, and let A be an (�, δ)-differentially private algorithm for F . Let
A(D) ≈1/2,δ A(D�), and let ∆ = F(D�) − F(D). Unlike in the instance-independent case (Lemma 4.3)
both E[�A(D) − F(D),∆�2] and E[�A(D�) − F(D�),∆�2] needn’t be �∆�4, but the following lemma
shows that at least one of them is �∆�4 (this one-sided behavior is in fact unavoidable and is explained in
Appendix D).

Lemma 4.11. Let F be a function class of Boolean predicates, and let A be a (1/2, δ)-differentially private
algorithm for F . Let A(D) ≈1/2,δ A(D�). Let ∆ = F(D�) − F(D). Then, at least one of E[�A(D) −
F(D),∆�2] or E[�A(D�)−F(D�),∆�2] is Ω(�∆,∆�2(1− δ)2).

Proof. Lemma 4.11 follows from setting X = �A(D) − F(D),∆�, Y = �A(D�) − F(D),∆�, and a =
∆�∆ in the following lemma. If two random variables, X and Y are (1/2, δ)-indistinguishable, then the
statistical difference6 between X and Y is at most e1/2 − 1 + δ.

Lemma 4.12 (Lemma 4.11, restated). Suppose X,Y are real-valued random variables with statistical dif-
ference at most e1/2 − 1 + δ. Then, for all real numbers a, at least one of E[X2] or E[(Y − a)2] is
Ω(a2(1− δ)2).

Proof. Since X and Y have statistical difference at most e1/2−1+δ, we can find random variables X �, Y �, U
such that X � and Y � have the same marginal distributions as X and Y respectively, and X � = Y � = U with
probability at least 2− e1/2− δ. Moreover, if E is the event that X � = Y � = U , we may choose U so that it
is independent of the event E. (See, for example, the proof Lemma 3.1.8 in Vadhan’s thesis [39] for a proof
of this.)

We can bound the expectation of X in terms of the expectation of U :

E[X] = E[X �] = E[X �
|E] Pr[E] + E[X �

|E] Pr[E] ≥ (2− e1/2
− δ) E[X �

|E] = (2− e1/2
− δ) E[U ].

Now, suppose that a > 0, and that the expectation E[U ] is at least a/2. Then,

E[X2] ≥ E[X]2 ≥ (2− e1/2
− δ)2 E[U ]2 ≥ a2(2− e1/2

− δ)2/4 = Ω(a2(1− δ)2).

Similarly, if a > 0 and E[U ] is less than a/2, we have E[(Y − a)2] = Ω(a2(1 − δ)2). The cases in
which a < 0 are symmetric to the cases where a > 0, and the statement is trivially true when a = 0.

This completes the proof of Lemma 4.11.

For a database D ∈ ({−1, 1}d)n, consider the n neighboring databases7 �D1, . . . , �Dn where �Di is ob-
tained by replacing ith row of D by (1)d. Let Tk(D) = {z1, . . . , zn} denote the (multi) set such that
Ik( �Di) − Ik(D) = z̃i and zi = o − z̃i. Let π = Imk − oo�/�o, o� be an orthogonal projection matrix.
Notice that, πz̃i = −πzi. For the reasons same as in the instance-independent case, we analyze projections
onto πz̃i (or equivalently −πzi). Let uzi be the unit vector corresponding to zi. Define

Sk(D) = {z ∈ Tk(D) | E[�A(D)− Ik(D), πz�2] = Ω(m2
k
(1− δ)2)},

Uk(D) =
�

z∈Sk(D) uzu�z and Vk(D) =
�

z∈Tk(D) uzu�z .

6The statistical difference between random variables X and Y on a discrete space X is maxS⊂X |Pr[X ∈ S]− Pr[Y ∈ S]|.
7If D has a row of (1)d (say the ith), then D = eDi and z̃i = (0)mk . For uniformity, we will still treat D and eDi as neighbors.
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Because of the Lemma 4.11 for a database D it is possible that the expected squared length of projection
of A(D) − Ik(D) onto Ik(D�) − Ik(D) is small (i.e., o(�Ik(D�) − Ik(D)�2)) for all neighbors D� of D.
To overcome this problem we use random databases. Let Dr be a database drawn uniformly at random from
({−1, 1}d)n. We use

�
z∈Sk(Dr) E[�A(Dr)−Ik(Dr), πz�2] to bound the trace. The idea is to use properties

of semidefinite matrices and projection matrices to derive the following inequality,

Ω(m2
k
(1− δ)2|Sk(Dr)|) =

�

z∈Sk(Dr)

E[�A(Dr)− Ik(Dr), πz�2] = tr(π�ΣA(Dr)πmkUk(Dr))

≤ mk tr(π�ΣA(Dr)π)�Uk(Dr)�∞ ≤ mk tr(ΣA(Dr))�Uk(Dr)�∞.

Therefore, to lower bound tr(ΣA(Dr)), we need good upper bound on the largest eigenvalue of Uk(Dr).
Lemma 4.14 does that by using the matrix-valued Chernoff bound from Ahlswede and Winter [2].

Facts used in the proof Lemma 4.14. We need some simple definitions to prove Lemma 4.14. We let
M ≥ 0 to denote that M is positive semidefinite. This gives an ordering of matrices namely, M1 ≤ M2 iff
M2 −M1 ≥ 0. For two matrices M1 ≤ M2, we will let [M1, M2] denote the set of all matrices M3 such
that M1 ≤ M3 ≤ M2. The matrix exponential is define as:

exp(M) =
∞�

i=0

M i

i!
.

exp(M) is diagonalizable in the same basis as M , and if λ is an eigenvalue of M , then eλ is an eigenvalue
for exp(M).

Claim 4.13. For all D ∈ ({−1, 1}d)n, �Uk(D)�∞ ≤ �Vk(D)�∞.

Proof. Consider any vector v ∈ Rmk . Since Uk(D) and Vk(D) are positive semidefinite, v�Uk(D)v ≤

v�Vk(D)v. Since the previous inequality holds for every vector v ∈ Rmk , we get that �Uk(D)�∞ ≤

�Vk(D)�∞.

Lemma 4.14. For all D ∈ ({−1, 1}d)n, �Uk(D)�∞ ≤ �Vk(D)�∞, and with probability at least 1 − 1/n
over the choice of Dr, �Vk(Dr)�∞ = O(max{n/mk, log mk}).

Proof. To prove the lemma we will show that with high probability

�Vk(Dr)�∞ = O(max{n/mk, log mk}).

Then, by using Claim 4.13 we get the desired result. To prove the bound on �Vk(Dr)�∞ we use the following
matrix-valued Chernoff bound of Ahlswede and Winter [2].

Theorem 4.15 ([2, 41]). Suppose f : [�] → [−Imk , Imk ] and let X1, . . . ,Xl be arbitrary independent
random variables distributed over [�]. Then, for all γ ∈ R and t > 0:

Pr



1
l

l�

j=1

f(Xj) � γImk



 ≤ mk exp(−tγl)
l�

j=1

�E[exp(tf(Xj))]�∞.

Let Tk(Dr) = {z1, . . . , zn}. Now uzu�z ∈ [−Imk , Imk ] for z ∈ {−1, 1}mk . Restating the above
theorem:
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Corollary 4.16. Let zj ∈ {−1, 1}mk for j ∈ [n]. For all γ ∈ R and t > 0,

Pr
Dr



 1
n

n�

j=1

uzju
�
zj

� γImk



 ≤ mk exp(−tγn)
n�

j=1

���� E
Dr

[exp(t uzju
�
zj

)]
����
∞

.

Note that 1
n

�
n

j=1 uzju
�
zj

� γImk ≡ �
1
n
Vk(Dr)�∞ ≥ γ. Also, since uz1u

�
z1

, . . . , uznu�zn
are all inde-

pendent and identically distributed we can restate the corollary in a more useful form as (where z = z1):

PrDr

��� 1
n
Vk(Dr)

��
∞
≥ γ

�
≤ mk exp(−tγn)

���Ez[exp(t uzu�z )]
��
∞

�n
. (9)

Let diag(c1, . . . , cn) be an n × n diagonal matrix, with c1, . . . , cn as the entries in the diagonal. Note that
uzu�z is a rank 1 projection matrix, so it has a single eigenvalue of value 1 and the remaining eigenvalues are
all 0. We diagonalize uzu�z in the basis where uz is the first eigenvector, then uzu�z = P�·diag(1, 0, . . . , 0)·
P , where P is an orthogonal matrix whose first row is uz and the all the remaining rows are 0’s.

Consider �Ez[exp(t uzu�z )]�∞,
��Ez[exp(t uzu�z )]

��
∞

= �Ez[exp(t · P� · diag(1, 0, . . . , 0) · P )]�∞
= �Ez[P� · exp(diag(t, 0, . . . , 0)) · P ]�∞
= �Ez[P� · diag(et, 1, . . . , 1) · P ]�∞ (as exp(diag(c1, . . . , cn)) = diag(ec1 , . . . , ecn))

= �Ez[et uzu�z ]�∞ =
���et Imk

mk

���
∞

= e
t

mk
.

The second last equality follows because Ez[uzu�z ] = Imk/mk (from Lemma 4.7). Setting t = 1, the right
hand of Equation 9 simplifies to

mk exp(−γn)
���Ez[exp(uzu�z )]

��
∞

�n = mk exp(−γn)
�

e

mk

�n

≤ mk exp(−γn) exp(en/mk).

The last inequality uses the fact that e/mk ≤ exp(e/mk). We consider two cases:

Case 1: n ≥ 8mk log mk. Setting γ = 3/mk, implies that

Pr
Dr

�����
1
n

Vk(Dr)
����
∞

≥
3

mk

�
≤ mk exp

�
−n(3− e)

mk

�
.

which simplifies to PrDr [(1/n)�Vk(Dr)�∞ ≥ 3/mk] ≤ 1/n as n ≥ 8mk log mk.

Case 2: n < 8mk log mk. Setting γ = (8 log mk)/n, implies that

Pr
Dr

�����
1
n

Vk(Dr)
����
∞

≥
8 log mk

n

�
≤

1
n

.

Rewriting the above inequalities proves the desired statement.
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Let �D be the set of all databases from ({−1, 1}d)n which have at least one row of (1)d. If with high
probability, |Sk(Dr)| is Ω(n), then using the upper bound on �Uk(Dr)�∞ from Lemma 4.14 will give us
the lower bound on tr(ΣA(Dr)). But it is not necessary that |Sk(Dr)| = Ω(n) (as in constructing Sk(Dr)
we only consider the neighbors of Dr belonging to �D). In that case, we show that one could pick a database
�Dr uniformly at random from �D, and use a similar analysis to lower bound tr(ΣA( �Dr)).

Let �D be the set of all databases from ({−1, 1}d)n which have at least one row of (1)d. For �D ∈ �D,
define Neig( �D) to be the set of all neighbors of �D obtained by replacing a row of (1)d in �D by a vector
from {−1, 1}d. Consider a set of n databases D1, . . . ,Dn drawn independently at random from Neig( �D).
Let �Tk( �D) = {z1, . . . , zn} denote the (multi) set such that Ik(Di) − Ik( �D) = z̃i and zi = z̃i + o. π =
Imk − oo�/�o, o�. Define, �Sk( �D) ⊆ �Tk( �D), �Uk( �D), and �Vk( �D) as

�Sk( �D) = {z ∈ �Tk( �D) | E[�A( �D)− Ik( �D), πz�2] = Ω(m2
k
(1− δ)2)},

�Uk( �D) =
�

z∈eSk( eD) uzu�z and �Vk( �D) =
�

z∈eTk( eD) uzu�z .

The proof of the following lemma follows identical to Lemma 4.14.

Lemma 4.17. For every �D ∈ �D, ��Uk( �D)�∞ ≤ ��Vk( �D)�∞ and with probability (over the random choices
of D1, . . . ,Dn) greater than 1− 1/n, ��Vk( �D)�∞ = O(max{n/mk, log mk}).

The proof of the following lemma follows as in Lemma 4.6 by using Lemma 4.11 instead of Lemma 4.3
in the proof.

Lemma 4.18. Let A be a (1/2, δ)-differentially private algorithm for Ik. Let A(D) ≈1/2,δ A(D�). Let
zr = Ik(r) for a random vector r ∈ {−1, 1}d. Let z̃r = Ik((1)d) − zr = o − zr, where o = (1)mk . Let
Ik(D�) = Ik(D) + z̃ for some z̃ ∈ supp(z̃r) and z = o− z̃. Then, at least one of E[�A(D)−Ik(D), πz�2]
or E[�A(D�)− Ik(D�), πz�2] is Ω(�πz, πz�2(1− δ)2).

The following lemma shows that if expected size of Sk(Dr) is small (less than n/4), then the expected
size of �Sk( �Dr) is greater than n/4 (i.e., at least one of the two expected sizes is greater than n/4).

Lemma 4.19. Let Dr be a database chosen uniformly at random from ({−1, 1}d)n and �Dr be a database
chosen uniformly at random from �D. Then, at least one of EDr [|Sk(Dr)|] or E eDr

[|�Sk( �Dr)|] is at least n/4.

Proof. Firstly ∀z ∈ supp(zr) (where zr is defined in Lemma 4.18),

�z, z� = �πz, πz�+ �z, o�2/mk.

Now, consider the random vector zr = Ik(r) (where r ∈ {−1, 1}d is random). With probability at least
1/2, �zr, o� ≤ Cmk (where C < 1 is a constant). Therefore, with probability at least 1/2, �πzr, πzr� ≥

mk(1− C2) (as ∀z ∈ supp(zr), �z, z� = mk).
For databases D ∈ ({−1, 1}d)n and �D ∈ �D define,

Rk(D) = {z ∈ Tk(D) | E[�A(D)− Ik(D), πz�2] = Ω(�πz, πz�2(1− δ)2)}
�Rk( �D) = {z ∈ �Tk( �D) | E[�A( �D)− Ik( �D), πz�2] = Ω(�πz, πz�2(1− δ)2)}.

Let Dr and �Dr be random databases from ({−1, 1}d)n and �D, respectively. Now, every z ∈ Sk(Dr)
is an independent copy of zr. Therefore, each z ∈ Sk(Dr) independently satisfies �πz, πz� = Ω(mk) with
probability at least 1/2. By using this along with the definitions of Sk(Dr) and Rk(Dr) implies

E
Dr

[|Sk(Dr)|] ≥
EDr [|Rk(Dr)|]

2
.
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Similarly, each z ∈ �Sk( �Dr) independently satisfies �πz, πz� = Ω(mk) with probability at least 1/2, there-
fore,

E
eDr

[|�Sk( �Dr)|] ≥
E eDr

[| �Rk( �Dr)|]
2

.

We show that if EDr [|Rk(Dr)|] < n/2, then E eDr
[| �Rk( �Dr)|] ≥ n/2. Consider Neig( �Dr) (remember,

Neig( �Dr) is the set of all neighbors of �Dr obtained by replacing a row of (1)d in �Dr by a vector from
{−1, 1}d).

For any database Da ∈ Neig( �Dr), we know (from Lemma 4.18) that at least one of E[�A( �Dr) −
Ik( �Dr), πz, �2] or E[�A(Da)−Ik(Da), πz�2] is Ω(�πz, πz�2(1− δ)2) (where z = Ik(Da)−Ik( �Dr) + o).
Now, if EDr [|Rk(Dr)|] < n/2, then

E
eDr

����
�

Da ∈ Neig( �Dr) : E[�πz,A( �Dr)− Ik( �Dr)�2] = Ω(�πz, πz�2(1− δ)2)
����

�
≥
|Neig( �Dr)|

2
.

Therefore, for �Dr chosen uniformly at random from �D and Db chosen uniformly at random Neig( �Dr),
with probability at least 1/2,

E[�A( �Dr)− Ik( �Dr), πz�2] = Ω(�πz, πz�2(1− δ)2) where z = Ik(Db)− Ik( �Dr) + o.

Therefore, if EDr [|Rk(Dr)|] < n/2, then E eDr
[| �Rk( �Dr)|] ≥ n/2.

Therefore, at least one of EDr [|Rk(Dr)|] or E eDr
[| �Rk( �Dr)|] is at least n/2. Hence, at least one of

EDr [|Sk(Dr)|] or E eDr
[|�Sk( �Dr)|] is greater than (1/2) · (n/2) ≥ n/4.

The following proposition uses Lemmata 4.14, 4.17, and 4.19 to show that every differentially private
algorithm with probability Ω(1− 1/n) needs to add a lot of noise to either Ik(Dr) or Ik( �Dr).

Proposition 4.20 (General case: k-way inner products). Let A : ({−1, 1}d)n → Rmk be a (1/2, δ)-
differentially private algorithm for Ik. Let Dr be a database chosen uniformly at random from ({−1, 1}d)n

and �Dr be a database chosen uniformly at random from �D. Then, with probability Ω(1− 1/n), at least one
of tr(ΣA(Dr)) or tr(ΣA( �Dr)) is Ω(min{m2

k
(1− δ)2, nmk(1− δ)2/(log mk)}).

Proof. We divide the proof into two cases based on Lemma 4.19. Let o = (1)mk .

Case 1: EDr [|Sk(Dr)|] ≥ n/4. Let ΣA(Dr) = E[(A(Dr)− Ik(Dr))(A(Dr)− Ik(Dr))�] be the mean
squared error matrix. By definition of Sk(Dr),

�

z∈Sk(Dr)

(πz)�ΣA(Dr)(πz) =
�

z∈Sk(Dr)

E[�A(Dr)− Ik(Dr), πz�2] = Ω(m2
k
(1− δ)2|Sk(Dr)|).

On the other hand,

�

z∈Sk(Dr)

(πz)�ΣA(Dr)(πz) =
�

z∈Sk(Dr)

tr(π�ΣA(Dr)πzz�) = tr



π�ΣA(Dr)π
�

z∈Sk(Dr)

zz�





= mk tr(π�ΣA(Dr)πUk(Dr)).
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Note that π�ΣA(Dr)π is a positive semidefinite matrix and so is Uk(Dr), therefore, tr(π�ΣA(Dr)πUk(Dr)) ≤
tr(π�ΣA(Dr)π)�Uk(Dr)�∞. Also, since π is an orthogonal projection matrix

tr(π�ΣA(Dr)π) = tr(ΣA(Dr)π) ≤ tr(ΣA(Dr))�π�∞ = tr(ΣA(Dr)).

Therefore,
�

z∈Sk(Dr)

(πz)�ΣA(Dr)(πz) = mk tr(π�ΣA(Dr)πUk(Dr)) ≤ mk tr(π�ΣA(Dr)π)�Uk(Dr)�∞

≤ mk tr(ΣA(Dr))�Uk(Dr)�∞.

Let Hk(Dr) = Uk(Dr)/|Sk(Dr)|. Equating the upper and lower bounds on
�

z∈Sk(Dr)(πz)�ΣA(Dr)(πz)
we get,

Ω(mk(1− δ)2) = tr(ΣA(Dr))�Hk(Dr)�∞.

From our assumption, we know that EDr [|Sk(Dr)|] ≥ n/4. Let E1 be the random event that |Sk(Dr)| ≤
n/8. Since EDr [|Sk(Dr)|] ≥ n/4, Pr[E1] ≤ 6/7. Let E2 be the random event that

�Hk(Dr)�∞ ≥ max{cn/(mk|Sk(Dr)|), (c log mk)/|Sk(Dr)|}

for some constant c. From Lemma 4.14, we know that, with probability at least 1− 1/n over Dr,

�Hk(Dr)�∞ ≤ max
�

cn

mk|Sk(Dr)|
,

c log mk

|Sk(Dr)|

�
.

Since �Hk(Dr)�∞tr(ΣA(Dr)) = Ω(mk(1− δ)2), it implies that with probability at least 1− 1/n over Dr,
(for some constant c�),

tr(ΣA(Dr)) ≥ min
�

m2
k
(1− δ)2

c�n
|Sk(Dr)|,

mk(1− δ)2

c� log mk

|Sk(Dr)|
�

.

Since with probability at least 1−Pr[E1], |Sk(Dr)| ≥ n/4, we get that with probability at least 1−Pr[E1]−
Pr[E2] ≥ 1− 6/7− 1/n,

tr(ΣA(Dr)) = Ω
�

min
�

m2
k
(1− δ)2,

nmk(1− δ)2

log mk

��
.

Case 2: E eDr
[|�Sk( �Dr)|] ≥ n/4. The proof of this case goes similar to the previous case. We define

�Hk( �Dr) = �Uk( �Dr)/|�Sk( �Dr)|. In this case, we use Lemma 4.17 to bound ��Uk( �Dr)�∞.
Since by Lemma 4.19 at least one of the cases hold, we get that with probability Ω(1−1/n) there exists

a database such that trace of its mean squared error matrix is Ω(min{m2
k
(1− δ)2, nmk(1−δ)2

log mk
}).

In Section 4.3, we show how this lower bound for (1/2, δ)-differentially private algorithms can be
converted into a lower bound for (�, δ)-differentially private algorithms. We now summarize the main result.

Theorem 4.21 (General Case). Let mk =
�
d

k

�
. Any algorithmA for releasing all k-attribute marginal tables

(or all k-way conjunction predicates) that for every database D ∈ ({0, 1}d)n has a root mean squared error
of

o(min{
√

mk(1− δ/�)/(2k�),
√

n(1− δ/�)/(2k
�

� log mk)})

for each entry of A(D) is not (�, δ)-differentially private.

Proof. Proof follows from Proposition 4.20 and Lemma 4.24. Corollary C.2 can be used to convert the
result on inner products to conjunctions. Remember that |Ck| = 2kmk, whereas |Ik| = mk.

40



4.3 Strengthening the Lower Bounds - Getting � into the Bounds

Let � be the privacy parameter. Let Dv ∈ ({−1, 1}d)2�n. Let R(Dv) ∈ ({−1, 1}d)n be a database obtained
by replicating each row of Dv exactly 1/(2�) times. The first observation is that Ik(Dv) = Ik(R(Dv)) · 2�.
Let A be a differentially private algorithm that takes as input databases of size n. Define as follows an
algorithm A� that takes as input databases of size 2�n.

ALGORITHM A�(Dv)

1. Construct the database R(Dv).
2. Run algorithm A with input R(Dv) to get A(R(Dv)).
3. Output 2� · A(R(Dv)).

Claim 4.22. If A is (�, δ)-differentially private then A� is (1/2, δ/(2�))-differentially private.

Proof. Consider a database Dv ∈ ({−1, 1}d)2�n. Consider a neighbor D�
v ∈ ({−1, 1}d)2�n of Dv. By

composition property of differential privacy (Claim 4.2), for every output set S

Pr[A(R(Dv)) ∈ S] ≤ e1/2 Pr[A(R(D�
v)) ∈ S] +

δ

2�
⇒ Pr[A�(Dv) ∈ S] ≤ e1/2 Pr[A�(D�

v) ∈ S] +
δ

2�
.

Since the above inequality holds for all neighboring databases Dv and D�
v, A� is (1/2, δ/(2�))-differentially

private.

Claim 4.23. There exists a database Dv ∈ ({−1, 1}d)2�n such that

tr(ΣA�(Dv)) = Ω(min{m2
k
(1− δ/�)2, (n�mk(1− δ/�)2)/ log mk}).

Proof. Since A� is (1/2, δ/(2�))-differentially private (Claim 4.22), means that we can apply Proposi-
tion 4.20 to conclude that there exists a database Dv of size 2�n such that tr(E[(A�(Dv)−Ik(Dv))(A�(Dv)−
Ik(Dv))�]) = Ω(min{m2

k
(1− δ/�)2, (n�mk(1− δ/�)2)/ log mk}).

Lemma 4.24. Let A be an (�, δ)-differentially private algorithm for Ik. Let Dv be the database such that
tr(ΣA�(Dv)) = Ω(min{m2

k
(1− δ/�)2, (n�mk(1− δ/�)2)/ log mk}). Then,

tr(ΣA(R(Dv))) = Ω
�

min
�

m2
k
(1− δ/�)2

�2
,
(nmk(1− δ/�)2)

� log mk

��
.

Proof. We equate tr(ΣA(R(Dv))) in terms of tr(ΣA�(Dv)).

tr(ΣA(R(Dv))) = tr(E[(A(R(Dv))− Ik(R(Dv)))(A(R(Dv))− Ik(R(Dv)))�])

= tr

�
E

��
A�(Dv)

2�
−
Ik(Dv)

2�

� �
A�(Dv)

2�
−
Ik(Dv)

2�

����
(by definition of the algorithm A

�)

=
1

4�2
tr(E[(A�(Dv)− Ik(Dv))(A�(Dv)− Ik(Dv))�])

=
1

4�2
tr(ΣA(R(Dv))) = Ω

�
min

�
m2

k
(1− δ/�)2

�2
,
nmk(1− δ/�)2

� log mk

��
.

The last equality follows from Claim 4.23.
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A Interpreting the Blum-Ligett-Roth [6] Upper Bound for MSE

Blum, Ligett, and Roth designed an �-differentially private algorithm that, given a database D, outputs a
new “synthetic” database �D. Their work provides a high-probability bound on the L∞ distance between
the vector of answers output by the mechanism and the true vector of answers. For comparison with our
bounds, we state their result in terms of mean squared error. We start by describing their result. To measure
how well �D represents D with respect to a specific function class F , they introduce the following notion:

Definition A.1 ((α, β)-usefulness [6]). An algorithm A is (α, β)-useful for class of predicates F and a
database D if, with probability at least 1− β, A(D) outputs a database �D that satisfies

��� fj( �D)/| �D| − fj(D)/|D|
��� ≤ α

for every fj ∈ F .

For a function class F , let VCDIM (F) represent the VC-dimension of F .

Theorem A.2 ([6]). Let α, β, � > 0. For every class F of predicates from {0, 1}d to {0, 1}, there exists an
�-differentially private algorithm A that is (α, β)-useful for F and all databases D ∈ ({0, 1}d)n with

n ≥ C ·

�
VCDIM (F)d log(1/α)

α3�
+

log(1/β)
�α

�

entries where C is a sufficiently large constant. (The algorithm may not be efficient.)

Proposition A.3 (BLR [6] upper bound). For a classF of predicates with VC-dimension equal to VCDIM (F),
the Blum, Ligett, and Roth mechanism produces a synthetic database such that for each predicate fj ∈ F ,
the mean squared error of the estimated integer count of fj is �O((n2 ·VCDIM (F) · d/�)2/3).

Proof. Let D be a database. Theorem A.2 shows that if n is large enough, then with probability 1− β, the
mechanism returns a synthetic database �D such that the fractional count of every predicate on �D is within
α of the corresponding fractional count on the real database D.

This translates to an mean squared error in the estimated integer counts of at most (1−β)(αn)2+βn2 ≤

(αn)2 + βn2, since a count can be off by at most n. Setting β = α2, and assuming that d ≥ 2, we get that if

n ≥
Cd ·VCDIM (F) · log(1/α)

α3�
(10)

then the mean squared error is 2α2n2. Isolating α from Equation 10, and substituting it in 2α2n2, we get
that the expected error for each count in the Blum, Ligett, and Roth mechanism is �O((n2 · VCDIM (F) ·
d/�)2/3).

Observing that k-way conjunctions have VC-dimension at most k log d, we obtain:

Corollary A.4. For k-way conjunctions, the Blum, Ligett, and Roth mechanism produces a synthetic database
such that for each conjunction predicate, the mean squared error of the estimated integer count is �O((n2dk/�)2/3).
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B Upper Bounds for (Not) Row Non-Privacy and (Not) Attribute Non-Privacy

Proposition B.1 (Row Non-Privacy: upper bound). There exist an algorithm for releasing all k-attribute
marginal tables (or all k-way conjunction predicates) that is not row non-private, and that for every
database D ∈ ({0, 1}d)n with constant probability adds O(min{

�
nk log(d/k),

�
mkk log(d/k)}) noise

to each query in Ck(D).

Proof. Call a set S ⊆ [n] good if |S| = �Ω(min{n, dk}). Call a distribution D under which rows the rows of
the databases are statistically independent good if for every good set S the following is satisfied: if Dp ∼ D
any (not necessarily polynomial time) adversary can output any row of Dp indexed by the elements of S with
probability at most 2/3. An algorithm A is not row non-private if for every good distribution D and every
set good S, for Dp ∼ D, no adversary given as input A(Dp) can with probability 1 − negl(d) reconstruct
1 − o(1) fraction of the rows of Dp indexed by the elements of S. We construct two different not row
non-private algorithms for Ck which when put together will give the claimed noise bound.

Random Sampling. Let D ∈ ({0, 1}d)n be a database. Define an algorithmAsam that does the following:
(1) randomly selects n/2 rows from D to construct a new database Dsam , (2) evaluates all the k-way
conjunction predicates on Dsam , and (3) releases the vector 2 · Ck(Dsam).

Let D be a good distribution and let S be a good set. Consider Dp ∼ D. We give Dp as input to Asam .
Now, given Asam(Dp) an adversary can output the ith row of Dp only if: (a) if the ith row is included
in the sampling done by Asam , or (b) with probability at most 2/3 if the ith is discarded in the sampling.
From the cases (a) and (b), it follows that the probability that an adversary can output the ith row is at most
1/2 + 1/2× 2/3 = 5/6. Since the rows are independent of each other, no adversary (even with unbounded
time) can output 1 − o(1) fraction of the rows indexed by the elements of S with 1 − negl(d) probability.
This shows that random sampling is not row non-private.

We now invoke Chernoff bound to argue about the noise. Consider some conjunction predicate cv ∈ Ck.
Now, for some constants t, t�,

Pr
�
|2 · cv(Dsam)− cv(D)| ≥

�
tn log(2kmk)

�
≤ exp

�
−2 · n ·

t log(2kmk)
n

�
≤

1
t�2kmk

.

By applying a union bound it follows that the probability that

∀cv ∈ Ck, Pr
�
|2 · cv(Dsam)− cv(D)| ≥

�
tn log(2kmk)

�
≤

1
t�

.

Therefore, for every database D the above random sampling procedure with constant probability adds
O(

�
nk log(d/k)) noise to each query in Ck(D).

Adapting Differential Privacy. We use the fact that for some reasonable values of � and δ any (�, δ)-
differentially private algorithm is not row non-private.

Lemma B.2. Any (�, δ)-differentially private algorithm with (2/3)e� + δ is bounded away from 1 is not row
non-private.

Proof. LetAdp be an (�, δ)-differentially private algorithm satisfying the conditions of the lemma, we argue
that Adp is not row non-private. Let D be a good distribution and S be a good set. Consider Dp ∼ D.
Because of the guarantees of (�, δ)-differential privacy, given Adp(Dp), no adversary (even with unbounded
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time) can predict any row of Dp indexed by the element of S with probability more than (2/3)e� + δ.
Therefore, the probability that adversary can reconstruct 1− o(1) fraction of the rows of Dp indexed by the
elements of S is small.

The SuLQ mechanism of Blum et al. [5] adds independent noise drawn according to the normal dis-
tribution (with mean 0 and standard deviation

�
2mk log(1/δ)/�) to each entry in Ck(D). We set � = 0.1

and δ = 0.1. By Lemma B.2, the SuLQ mechanism for these values of � and δ is not row non-private.
A simple analysis of the c.d.f. of the normal distribution and an application of the union bound shows
that for every database D the SuLQ mechanism with constant probability adds O(

�
mk log(2kmk)) =

O(
�

mkk log(d/k)) noise to each query in Ck(D).

Putting Together. Define a new algorithmA that when
√

n ≤
√

mk outputsAsam(D), and when
√

mk <
√

n outputs the result of the SuLQ mechanism. It follows that A is not row non-private and has the claimed
noise bounds.

Proposition B.3 (Attribute Non-Privacy: upper bound). There exist an algorithm for releasing all k-attribute
marginal tables (or all k-way conjunction predicates) that is not attribute non-private, and that for every
database D ∈ ({0, 1}d)n with constant probability adds O(min{

�
nk log(d/k),

�
mkk log(d/k)}) noise

to each query in Ck(D).

Proof. The proof is very similar to Proposition B.1. To show an algorithm A is not attribute non-private we
show that there exists a s ∈ {0, 1}n such that for all databases D(s) whose last column is s, no adversary
given as input A(D(s)) and the first d − 1 columns of D(s) can with probability 1 − negl(d) reconstruct
�Ω(min{n, dk−1}) entries of s. We again construct two different algorithms, both of which are not attribute
non-private and together they give the claimed noise bound.

Random Sampling. Let sr be a random vector from {0, 1}n (each entry in sr is 0 or 1 independently
with probability 1/2). Let D(sr) be a database whose last column is sr. Consider the algorithm Asam

from Proposition B.1. Given, the first d − 1 columns of D(sr) and Asam(D(sr)), the probability that an
adversary can guess an entry of sr is at most 1/2+1/2×1/2 = 3/4. Since the entries of sr are independent
of each other, no adversary (even with unbounded time) can reconstruct �Ω(min{n, dk−1}) entries of sr with
1− negl(d) probability. This shows that random sampling is not attribute non-private.

The noise analysis is same as in Proposition B.1. It shows that for every database D the random sampling
procedure with constant probability adds O(

�
nk log(d/k)) noise to each query in Ck(D).

Adapting Differential Privacy. Using a random s ∈ {0, 1}n and a database D(s), we can show similar to
Lemma B.2 that any (�, δ)-differentially private algorithm (for reasonable values of � and δ) is not attribute
non-private.

The noise analysis is same as in Proposition B.1. We get that for every database D the SuLQ mechanism
with constant probability adds O(

�
mk log(2kmk)) = O(

�
mkk log(d/k)) noise to each query in Ck(D).

Putting Together. As in Proposition B.1. We get an algorithm that is not attribute non-private and has the
claimed noise bounds.
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C Going From Inner Products to Conjunctions

Let Do be a database from ({−1, 1}d)n. Let the Boolean variables y1, . . . , yd represent the d columns of Do

(i.e., column i in Do contains assignments to variable yi). Define variables x1, . . . , xd as xi = (yi + 1)/2.
Construct Dz ∈ ({0, 1}d)n from Do by replacing all the−1’s by 0’s. The variables x1, . . . , xd represent the
d columns of Do.

Let us consider the case of 2-way conjunctions. Now, consider all the 4 possible conjunctions on any two
variables xi and xj . The conjunction predicates (cxixj , cx̄ix̄j , cx̄ixj , cxix̄j ) and the inner product predicates
(iyj , iyiyj , iyi) can be related using a Hadamard matrix as,





n
iyj (Do)

iyiyj (Do)
iyi(Do)





� �� �
F

=





1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1





� �� �
H2





cxixj (Dz)
cx̄ix̄j (Dz)
cx̄ixj (Dz)
cxix̄j (Dz)





� �� �
G

(11)

Therefore, F = H2G where F,G, H2 are defined in Equation 11.
Let m2 =

�
d

2

�
. Now, consider the vectors I2(Do) (defined as all 2-way inner product predicates evalu-

ated on Do), I1(Do) (defined as all 1-way inner product predicates evaluated on Do), and I0(Do) = (n)m2 ,
and let I≤2(Do) be a vector obtained by concatenating the entries of I2(Do), I1(Do), I1(Do), and I0(Do).
A simple extension of Equation 11, shows that

I≤2(Do) = diag(H2, . . . ,H2) · C2(Dz),

where diag(H2, . . . ,H2) is a block diagonal matrix. By using a suitable projection matrix Π2 to cancel out
all but 2-way inner products we get,

I2(Do) = Π2 · diag(H2, . . . ,H2) · C2(Dz).

The following proposition generalizes this observation.

Proposition C.1. If there exists an (�, δ)-differentially private algorithm A for Ck that has tr(ΣA(Dz)) ≤
T , then there exists an (�, δ)-differentially private algorithm B for Ik that has tr(ΣB(Do)) ≤ 2kT .

Proof. Let Hk be a 2k × 2k Hadamard matrix. Let Do ∈ ({−1, 1}d)n and Dz is a database obtained by
replacing all the −1’s in Do by 0. Then,

Ik(Do) = Πk · diag(Hk, . . . ,Hk) · Ck(Dz),

where Πk is a suitable projection matrix to cancel out all but k-way inner products.
Now, given an (�, δ)-differentially private algorithm A, we define an algorithm B as follows: B(Do) =

Πk · diag(Hk, . . . ,Hk) · A(Dz). By Claim 4.2 (described below), B is also (�, δ)-differentially private. The
largest eigenvalue of the Hadamard matrix Hk is 2k/2, therefore, the largest eigenvalue of diag(Hk, . . . ,Hk)
is 2k/2. Since all the eigenvalues of the projection matrix Πk are either 0 or 1, therefore, the largest eigen-
value (operator norm) of Πk · diag(Hk, . . . ,Hk) is 2k/2 as

�Πk · diag(Hk, . . . ,Hk)�∞ ≤ �Πk�∞�diag(Hk, . . . ,Hk)�∞.
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Therefore,

tr(ΣB(Do)) = E[�B(Do)− Ik(Do)�2]
= E[�Πk · diag(Hk, . . . ,Hk) · A(Dz)−Πk · diag(Hk, . . . ,Hk) · Ck(Dz)�2]
≤ E[�Πk · diag(Hk, . . . ,Hk)�2

∞�A(Dz)− Ck(Dz)�2]
= �Πk · diag(Hk, . . . ,Hk)�2

∞�E[�A(Dz)− Ck(Dz)�2] = 2ktr(ΣA(Dz)).

Therefore, if tr(ΣA(Dz)) ≤ T , then tr(ΣB(Do)) ≤ 2kT .

Corollary C.2. If there exists a database Do ∈ ({−1, 1}d)n such that no (�, δ)-differentially private al-
gorithm B for Ik has tr(ΣB(Do)) ≤ T , then there exists a database Dz ∈ ({0, 1}d)n such that no (�, δ)-
differentially private algorithm A for Ck has tr(ΣA(Dz)) ≤ T/2k.

D Tightness of Lemma 4.11

We present an example of an (�, δ)-differentially private algorithm A and neighboring databases D,D�

where E[�A(D) − Ik(D),∆�2] is small, whereas, E[�A(D�) − Ik(D�),∆�2] is big. For simplicity, we
set n = 1. Let k be an odd number. Let D = (−1)d and D� = (1)d. D and D� are neighbors, and
∆ = Ik(D�)− Ik(D) = (2)mk .

Let A be an algorithm for Ik whose output for all inputs is (−1)mk . A is differentially private (in fact,
for the best possible parameters of � = 0 and δ = 0). Now, ΣA(D) is an mk ×mk matrix all whose entries
are 0, and ΣA(D�) is an mk ×mk matrix all whose entries are 2. Therefore, E[�A(D)− Ik(D),∆�2] = 0,
whereas, E[�A(D�)− Ik(D�),∆�2] = Ω(m2

k
).
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