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Abstract. We analyze the behavior of the Barvinok estimator
of the hafnian of even dimension, symmetric matrices with non
negative entries. We introduce a condition under which the Barvi-
nok estimator achieves sub-exponential errors, and show that this
condition is almost optimal. Using that hafnians count the num-
ber of perfect matchings in graphs, we conclude that Barvinok’s
estimator gives a polynomial-time algorithm for the approximate
(up to subexponential errors) evaluation of the number of perfect
matchings.
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1. Introduction

The number of perfect matchings in a bipartite graph is given by the
permanent of the bipartite adjacency matrix of the graph. Since com-
puting the permanent is generally computationally hard [20], various
algorithms have been proposed to compute it approximately. We men-
tion in particular the MCMC algorithm of Jerrum-Sinclair-Vigoda [12],
the Linial-Samorodnitsky-Wigderson rescaling algorithm [14] (denoted
LSW in the sequel), and the Barvinok–Godsil-Gutman algorithm [9, 2];
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the analysis of the latter algorithm was the subject of the previous work
[18].

A more general (and hence hard) combinatorial problem is that of
computing the number of perfect matchings in a graph with an even
number of vertices. Let A denote the adjacency matrix of such a graph
with n = 2m vertices. The relevant combinatorial notion here is the
hafnian [15], defined as

haf(A) =
1

m!2m

∑
σ∈Sn

m∏
j=1

Aσ(2j−1),σ(2j) ,

where Sn denotes the symmetric group on [n]. It is immediate to check,
see e.g. [2], that

(1.1) #perfect matchings in A = haf(A).

Thus the interest in an efficient computation of haf(A). As for the per-
manent, the exact computation of haf(A) is computationally expensive.
This problem of estimating the hafnian seems to be harder to attack
than the corresponding problem for the permanent since many algo-
rithms known for permanent approximation break down when extended
to hafnians. In particular, the LSW rescaling algorithm [14] transforms
the adjacency matrix of a graph to an almost doubly stochastic one.
Yet, a non-trivial lower estimate of the hafnian of a doubly stochastic
matrix is impossible, see [3]. Also, in contrast with the computation
of the permanent, [12] points out that the proof of convergence of the
MCMC algorithm breaks down for the approximate computation of the
hafnian (unless the minimal degree is at least n/2, see [11]).

We consider in this paper the computation of haf(A) for symmetric
matrices with non-negative entries. Note that the diagonal entries play
no role in the computation of haf(A), and therefore in the rest of this
paper we always assume that Aii = 0 for all i.

In his seminal paper [2] discussing the Godsil-Gutman estimator for
the permanent, Barvinok also introduces a probabilistic estimator of
haf(A) for a symmetric matrix A possessing non-negative entries. Let
W be a real skew symmetric matrix with independent centered normal
entries Wij above the diagonal satisfying EW 2

ij = Aij. In other words,

let Gskew denote a skew symmetric matrix with independent N(0, 1)
entries above the main diagonal. Let W = W (A) denote the skew
symmetric matrix with

(1.2) Wij = Gij

√
Aij, i < j
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and write W = A�Gskew, where A denotes the element-wise square-
root of A, i.e. Aij =

√
Aij. Then,

(1.3) haf(A) = E det(W ) .

Thus, det(W ), which is an easily computable quantity, is a consistent
estimator for haf(A), and Barvinok [2] proceeds to prove that for any
matrix A, e−γnhaf(A) ≤ det(W ) ≤ C · haf(A) with high probability,
where γ is Euler’s constant. Other approaches to computing the haf-
nian include [3] (which however does not apply to adjacency matrices of
nontrivial graphs), [5], where a deterministic algorithm of subexponen-
tial complexity is constructed and analyzed, and [4], where a random
algorithm is analyzed but the precision of the algorithm depends in a
complicated way on the number of perfect matchings.

Our goal in this paper is to analyze the performance of the Barvinok
estimator for the hafnian. As in [18], establishing the concentration of
a random determinant hinges on bounding the singular values of the
Gaussian matrix W . This crucial step, however, essentially differs from
[18] as W is skew-symmetric, and thus has less independence than the
unrestricted matrix in [18]. Handling these dependences required dif-
ferent arguments for the smallest and the intermediate singular values.
In the first case, we employ a conditioning argument tailored to take
into account the structure of the graph (Lemmas 2.5, 2.6). The fact
that the entries of W are real and thus the (n− 1)× (n− 1) main mi-
nors of it are degenerate plays a central role here. On the other hand,
instead of developing a estimate for intermediate singular values as in
[18] (a difficult task here due to the skew-symmetry), we use the fact
that the imaginary-valued matrix iW is Hermitian, which allows us to
use estimates from recent work [7] on the local semi-circle law.

To formulate our results, we introduce a notion of strong expansion
for graphs. This notion strengthens the standard notion of vertex ex-
pansion assuming that sets having many connected components expand
faster. For a set J ⊂ [n] of vertices, denote by Con(J) the set of the
connected components of J , and by ∂(J) the boundary of J , that is
∂(J) = {i ∈ [n] \ J : ∃j ∈ J, (i, j) is an edge}.

Definition 1.1. Let κ ∈ (0, 1), and let 1 < m < n. We say that the
graph Γ is strongly expanding with parameter κ up to level m if for
any set J ⊂ [n] of vertices with |J | ≤ m,

|∂(J)| − |Con(J)| ≥ κ · |J |.

In this definition and below, we use the following notational conven-
tion. Important parameters which appear in definitions and theorems
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are denoted by Greek letters. Unimportant constants whose value may
change from line to line are denoted c, c′, C etc.

The simplest form of our results is in case A is the adjacency matrix
of a d-regular graph.

Theorem 1.2. Fix α, κ > 0. Let A be the adjacency matrix of a
d-regular graph Γ with d ≥ αn+ 2. Assume that

(1.4) Γ is κ strongly expanding up to level n(1− α)/(1 + κ/4).

(1) Then for any ε < 1/5 and D > 4,

(1.5) P (| log haf(A)− log det(W )| > Cn1−ε) ≤ n−D,

where C = C(α, κ,D, ε) > 0.
(2) Fix δ > 0. If, in addition to the above assumptions, the matrix

A/d possesses a spectral gap δ, then for any D > 4,

(1.6) P (| log haf(A)− log det(W )| > Cn1/2 log1/2 n) ≤ n−D ,

where C = C(α, κ,D, δ) > 0.

(The assumption in (2) means that the modulus of the eigenvalues
of A/d is either 1 or smaller than 1− δ.) Theorem 1.2 is an immediate
consequence of our more general Theorem 1.10 below.

We discuss the definition of strongly expanding graphs in Remark
1.6 below.

The extension of Theorem 1.2 to irregular graphs requires the notion
of doubly stochastic scaling of matrices. We also need the notion of
spectral gap for stochastic matrices.

Definition 1.3. A matrix A with non negative entries is said to pos-
sess a doubly stochastic scaling if there exist two diagonal matrices
D1, D2 with positive entries such that the matrix B = D1AD2 is dou-
bly stochastic, that is

∑
j Bij =

∑
k Bk` = 1 for all i, `. We call such B

a doubly stochastic scaling of A.

Definition 1.4. A symmetric stochastic matrix A is said to possess a
spectral gap δ if there there do not exist eigenvalues of A in (−1,−1 +
δ) ∪ (1− δ, 1).

We will show below, see Corollary 3.3, that the adjacency matrix of a
strongly expanding graph with appropriate lower bound on its minimal
degree possesses a unique doubly stochastic scaling, with D1 = D2. We
use this fact in the following theorem, where the required lower bound
on the minimal degree is satisfied.
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Theorem 1.5. Fix α, κ, ϑ > 0. Let A be the adjacency matrix of a
graph Γ whose minimal degree satisfies d ≥ αn+ 2. Assume that

(1.7) Γ is κ strongly expanding up to level n(1− α)/(1 + κ/4),

and
(1.8)

The doubly stochastic scaling B of A satisfies maxi,j Bij ≤ n−ϑ .

(1) Then for any ε < 1/5 and D > 4,

(1.9) P (| log haf(A)− log det(W )| > Cn1−εϑ) ≤ n−D

with C = C(α, κ,D, ε) > 0.
(2) Fix δ > 0. If, in addition to the above assumptions, B possesses

a spectral gap δ, then for any D > 4,

(1.10) P (| log haf(A)− log det(W )| > Cn1−ϑ/2 log1/2 n) ≤ n−D ,

where C = C(α, κ,D, δ, ϑ) > 0.

Condition (1.8) can be readily checked in polynomial time by ap-
plying the LSW scaling algorithm, stopped when its error is bounded
above by n−1. Indeed, at such time, the LSW algorithm output is a
matrix C = C(A) which is almost doubly stochastic in the sense that,
with B = B(A) denoting the doubly stochastic scaling of A, one has
maxij |B(A) − C(A)| < n−1. Because the maximal entry of B is at
least n−1, this implies that the maximal entries of B and of C are of
the same order. Note also that the spectral gap condition in point (2)
of Theorem 1.5, which depends only on the eigenvalues of B, can also
be checked in polynomial time.

We note that for a given 0 < ϑ < 1, there exist stronger expansion
conditions on the graph Γ which ensure that the maximal element in
the doubly stochastic scaling of its adjacency matrix is of size at most
n−ϑ. That is, if Γ satisfies these stronger properties, condition (1.8)
is automatically satisfied. We refer to Section 6, Proposition 6.2, for
details.

Conditions (1.7) and (1.8) play different roles in the proof. The first
one is needed to establish the lower bound on the smallest singular
value of W , and the second one guarantees that most of the singular
values are greater than n−ε.

Remark 1.6. The definition of strongly expanding graphs (Defini-
tion 1.1 above) reminds one of that of a vertex expander. Yet, it is
stronger in two senses. First, the strong expansion property takes into
account the geometry of the set, requiring more rapid expansion for
more “spread out” sets. Secondly, we want this expansion property
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to hold for all sets of size relatively close to n, while for the clas-
sical expanders, the corresponding property is required only for sets
with at most n/2 vertices. This may look unnatural at first glance.
However, one may construct an example of a graph that can have the
strong expansion property up to a level arbitrary close to 1, and yet
the matrix corresponding to it may be degenerate with probability 1.
Further, in Proposition 1.7 below, we construct a graph whose ad-
jacency matrix barely misses the condition in Definition 1.1 and yet
det(W )/haf(A) ≤ e−cn with high probability for an appropriate c > 0.

Proposition 1.7. Let δ > 0. For any N ∈ N, there exists a graph Γ
with M > N vertices such that

(1.11) ∀J ⊂ [M ] |J | ≤M/2 ⇒ |∂(J)| − (1− δ)|Con(J)| ≥ κ|J |

and

P
(

det(W )

E det(W )
≤ e−cM

)
≥ 1− e−c′M .

Here c, c′, κ are constants depending on δ.

Our theorems on adjacency matrices are based on a general re-
sult pertaining to doubly stochastic symmetric matrices B with non-
negative entries. We will consider matrices which have many relatively
large entries. To formulate this requirement precisely, we introduce the
notion of large entries graph.

Definition 1.8. Let A be a symmetric matrix with non-negative en-
tries. For a parameter θ > 0, define the large entries graph ΓA(θ) by
connecting the vertices i, j ∈ [n] whenever Aij > θ. If A is the matrix
of variances of entries of a skew symmetric matrix W , we will also refer
to ΓA(θ) as the large variances graph of W .

We will now formulate two theorems on the concentration of the haf-
nian of a skew symmetric matrix whose large variances graph satisfies
a strong expansion condition.

Theorem 1.9. Fix β, α, ϑ, κ > 0. Let B be a symmetric stochastic
matrix of even size n with non negative entries, let W = W (B) be
as (1.2) (with B replacing A), and let Γ = ΓB(n−β) denote its large
variances graph. Assume that:

(1) The minimal degree of a vertex of Γ is at least αn+ 2.
(2) Γ is κ strongly-expanding up to level n(1− α)/(1 + κ/4).
(3) maxBij ≤ n−ϑ.
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Then, for any ε < 1/5 and D > 4 there exists C = C(β, α, κ, ϑ, ε,D) >
0 so that

(1.12) P (| log haf(B)− log det(W )| > Cn1−εϑ) ≤ n−D .

Somewhat tighter bounds are available if the matrix B possesses a
spectral gap.

Theorem 1.10. Assume the conditions of Theorem 1.9 and in addition
assume that the matrix B has a spectral gap δ. Then, for any D > 4,

(1.13) P (| log haf(B)− log det(W )| > Cn1−ϑ/2 log1/2 n) ≤ n−D

The constant C here depends on all relevant parameters β, α, κ, ϑ, δ,
and D.

The structure of the paper is as follows. In Section 2, we consider unit
vectors that are close to vectors with small support and derive uniform
small ball probability estimates for their images under the action of W .
These estimates are used in Section 3 to obtain a lower bound for the
smallest singular values of W . In Section 4, we provide local estimates
for the empirical measure of eigenvalues of W . Section 5 is devoted to
the proof of Theorems 1.9 and 1.10. Section 6 is devoted to the proof
of a combinatorial lemma concerning the doubly stochastic scaling of
adjacency matrices of strongly expanding graphs, which then is used
in the proof of Theorem 1.5; in the section we also present sufficient
conditions that ensure that (1.8) holds. Finally, in Section 7 we present
the construction of the graph discussed in Proposition 1.7, and provide
the proof of the latter.
Acknowledgment We thank Alexander Barvinok for many helpful
discussions.

2. Compressible vectors

To establish the concentration for the determinant of the matrix W ,
we have to bound its smallest singular value. As is usual in this context,
we view the smallest singular value of a matrix as the minimum of the
norms of the images of unit vectors:

sn(W ) = min
x∈Sn−1

‖Wx‖2 .

Before bounding the minimal norm over the whole sphere, let us con-
sider the behavior of ‖Wx‖2 for a fixed x ∈ Sn−1. We begin with a
small ball probability estimate, which is valid for any unit vector.

Lemma 2.1. Let W be a skew-symmetric n× n matrix with indepen-
dent, up to the symmetry restriction, normal entries. Assume that for
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any j ∈ [n], there exist at least d numbers i ∈ n such that Var(wij) ≥
n−c. Then for any x ∈ Sm−1, and for any t > 0

P (‖Wx‖2 ≤ tn−c
′
) ≤ (Ct)−d,

where C, c′ depend on c only.

Proof. Let x ∈ Sn−1. Choose a coordinate j ∈ [n] such that |xj| ≥
n−1/2 and set I = {i ∈ [n] | Var(wij) ≥ n−c}. Condition on all entries
of the matrix W , except those in the j-th row and column. After this
conditioning, for any i ∈ I the i-th coordinate of the vector Wx is a
normal random variable with variance Var(wi,j)x

2
j ≥ n−2c−1. Since the

coordinates of this vector are conditionally independent, an elementary
estimate of the Gaussian density yields for any t > 0

P (‖Wx‖2 < tn−c−1/2 | wab, a, b ∈ [n] \ {j}) ≤ (Ct)|I|.

By the assumption of the lemma, |I| ≥ d. Integration with respect to
the other variables completes the proof. �

The next lemma is a rough estimate of the norm of a random matrix.

Lemma 2.2. Let W be a be a skew-symmetric n×n matrix with inde-
pendent, up to the symmetry restriction, normal entries. Assume that
for any i, j ∈ [n], Var(wij) ≤ 1. Then

P (‖W‖ ≥ n) ≤ e−n.

Lemma 2.2 follows from the estimate ‖W‖2 ≤ ‖W‖2
HS =

∑n
ij=1W

2
ij,

where the right side is the sum of squares of independent centered
normal variables whose variances are uniformly bounded.

Of course, the estimate in Lemma 2.2 is very rough, but we can dis-
regard a constant power of n in this argument. Lemma 2.2 allows us
to extend the lower bound on the small ball probability from a single
vector to a neighborhood of a small-dimensional subspace. To formu-
late it precisely, recall the definition of compressible and incompressible
vectors from [16, 17].

Definition 2.3. For m < n and v < 1, denote

Sparse(m) = {x ∈ Sn−1 | |supp(x)| ≤ m},

and

Comp(m, v) = {x ∈ Sn−1 | ∃y ∈ Sparse(m) ‖x− y‖2 ≤ v};
Incomp(m, v) = Sn−1 \ Comp(m, v).

The next lemma uses a standard net argument to derive the uniform
estimate for highly compressible vectors.



HAFNIANS, PERFECT MATCHINGS AND GAUSSIAN MATRICES 9

Lemma 2.4. Let A be an n × n matrix satisfying the conditions of
Lemmas 2.1 and 2.2. Then

P (∃x ∈ Comp
(
d/2, n−c

)
‖Wx‖2 ≤ n−c̄ and ‖W‖ ≤ n) ≤ e−d/2,

where c̄ depends on c only.

Proof. Let t > 0 be a number to be chosen later, and set

ε = tn−c
′−2,

where c′ is the constant from Lemma 2.1. Then there exists an ε-net
N ⊂ Sparse(d/2) of cardinality

|N | ≤
(
n

d/2

)
· (3/ε)d/2 ≤

(
Cn

tn−c′−2

)d/2
.

By Lemma 2.1 and the union bound,

P (∃y ∈ N ‖Wy‖2 ≤ tn−c
′
) ≤

(
Cn

tn−c′−2

)d/2
· (Ct)d ≤ e−d/2,

provided that t = n−c
′′

for an appropriately chosen c′′ > 0.
Assume that for any y ∈ N , ‖Wy‖2 ≥ tn−c

′
. Let x ∈ Comp(δ/2, ε) =

Comp(δ/2, n−c), and choose y ∈ N be such that ‖x− y‖2 < 2ε. If
‖W‖ ≤ n, then

‖Wx‖2 ≥ ‖Wy‖2 − ‖W‖ · ‖x− y‖2 ≥ tn−c
′ − n · 2tn−c′−2 ≥ n−c̄.

�

Our next goal is to show that the small ball probability estimate
propagates from strongly compressible vectors to moderately compress-
ible ones. At this step, the assumption that the large variances graph is
strongly expanding plays a crucial role. The strong expansion condition
guarantees that the matrix W has enough independent entries to de-
rive the small ball estimate for a single vector, despite the dependencies
introduced by the skew-symmetric structure. The next simple lemma
is instrumental in exploiting the independence that is still present.

Lemma 2.5. Let T = (V,E) be a finite tree with the root r ∈ V .
Assume that to any e ∈ E there corresponds a random variable Xe,
and these variables are independent. Assume also that to any v ∈ V
there corresponds an event Ωv, which depends only on those Xe for
which v ∈ e. Suppose that for any v ∈ V and any e0 connected to v,

P (Ωv | {Xe}e 6=e0) ≤ pv
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for some numbers pv ≤ 1. Then

P
( ⋂
v∈V \{r}

Ωv

)
≤

∏
v∈V \{r}

pv.

Proof. We prove this lemma by induction on the depth of the tree. As-
sume first, that the tree has depth 2. Then the statement of the lemma
follows from the fact that the events Ωv, v ∈ V \ {r} are independent.

Assume now that the statement holds for all trees of depths smaller
than k > 2 and let T be a tree of depth k. Let Vr and Er be the
sets of all vertices and edges connected to the root of the tree. Then
the events Ωv, v ∈ V \ {r} conditioned on xe, e /∈ Er are independent.
Therefore,

P
( ⋂
v∈V \{r}

Ωv

)
= EP

 ⋂
v∈V \{r}

Ωv | {Xe}e/∈Er

 ≤ ∏
v∈Vr

pv·P
( ⋂
v∈V \(Vr∪{r})

Ωv

)
.

Note that the vertices v ∈ V \ {r} form a forest with roots v ∈ Vr.
Since the events ∩v∈TlΩv are independent for different trees Tl in the
forest, the statement of the lemma follows by applying the induction
hypothesis to each tree. �

Using Lemma 2.5 and the strong expansion property of the large
variances graph, we establish the small ball probability bound for the
image of an incompressible vector.

Lemma 2.6. Let c > 0. Let W be an n× n skew-symmetric centered
Gaussian matrix. Assume that its large variances graph ΓW (n−c) sat-
isfies the strong expansion condition with parameter κ > 0 up to level
m < n. Let t > 0, k ≤ m, and v > 0. Then for any x ∈ Incomp(k, v),

P (‖Wx‖2 ≤ n−Cv · t) ≤ t(1+κ)k,

where C depends on c only.

Proof. For i ∈ [n], define the event Ωi by

Ωi = {W : |(Wx)i| ≤ tn−(c+1)/2vt}.

Let J(x) = {j : |xj| ≥ n−1/2v}. Since x ∈ Incomp(k, v), |J(x)| ≥ k.
Indeed, let y ∈ Rn be the vector containing k largest in absolute value
coordinates of x. If |J(x)| ≤ k, then

dist(x, Sparse(k)) ≤ ‖x− y‖2 ≤

 ∑
j /∈J(x)

x2
j

1/2

≤ v.
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Choose a subset J ⊂ J(x) with |J | = k. For i ∈ [n] set pi = t
whenever i ∼ j for some j ∈ J ; otherwise set pi = 1. Then for any
j0 ∈ J and for any i0 ∼ j0,

P (Ωi0 | Wij, (i, j) 6= (i0, j0)) ≤ t.

Indeed, (Wx)i is a normal random variable with variance at least

Var(wi0j0) · x2
j0
≥ n−c · n−1v2,

so the previous inequality follows from the bound on the maximal den-
sity.

To prove Lemma 2.6, we will use Lemma 2.5. To this end, we will
construct a forest consisting of L = |Con(J)| trees with |J | + |∂(J)|
vertices. Assume that such a forest is already constructed. The events
∩i∈TlΩi are independent for different trees Tl, l = 1, . . . , L in the forest.
Hence,

P (‖Wx‖2 ≤ tn−(c+1)/2vt) ≤ P (|(Wx)i| ≤ tn−(c+1)/2vt for all i ∈ [n])

≤
L∏
l=1

P (
⋂
i∈Tl

Ωi) ≤
L∏
l=1

t|Tl|−1 = t|J |+|∂(J)|−L,

where we used Lemma 2.5 in the last inequality. Since by the strong
expansion condition, |J |+ |∂(J)| − L ≥ (1 + κ)|J |, the last quantity is
less than or equal to t(1+κ)k as required.

We proceed with the construction of the forest. At the first step, we
construct a spanning tree T̃l for each connected component of the set
J . These trees are, obviously, disjoint, and

∑L
l=1 |T̃l| = |J |. Now, we

have to add the vertices from ∂(J) as leaves to these trees. We do this
by induction on j ∈ J .

(1) Let j ∈ J be the smallest number. Add all vertices i ∈ ∂(J)
connected to j to the tree containing j as the descendants of j.

(2) Let j ∈ J be the smallest number, which has not been used in
this process. Add all vertices i ∈ ∂(J) connected to j, which
have not been already added, to the tree containing j as its
descendants.

Since any vertex in ∂(J) is connected to some vertex in J , the whole
set ∂(J) will be added at the end of this process. Denote the trees
obtained in this way by T1, . . . , TL. The construction guarantees that
these trees are disjoint. This finishes the construction of the forest and
the proof of the lemma. �

Similarly to Lemma 2.4, we extend the small ball probability result
of Lemma 2.6 to a uniform bound using a net argument.
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Lemma 2.7. Let W be an n × n skew-symmetric Gaussian matrix.
Assume that its large variances graph ΓW (n−c) satisfies the strong ex-
pansion condition with parameter κ ∈ (0, 1) up to level m < n. Then
there exists a constant C ′ > 0 depending only on c and κ such that for
any t > 0, k ≤ m and v ∈ (0, 1),

P (∃x ∈ Incomp(k, v) ∩ Comp((1 + κ/2)k, (n−C
′
v)8/κ)

‖Wx‖2 ≤ n · (n−C′v)8/κ and ‖W‖ ≤ n) ≤ e−k.

Proof. The proof repeats that of Lemma 2.4, so we only sketch it. For
t > 0, set

ε = n−C−2vt,

where C is the constant from Lemma 2.6. Choose an ε-net N in
Sparse((1 + κ/2)k) ∩ Incomp(k, v) of cardinality

|N | ≤
(

n

(1 + κ/2)k

)
·
(

3

ε

)(1+κ/2)k

≤
(
nc̄

vt

)(1+κ/2)k

,

where c̄ depends only on c and κ. By the union bound,

P (∃x ∈ N ‖Wx‖2 ≤ n−Cvt and ‖W‖ ≤ n) ≤
(
nc̄

vt

)(1+κ/2)k

· t(1+κ)k

≤ t(κ/4)k ≤ e−k,

provided that

t =
( v

enc̄

)4/κ

.

Using an appropriately defined C ′ > 0 depending only on c and κ, and
approximation by the points of the ε-net, we derive from the previous
inequality that

P (∃x ∈ Incomp(k, v) ∩ Sparse((1 + κ/2)k)

‖Wx‖2 ≤ 2n · (n−C′v)8/κ and ‖W‖ ≤ n) ≤ e−k.

To complete the proof, notice that for any vector y ∈ Incomp(k, v) ∩
Comp((1 + κ/2)k, (n−C

′
v)8/κ), there is a vector x ∈ Incomp(k, v) ∩

Sparse((1 + κ/2)k) such that ‖x− y‖2 < (n−C
′
v)8/κ. The Lemma now

follows by again using approximation. �

Lemmas 2.4 and 2.7 can be combined to treat all compressible vec-
tors. In the statement, d0 is a fixed, large enough universal positive
integer.
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Proposition 2.8. Let W be an n×n skew-symmetric Gaussian matrix.
Assume that its large variances graph ΓW (n−c) has minimal degree d ≥
d0 and satisfies the strong expansion condition with parameter κ > 0
up to the level m < n. Then there exists a constant φ(κ) depending on
κ only so that, with ρ = (n/d)φ(κ), one has

P (∃x ∈ Comp((1 + κ/2)m,n−ρ) ‖Wx‖2 ≤ n−ρ+1) ≤ e−d/2.

Remark 2.9. The proof below shows that it is enough to take

φ(κ) =
c

κ
log

(
C

κ

)
.

Proof. Set v0 = n−c
′
, where c′ = max(c, C ′), and c, C ′ are the constants

from Lemmas 2.4 and 2.7. Let L be the smallest natural number such
that

(d/2)(1 + κ/2)L ≥ m.

The definition of L implies

L ≤ log(m/d)

log(1 + κ/2)
≤ c

κ
log

n

d
.

For l = 1, . . . , L − 1, define by induction vl+1 = (n−C
′
vl)

8/κ, where
C ′ is the constant from Lemma 2.7. The definition of v0 implies that

vl ≤ n−C
′
, so vl+1 ≥ v

16/κ
l , and thus,

vL ≥ v
(16/κ)L−1

0 ≥ n−ρ
′

where ρ′ =
(n
d

)(c/κ)·log(C/κ)

.

We have

Comp(m, vL) ⊂ Comp((d/2)(1 + κ/2)L, vL)

⊂ Comp(d/2, v0) ∪
L⋃
l=1

Comp((d/2)(1 + κ/2)l, vl) \ Comp((d/2)(1 + κ/2)l−1, vl−1).

Lemmas 2.4 and 2.7 combined with the union bound imply

P (∃x ∈ Comp(m,n−ρ
′
)

‖Wx‖2 ≤ n−ρ
′+1 and ‖W‖ ≤ n) ≤ e−d/2.

Applying Lemma 2.7 once more, we derive the estimate

P (∃x ∈ Comp((1 + κ/2)m,n−ρ)

‖Wx‖2 ≤ n−ρ+1 and ‖W‖ ≤ n) ≤ e−d/2

with ρ = (ρ′)16/κ.
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The proposition follows from the previous inequality and Lemma
2.2. �

3. The smallest singular value

The main result of this section is the following lower bound for the
smallest singular value of a Gaussian skew-symmetric matrix with a
strongly expanding large variances graph.

Theorem 3.1. Let n ∈ N be an even number. Let V be an n×n skew-
symmetric matrix, and denote by Γ its large variances graph ΓV (n−c).
Assume that

(1) Var(vi,j) ≤ 1 for all i, j ∈ [n];
(2) the minimal degree of a vertex of Γ is at least d ≥ 2 log n;
(3) Γ is κ-strongly expanding up to level n−d+2

1+κ/4
.

Then
P
(
sn(V ) ≤ tn−τ

)
≤ nt+ e−cd,

where τ = (n/d)ψ(κ) for some positive ψ(κ).

Remark 3.2. Tracing the proof of Theorem 3.1 and using Remark 2.9,
one can show that it is enough to take

ψ(κ) =
C ′

κ
log

(
C

κ

)
.

Proof of Theorem 3.1. To prove the theorem, we use the negative sec-
ond moment identity. LetA be an n×nmatrix with columnsA1, . . . , An.
For j ∈ [n], let hj ∈ Sn−1 be a vector orthogonal to all columns of A,
except the j-th one. Then∥∥A−1

∥∥2

HS
=

n∑
j=1

(hTj Aj)
−2.

Hence,

sn(A) =
1

‖A−1‖
≥ 1

‖A−1‖HS
≥ n−1/2 ·min

j∈[n]
|hTj Aj|.

Let ρ be as in Proposition 2.8. The argument above shows that if we
use the matrix V in place of A and define the unit vectors hj, j ∈ [n]
as before, then the theorem would follow if the inequalities

(3.1) P
(
|hTj Vj| ≤ tn−ρ+c

)
≤ t+ e−cd

hold for all j ∈ [n]. Indeed, the Theorem follows from (3.1) and the
assumption on d by the union bound. We will establish inequality (3.1)
for j = 1. The other cases are proved in the same way.
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Let W be the (n − 1) × (n − 1) block of V consisting of rows
and columns from 2 to n. The matrix W is skew-symmetric, and its
large variances graph is the subgraph of Γ containing vertices 2, . . . , n.
Therefore, Γ has properties (1), (2), (3) with slightly relaxed param-
eters. Indeed, property (1) remains unchanged. Property (2) is valid
with d replaced by d− 1. Property (3) is satisfied with parameter κ/2
in place of κ since for any J ⊂ Γ \ {1}, the boundary of J in Γ and in
Γ \ {1} differs by at most one vertex.

Recall that W is a skew-symmetric matrix of an odd size. This
matrix is degenerate, so there exists u ∈ Sn−2 such that Wu = 0.
This allows us to define the vector h ∈ Sn−1 orthogonal to the columns
V2, . . . , Vn of the matrix V by

h =

(
0
u

)
.

Define the event Ω by

Ω = {W : ∃u ∈ Comp(n− d+ 1, n−ρ) Wu = 0}.

The graph ΓW (n−c)\{1} is (κ/4) strongly expanding up to level n−d+1
1+κ/4

.

By Proposition 2.8, P (Ω) ≤ e−d/2. Condition on the matrix W ∈ Ω{.
After the conditioning, we may assume that u ∈ Incomp(n−d+1, n−ρ),
and so the set J = {j : |uj| ≥ n−ρ−1/2} has at least n−d+ 1 elements.
Since the degree of the vertex {1} in the large variances graph of V is at
least d, this means that there exists a j ∈ J for which Var(vj1) ≥ n−c.
Therefore, conditionally on W , hTV1 =

∑n
j=2 ujvj is a normal random

variable with variance

Var(hTV1) =
n∑
j=2

u2
j · Var(vj) ≥ n−2ρ−1 · n−c.

The bound on the density of a normal random variable implies

P (|hTV1| ≤ Cn−ρ−c/2−1/2t | W ∈ Ω{) ≤ t.

Finally,

P (|hTV1| ≤ Cn−ρ−c/2−1/2t)

≤ P (|hTV1| ≤ Cn−ρ−c/2−1/2t | W ∈ Ω{) + P (W ∈ Ω)

≤ t+ e−d/2.

This completes the proof of (3.1) for j = 1. Since the proof for the
other values of j is the same, it proves Theorem 3.1. �

An immediate corollary of Theorem 3.1 is the following.
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Corollary 3.3. Let A be the adjacency matrix of a graph Γ which
satisfies

(1) the minimal degree of a vertex of Γ is at least d > 2 log n;
(2) Γ is κ-strongly expanding up to level n−d+2

1+κ/4
.

Then, A possesses a unique doubly stochastic scaling B = DAD and
the graph Γ possesses a perfect matching.

Proof of Corollary 3.3. We begin by showing that a perfect matching in
Γ exists. Assume otherwise. Then sn(A�G) = 0 since E det(A�G) =
haf(A) = 0. The latter equality contradicts Theorem 3.1.

To show that A possesses a doubly stochastic scaling, choose an
edge e = (u, v) in Γ and create a graph Γ′ by erasing u, v, and all
edges attached to them from Γ. The graph Γ′ satisfies assumptions (1)
and (2) in the statement, with slightly smaller constants κ, d. Thus,
Γ′ possesses a perfect matching. This implies that for any edge in Γ
there exists a perfect matching containing that edge. By Bregman’s
theorem [6, Theorem 1], this implies that A possesses a unique doubly
stochastic scaling B = D1AD2. The fact that D1 = D2 follows from
the strict convexity of relative entropy and the characterization of the
doubly stochastic scaling as its minimizer, see [6, Eq. (7)]. �

4. Local bound on eigenvalues density

In this section, we prove a general bound on the crowding of eigen-
values at 0 for a class of Hermitian matrices whose variance matrix is
doubly-stochastic. The results are somewhat more general than our
needs in the rest of the paper and may be of independent interest, and
therefore we introduce new notation.

Let X denote an n × n matrix, Hermitian (in the sense that X∗ij =
Xji), with entries {Xij}i≤j that are independent zero mean random
variables. (In our application, the Xij variables are all Gaussian.).
Following [7], we set sij = E|Xij|2 and ζij = Xij/

√
sij (with ζij = 0 if

sij = 0). We assume that the variables ζij possess uniformly bounded p
moments for all p > 0. Finally, we denote the eigenvalues of the matrix
X by λ1(n) ≥ λ2(n) ≥ . . . ≥ λn(n), and use Ln = n−1

∑n
i=1 δλi(n) for

the empirical measure of eigenvalues.
We assume that

∑
j sij = 1, and, to avoid trivialities, that the matrix

S = {sij} is irreducible (otherwise, the matrix X can be decomposed
in blocks due to the symmetry).

Let M = (maxij sij)
−1. We assume the following.

Assumption 4.1. For some ϑ ∈ (0, 1] one has that M ≥ nϑ.

With Assumption 4.1, we have the following proposition.
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Proposition 4.2. With notation and assumptions as in the setup above,
fix ε < 1/5. If Assumption 4.1 holds then for every D > 0 there exists
n0 = n0(ε,D) such that for any n > n0, and with

N (η) = |{i : λi(n) ∈ (−η, η)}|,

one has

(4.1) P (∃η ≥M−ε N (η) > Cn · η) ≤ n−D .

Proof. We will use [7, Theorem 2.3], a simplified form of which we
quote below after introducing some notation. Following the notation
in [7], we let m(z) denote the Stieltjes transform of the semicircle law,
m(z) = (−z +

√
z2 − 4)/2, and set

Γ(z) = ‖(1−m(z)2S)−1‖`∞→`∞ .

Note that with z = iη one has by [7, (A.1)] that for some universal
constant C,

(4.2) Γ(iη) ≤ C log n

η
.

Introduce now, similarly to [7, (2.14)], for a parameter γ > 0,

η̃ = min
{
u > 0 :

1

Mu
≤ min

{
M−γ

Γ(iη′)3
,

M−2γ

Γ(iη′)4 · =(m(iη′))

}
,

for all η′ ∈ [u, 10]
}
.

(Note that we do not use Γ̃N(z) as in [7] since we only need the relation

Γ ≥ Γ̃N .) Note that =(m(iη′)) = (
√

4 + η′2 − η′)/2 is bounded above
and below by a universal constant for η′ ∈ [0, 10]. Hence, using (4.2),
we get that

(4.3) η̃ ≤ C(M2γ−1(log n)4)1/5 := η̄,

for some universal constant C. For given ε < 1/5, we will chose γ ∈
(0, 1/2) and n0 = n0(ε,D) so that η̄ ≤M−ε whenever n > n0.

Denote by mn(z) = n−1
∑n

i=1
1

λi−z the Stieltjes transform of the em-
pirical measure of eigenvalues of X. We have the following.

Theorem 4.3. [7, Theorem 2.3] For any γ ∈ (0, 1/2), any ε′ > 0
and any D > 0 there exists an n0 = n0(D, γ, ε′) so that, uniformly in
η ∈ [η̃, 10], and for all n > n0,

(4.4) P (|mn(iη)−m(iη)| > nε
′

Mη
) ≤ n−D .
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Fix η ≥ η̄. Let A denote the complement of the event in (4.4).
Assume that A occurs. Using the uniform boundedness of m(iη) and
inequality (4.3), we obtain

=mn(iη) ≤ C +
nε
′

Mη
≤ C + C

nε
′

M · (M2γ−1(log n)4)1/5
.

Choosing γ and ε′ small enough, we can guarantee that the right side
in the last display is uniformly bounded in n. With such choice,

C ≥
∫

η

λ2 + η2
dLn(λ) ≥ 1

2η

∫ η

−η
dLn(λ) =

1

2η
Ln([−η, η])

provided that A occurs. This means that

P (N (η) > Cn · η) ≤ n−D .

To derive (4.1) from the previous inequality, one can use the union
bound over η = 1/k with k ∈ N, M ε ≥ k ≥ 1. �

A better estimate can be obtained if one assumes a spectral gap.
First, we have the following.

Lemma 4.4. S has exactly one eigenvalue at +1 and at most one
eigenvalue at −1.

Proof. The claim concerning the eigenvalue at 1 is the Perron–Frobenius
Theorem. To check the claim on the eigenvalues at −1, consider S2. It
may be reducible, but at most to 2 blocks. Indeed, suppose there are
3 disjoint blocks A1, A2, A3, i.e. disjoint subsets Ai of [N ], i = 1, 2, 3,
so that for all a ∈ Ai, b ∈ Aj with i 6= j one has S2

a,b = 0. By the irre-
ducibility of S, there is a path of odd length connecting A1 and A2, and
similarly there is a path of odd length connecting A2 and A3. Hence,
there is a path of even length connecting A1 and A3, in contradiction
with the block disjointness of S2. The claim now follows by applying
the Perron–Frobenius Theorem to each of the blocks of S2. �

By Lemma 4.4, if S has a spectral gap then the eigenvalues at 1 and
−1 (if the later exists) are unique and isolated.

Proposition 4.5. With notation and assumptions as in the setup above,
fix ε < 1. If Assumption 4.1 holds and S possesses a spectral gap δ then
for every D > 0 there exists n0 = n0(ε,D, δ) such that for any n > n0,
with

N (η) = |{i : λi(n) ∈ (−η, η)}|,
one has

(4.5) P (∃η ≥M−ε N (η) > n · η) ≤ n−D .



HAFNIANS, PERFECT MATCHINGS AND GAUSSIAN MATRICES 19

The proof is identical to that of Proposition 4.2, using [1, Theorem
1.1] instead of [7, Theorem 1.2]. We omit the details.

5. Concentration of the hafnian of a random matrix.

In this section we prove Theorems 1.9 and 1.10. Both results follow
from the concentration of the Gaussian measure for Lipschitz func-
tions. To this end, we consider a Gaussian vector G = (Gij)1≤i<j≤n ∈
Rn(n−1)/2 and use it to form the skew-symmetric matrix Gskew. How-
ever, the function F (G) = log det(B � Gskew) (where Bij =

√
Bij) is

not Lipschitz. To overcome this obstacle, we write

log det(B �Gskew) =
n∑
j=1

log sj(B �Gskew)

and use Theorem 3.1 and Proposition 4.2 to obtain lower bounds on
the singular values which are valid with probability close to 1. On this
event, we replace the function log by its truncated version, which makes
it Lipschitz with a controlled Lipschitz constant. Then an application
of the Gaussian concentration inequality yields the concentration of the
new truncated function about its expectation. This expectation is close
to E log det(B�Gskew). Recall that instead of the concentration about
this value, we want to establish the concentration about log haf(B) =
logE det(B�Gskew). In other words, we have to swap the expectation
and the logarithm and estimate the error incurred in this process. This
will be achieved due to the fast decay of the tail in the concentration
inequality.

Proof of Theorem 1.9. The proof proceeds as in [18, Section 7]. (The
argument can be traced back to [8].) Without loss of generality, we may
assume that n > n0, where n0 = n0(ε,D) appears in Proposition 4.2.
Indeed, if n ≤ n0, we can choose the constant C in the formulation of
the theorem appropriately large, so that Cn1−εϑ

0 ≥ n0. In this case,
Theorem 1.9 follows from Barvinok’s theorem.

Fix ε < 1/5, D > 4 as in the statement of the theorem, and t =
n−(D+1). With τ = τ(κ, α) as in Theorem 3.1 (with X replaced by W )
and N (η) = N (η)(W ) as in Proposition 4.2, introduce the events

W1 = {sn(W ) ≤ tn−τ}, W2 = {N (n−εϑ) ≥ n1−εϑ}, W =W1 ∪W2.

By Theorem 3.1 and Proposition 4.2 we have that for all n > n0,

(5.1) P (W) ≤ 3n−D.
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Let d̃et(W ) =
∏

i(|λi(W )| ∨ n−εϑ). Note that on W{ we have that

(5.2) | log d̃et(W )− log det(W )| ≤ C(D)n1−εϑ log n.

Set U = log d̃et(W ) − E log d̃et(W ). We next derive concentration

results for U . The map (λi(W ))Ni=1 → log d̃et(W ) is Lipschitz with con-
stant n1/2+εϑ. Therefore, by standard concentration for the Gaussian
distribution, see [10, 13], using that the variance of the entries of W
is bounded above by n−ϑ, we have for some universal constant C and
any u > 0,

P (|U | > u) = P (| log d̃et(W )− E log d̃et(W )| > u)(5.3)

≤ exp

(
− Cu2

n1+(2ε−1)ϑ

)
.

Therefore,

(5.4) E(e|U |) ≤ 1 +

∫ ∞
0

exp

(
u− Cu2

n1+(2ε−1)ϑ

)
du ≤ exp

(
n1+(2ε−1)ϑ

)
.

In particular, we obtain that

(5.5) E log d̃etW ≤ logEd̃etW ≤ E log d̃etW + n1+(2ε−1)ϑ .

The first inequality above follows from Jensen’s inequality, and the
second one from (5.4).

We can now complete the proof of the theorem. We have by Markov’s
inequality that

(5.6) P (log det(W )− logE det(W ) > n1−εϑ log n) ≤ e−n
1−εϑ logn .

On the other hand, note that E det(W ) ≤ Ed̃et(W ). Therefore, with
C(D) as in (5.2),

P (log det(W )− logE det(W ) ≤ −(C(D) + 2)n1−εϑ log n)

≤ P (log det(W )− logEd̃et(W ) ≤ −(C(D) + 2)n1−εϑ log n)

≤ P (log d̃et(W )− logEd̃et(W ) ≤ −2n1−εϑ log n) + P (W{) ,

where (5.2) was used in the last display. Using now (5.1) and the upper
bound in (5.5), we get

P (log det(W )− logE det(W ) ≤ −(C(D) + 2)n1−εϑ log n)

≤ 3n−D + P (log d̃et(W )− E log d̃et(W ) ≤ −2n1−εϑ log n+ n1+(2ε−1)ϑ) .

Using that ε < 1/5 and applying (5.3) we conclude that

P (log det(W )− logE det(W ) ≤ −(C(D) + 2)n1−εϑ log n) ≤ 4n−D .
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Together with (5.6), it yields

P (| log det(W )− logE det(W )| ≤ (C(D) + 2)n1−εϑ log n) ≤ 5n−D .

To obtain the statement of the theorem, we prove the previous inequal-
ity with ε′ ∈ (ε, 1/5) instead of ε, and then choose C ′ > 0 such that
(C(D) + 2)n1−εϑ log n ≤ C ′n1−ε′ϑ. �

The proof of Theorem 1.10 is similar to that of 1.9. However, to ex-
ploit the tighter bounds on the intermediate singular values provided by
Proposition 4.5, we use a different truncation, redefining the function

log d̃et(·) and estimate its Lipschitz constant more accurately.

Proof of Theorem 1.10. Fix ε ∈ (1/2, 1). As in the proof of Theorem
1.9, we may assume that n > n0(ε,D, δ), where n0(ε,D, δ) was intro-
duced in Proposition 4.5. The inequality (4.5) can be rewritten as

(5.7) P (∃k ≥ n1−εϑ sn−k(W ) ≤ c
k

n
) ≤ n−D.

This inequality can be used to bound the Lipschitz constant of the
truncated logarithm. Let

(5.8) m0 ≥ n1−εϑ

be a number to be chosen later. Define

(5.9) log d̂et(W ) =
n∑
k=1

φk(sn−k(W )) =
n∑
k=1

log(sn−k(W ) ∨ εk),

where

εk =

{
cm0

n
, for k < m0

c k
n
, for k ≥ m0

Denote for a moment N = n(n− 1)/2. For a vector Y ∈ RN consider
the n× n skew symmetric matrix Y skew whose entries above the main
diagonal equal to the corresponding entries of Y . Let B be the n × n
matrix whose entries are square roots of the corresponding entries of
B. Note that the function F : RN → R defined by

F (G) = log d̂et(B �Gskew)

is the composition of three functions: F = F3 ◦ F2 ◦ F1, where

(1) F1 : RN → Rn2
, F1(G) = B � Gskew, whose Lipschitz constant

does not exceed n−ϑ/2;
(2) F : Rn2 → Rn

+ defined by F (W ) =
(
s1(W ), . . . , sn(W )

)
, which

is 1-Lipschitz;
(3) F3 : Rn

+ → R, F3(x1, . . . , xn) =
∑n

k=1 φk(xn−k), where φk is
defined in (5.9).
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By the Cauchy-Schwarz inequality,

‖F3‖Lip ≤

(
n∑
k=1

‖φk‖2
Lip

)1/2

≤

((
n

cm0

)2

·m0 +
∑
k>m0

( n
ck

)2
)1/2

≤ C
n
√
m0

.

Therefore,

‖F‖Lip ≤ C
n1−ϑ/2
√
m0

.

Applying the standard Gaussian concentration for Lipschitz functions,
we obtain

P
(
| log d̂et(W )− E log d̂et(W )| ≥ u

)
≤ 2 exp

(
− u2

2 ‖F‖2
Lip

)
(5.10)

≤ 2 exp(−cm0n
ϑ−2u2)

which replaces formula (5.8) in the proof of Theorem 1.9. Arguing as
in the proof of that theorem, we obtain

(5.11) E log d̂et(W ) ≤ logEd̂et(W ) ≤ E log d̂et(W ) + C0
n2−ϑ

m0

from the inequality above.
Let C ′ = D + τ(κ, α), where τ(κ, α) is as in Theorem 3.1. Set

W1 =
{
sn(W ) ≤ n−C

′
}
, W2 =

{
∃k ≥ n1−εϑ sn−k(W ) ≤ c

k

n

}
,

and let W = W1 ∪ W2. Then Theorem 3.1 and (5.7) imply P (W) ≤
n−D. On W{ we have

(5.12) | log d̂et(W )− log det(W )| ≤ Cm0 log n,

which plays the role of (5.7). Arguing as in the proof of Theorem 1.9,
we show that

P
(

log det(W )− logE det(W ) ≤ −
(
Cm0 log n+ 2C0

n2−ϑ

m0

))
≤ P

(
log d̂et(W )− logEd̂et(W ) ≤ −2C0

n2−ϑ

m0

)
+ P (W)

≤ P
(

log d̂et(W )− E log d̂et(W ) ≤ −C0
n2−ϑ

m0

)
+ P (W)

≤ exp

(
−C ′n

2−ϑ

m0

)
+ n−D ≤ 2n−D.
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Here, the first inequality follows from (5.12) and logE det(W ) ≤ logEd̂et(W ),
the second one from the upper bound in (5.11), and the third one from
(5.10).

We select the optimalm0 = Cn1−ϑ/2 log−1/2 n in the inequality above.
Since ε > 1/2, condition (5.8) holds for sufficiently large n.

P
(

log det(W )− logE det(W ) ≤ −Cn1−ϑ/2 log1/2 n
)
≤ 2n−D.

Combining this with the bound

P
(

log det(W )− logE det(W ) ≥ Cn1−ϑ/2 log1/2 n
)
≤ n−D

following from Markov’s inequality, we complete the proof. �

6. Doubly stochastic scaling and proof of Theorem 1.5

To prove Theorem 1.5, we have to scale the adjacency matrix of the
graph in order to apply Theorems 1.9 and 1.10. The existence of such
scaling has been already established in Corollary 3.3. We will show
now that the smallest non-zero entry of the scaled adjacency matrix is
at least polynomial in n. This crucial step in the proof of Theorem 1.5
allows us to conclude that the large entries graph of the scaled matrix
coincides with the original graph.

Proposition 6.1. Fix α, κ > 0. Let A be the adjacency matrix of a
graph Γ whose minimal degree satisfies d ≥ αn+ 2. Assume that

(6.1) Γ is κ strongly expanding up to level n(1− α)/(1 + κ/4),

Then there exists a constant ν so that A possesses a doubly stochastic
scaling B = DAD with

min
i
Dii ≥ n−ν .

In particular, under the assumptions of Proposition 6.1, we have that

(6.2) Bij ≥ n−2ν whenever Bij > 0 .

Before describing the proof of Proposition 6.1, let us state a comple-
mentary claim, which says that under stronger expansion conditions on
Γ we can guarantee that the entries in its scaled adjacency matrix are
polynomially small. This ensures that under this stronger expansion
property, condition (1.8) in Theorem 1.5 is automatically satisfied.

In what follow, if X is a set of vertices in a graph then E(X,X)
denotes those edges in the graph connecting vertices in X.
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Proposition 6.2. Fix α, κ, ε > 0. There exists a constant θ depending
only on α and κ such that the following holds.

Let A be the adjacency matrix of a graph Γ whose minimal degree
satisfies d ≥ αn+2. Assume that for any subset X of vertices satisfying
|X| ≥ d

4
and |E(X,X)| ≤ θ · n1+ε, it holds that

|∂sX| ≥ (1 + κ) · |X|
where ∂sX denotes the set of external neighbors of X such that any

y ∈ ∂sX has at least d|X|
10n

neighbors in X.
Then A possesses a doubly stochastic scaling B = DAD with

max
i
Dii ≤ n−ε/2 .

In particular, under the assumptions of Proposition 6.2, we have that

(6.3) Bij ≤ n−ε whenever Bij > 0 .

To prove Proposition 6.1, we argue by contradiction. Assume that
one of the diagonal entries, say D11, is smaller than n−ν , where ν =
ν(α, κ) will be chosen at the end of the proof. The double stochasticity
of the scaled matrix implies that there exists a neighbor i ∼ 1 for which
the corresponding entry of the scaling matrix D is large. In fact, we
can prove this for more than one entry. In Lemma 6.5 we construct a
set X = X0 of vertices of cardinality at least d/2 such that the corre-
sponding entries of the scaling matrix are greater than (1/2)nν−2. We
use this as a base of induction. In Lemma 6.6, we show that there ex-
ists a set X1 of vertices of cardinality |X1| ≥ (1 +β)|X0| containing X1

such that all entries of the scaling matrix corresponding to X1 are still
polynomially large. Proceeding by induction, we construct an increas-
ing sequence of sets X0 ⊂ X1 ⊂ · · · ⊂ Xl such that |Xl| ≥ (1 +β)l|X0|,
and all diagonal entries corresponding to the vertices of Xl are greater
than 1. The number of induction steps l which we are able to per-
form will depend on ν. If ν is chosen large enough, then we will get
(1 + β)l|X0| > n, reaching the desired contradiction.

The proof of Proposition 6.2 is very similar. Assume, towards con-
tradiction, that, say, Dnn is larger than n−ε/2. By the double stochas-
ticity of the scaled matrix, there exists a set A of neighbors i ∼ n,
for which the corresponding entries of the scaling matrix D are small.
Using again the double stochasticity of the scaled matrix produces a
set X = X0 of vertices of cardinality at least d/4 such that the corre-
sponding entries of the scaling matrix are greater than (α/8)n−ε/2. We
use this as induction base. In Lemma 6.7, we show that there exists a
set X1 of vertices of cardinality |X1| ≥ (1 + γ)|X0| containing X1 such
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that all entries of the scaling matrix corresponding to X1 are still large.
Proceeding by induction, we construct an increasing sequence of sets
X0 ⊂ X1 ⊂ · · · ⊂ Xl such that |Xl| ≥ (1 + γ)l|X0|, and all diagonal
entries corresponding to the vertices of Xl are greater than Ω

(
n−ε/2

)
.

The number of induction steps l which we are able to perform will
depend on θ. If θ = θ(α, κ) is chosen large enough, then we will get
(1 + γ)l|X0| > n, reaching contradiction.

Proof of Proposition 6.1. Without loss of generality, we assume through-
out that the constants α and κ are small enough so that

(6.4) (1− α)/(1− κ/4) > 1/2 .

By Corollary 3.3, A possesses a doubly stochastic scaling B = DAD,
where D = Diag(r1, . . . , rn). Without loss of generality, we assume that
r1 ≤ r2 ≤ ... ≤ rn. Note that since B is doubly stochastic,

(6.5) ri =

(∑
j∼i

rj

)−1

.

We will need a few simple lemmas.

Lemma 6.3. Let s1, . . . , sn ∈ [0, 1] and assume that
∑n

i=1 si ≥ S.
Then, for any 0 < γ < 1, there exists a subset I ⊆ [n] of cardinality at
least (1− γ) · S, si ≥ γ · S/n for each i ∈ I.

Proof. Assume otherwise. Then there are at least n−(1−γ)S elements
si < γ · (S/n). Therefore,

n∑
i=1

si ≤ (1− γ)S + (n− (1− γ)S) · γS
n
< S. �

The next lemma quantifies the following intuition: Given a large set
A of indices corresponding to small entries of the scaling matrix, we
can find a large set of indices (neighbors of A) corresponding to large
entries of the scaling matrix.

Lemma 6.4. Let A ⊆ [n] such that ri ≤ µ for all i ∈ A. Then, for
any 0 < γ < 1, there exists a subset X ⊆ [n], of cardinality at least
(1− γ) · |A|, such that for all j ∈ X,

rj ≥
γ

µn

Proof. Denote by B = (bij) the doubly stochastic scaling of A. For
1 ≤ i ≤ n, let si =

∑
j∈A bij. By the double-stochasticity of B, we

have
∑n

i=1 si =
∑

j∈A
∑n

i=1 bij = |A|.
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By Lemma 6.3, there is a set X of indices with |X| ≥ (1 − γ) · |A|
with si ≥ γ · |A|

n
for each i ∈ X. Let i ∈ X. We have

ri =
si∑

j∈A,j∼i rj
≥ γ · |A|/n

|A| · µ
=

γ

µn
.

�

The next lemma is the base of our inductive construction.

Lemma 6.5. Let Q = 1/r1. Then there exists a subset X of [n] of
cardinality at least d/2 such that for each i ∈ X,

ri ≥
Q

2n2
.

Proof. By (6.5),
∑

i∼1 ri = 1/r1 = Q. Therefore, there is at least one
index i0 ∼ 1 for which ri0 ≥ Q/n. Let A be the set of neighbors of i0.
Then, |A| ≥ d and for all j ∈ A, rj ≤ n/Q.

The proof is completed by an application of Lemma 6.4 with γ =
1/2. �

Lemma 6.6 below will be used for the inductive step.

Lemma 6.6. Let m ≥ n. Let X be a subset of indices such that ri ≥ m
for each i ∈ X. Then

(1) |∂X| ≥ (1 + κ) · |X|;
(2) There exists a subset Z of indices, disjoint from X, of cardinal-

ity at least (κ · |X| − 1)/2 such that each j ∈ Z satisfies

rj ≥
κ|X| − 1

2n2
·m

Proof. Clearly, no two vertices in X are connected in Γ (otherwise, we
would have an entry of size at least m2 > 1 after scaling). Therefore
X is a set of disconnected vertices, and, since Γ contains a perfect
matching, we have |X| ≤ n/2.

Since X is disconnected, (6.1) and (6.4) imply that

|∂X| ≥ (1 + κ) · |X|,
proving the first claim of the lemma.

Let Y := ∂X. We note that ri ≤ 1/m for any i ∈ Y . To show the
second claim of the lemma, we will find a subset Z of indices, disjoint

with X ∪ Y , such that ri ≥ κ|X|−1
2n2 ·m for all i ∈ Z.

Let C = (X ∪ Y ){. Recall that B is the doubly stochastic scaling of
A. Since ∑

i∈C∪X∪Y

∑
j∈Y

bij =
∑
i

∑
j∈Y

bij = |Y |,
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we have∑
i∈C,j∈Y

bij = |Y | −
∑

i∈X,j∈Y

bij −
∑

i∈Y,j∈Y

bij

≥ (|Y | − |X|)−
∑

i∈Y,j∈Y

bij ≥ (|Y | − |X|)− n2

m2

≥ κ · |X| − 1,

where in the second inequality we used that ri ≤ 1/m for i ∈ Y .
For i ∈ C, set si =

∑
j∈Y bij. Then

∑
i∈C si ≥ κ · |X| − 1. By

Lemma 6.3, there is a set of at least (κ · |X| − 1)/2 indices i, for which

si ≥
κ|X| − 1

2|Y |
≥ κ|X| − 1

2n
.

Call this set Z. For each i ∈ Z, we have

ri =
si∑

j∈Y,j∼i rj
≥ (κ|X| − 1)/(2n)

|Y |/m
≥ κ|X| − 1

2n2
·m,

completing the proof of the lemma. �

We are now ready to perform the inductive procedure proving Propo-
sition 6.1. Let

R =

(
4

κα
· n
) c

κ log(1/α)

,

for a sufficiently large c. We will assume that r1 < 1/R, and reach a
contradiction.

We use Lemma 6.5 to construct a set X of cardinality at least d/2
such that ri ≥ R/(2n2). for all i ∈ X.

Assuming m := R/(2n2) ≥ n, which we may, we can now apply
Lemma 6.6 to construct a set Z disjoint from X, of cardinality at least
(κ · |X| − 1)/2 such that

rj ≥
κ|X| − 1

2n2
·m ≥ κα

4n
·m, for all j ∈ Z .

We now define X0 := X, m0 := m, Z0 := Z; and set X1 = X0 ∪ Z0,
m1 = κα

4n
· m0, and apply Lemma 6.6 to X1 (assuming m1 is not too

small). We continue this process to obtain an increasing sequence of
sets X0, X2, . . . , Xt. Since

n ≥ |Xt| ≥ (1 +κ/2) · |Xt−1| ≥ . . . ≥ (1 +κ/2)t ·X0 ≥ (1 +κ/2)t · α
2
·n,

the number of steps t is upper bounded by c1 · κ log 1/α, for some
absolute constant c1. On the other hand, if c in the definition of R is
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large enough, the number of steps will be larger than that, reaching a
contradiction. �

Proof of Proposition 6.2. Assume, for contradiction’s sake, that rn ≥
n−ε/2. Since

∑
i∼n ri = 1/rn ≤ nε/2, for at least half of neighbors of

n holds ri ≤ 2 · nε/2−1. Let A be the set of these neighbors. By our
assumption on the minimal degree in Γ, we have |A| ≥ d

2
.

Applying Lemma 6.4 to A with γ = 1/2 and µ = 2 · nε/2−1 gives a
subset X0 of [n] of cardinality at least d

4
such that for all i ∈ X0 holds

ri ≥ α/8 · n−ε/2. This is our induction base.
An inductive step is provided by the following lemma.

Lemma 6.7. Fix a constant b ≥ 1/
√
θ. Let X ⊆ [n] be such that

|X| ≥ α
4
· n and for any i ∈ X, ri ≥ b · n−ε/2. Then there exists a

subset X ′ of [n] of cardinality at least
(

1 + κ(1−κ)
2

)
· |X| such that for

all j ∈ X ′ it holds that rj ≥ α2κb
80
· n−ε/2.

Proof. Since n ≥
∑

i,j∈X dij ≥ |E(X,X)| · b2n−ε, we have

|E(X,X)| ≤ b−2 · n1+ε ≤ θ · n1+ε

Hence, by our assumptions on the graph Γ, we have |∂sX| ≥ (1+κ)·|X|.
For each j ∈ ∂sX holds

rj ≤
1∑

i∈X, i∼j ri
≤ 1

(α/10) · |X| · bn−ε/2
≤ 40

bα2
· nε/2−1

Applying Lemma 6.4 with γ = κ/2 and µ = 40
bα2 ·nε/2−1 to A = ∂sX,

produces a set X ′ satisfying the requirements of the lemma. �

We now ready to perform the inductive procedure proving Proposi-
tion 6.2. Let

R =

(
1

κ
· log

(
4

α

)) c
α2κ

,

for a sufficiently large c. We will assume that θ > 1/R, and reach a
contradiction.

We start constructing the sequence {Xi}, starting from the set X0

constructed above, and applying Lemma 6.7 iteratively. Clearly, we
should stop after at most S = log

1+
κ(1−κ)

2

(
4
α

)
steps. However, if c in

the definition of R is large enough, we would be able to make more
steps than that, reaching a contradiction.

�

We now combine the bound (6.4) on the scaled matrix with Theorems
1.9 and 1.10 to derive Theorem 1.5.
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Proof of Theorem 1.5. Recall that B = DAD denotes the doubly sto-
chastic scaling of A and Gskew denotes a skew symmetric matrix with
independent N(0, 1) entries above the main diagonal. Note that

det(A�Gskew) =
1

det(D)
det(B1/2 �Gskew) ,

where B1/2 denotes the matrix whose entries are the square roots of the
entries of B. Therefore, it is enough to consider the concentration for
det(B1/2 �Gskew). The proof of Theorem 1.5 now follows by applying
Theorems 1.9 and 1.10. �

7. The strong expansion condition

As noted in the introduction, the strong expansion condition is stronger
than the classical vertex expansion condition

∀J ⊂ [M ] |J | ≤M/2 ⇒ |∂(J)| ≥ κ|J |.

It might have been desirable to replace the strong expansion property
by a weaker and more natural classical vertex expansion condition.
Proposition 1.7 from the introduction shows that not only the latter
condition is insufficient to guarantee a subexponential error in Barvi-
nok’s estimator, but in fact there is an example of a graph G with
associated random matrix W that barely misses the strong expansion
property, for which Barvinok’s estimator yields an exponential error
with high probability. We provide here the proof of Proposition 1.7.

Proof of Proposition 1.7. Without loss of generality, assume that δ <
1/6. Let n ∈ N. Set m = b δn

2
c. Define a graph Γ with M = 2(m + n)

vertices as follows.

• The vertices in [n] form a clique, which will be called the center.
• Any of the vertices in [n + 1 : 2(n + m)], called peripheral, is

connected to all vertices of the center.
• In addition, for k > n, the vertices 2k− 1 and 2k are connected

to each other.
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Center: vertices 1, . . . , n

Vertices n+ 1, . . . , 2n

Vertices 2n+ 1, . . . , 2(n+m)

1

The adjacency matrix of Γ has the block shape

Qn×n 1n×n 1n×2m

1n×n 0n×n 0n×2m

∆

12m×n 02m×n
. . .

∆

 .

Here Qn×n is the adjacency matrix of the n-clique, i.e., the matrix with
0 on the main diagonal and 1 everywhere else; 1k×l is the k × l matrix
whose entries are equal to 1, and ∆ is a 2× 2 matrix

∆ =

(
0 1
1 0

)
.

The right lower block of Γ contains m such matrices ∆ on the main
diagonal.

The matrix WΓ has the similar form

WΓ =



Q̃n×n Gn×n G′n×2m

−Gn×n 0n×n 0n×2m

∆̃1

−G′2m×n 02m×n
. . .

∆̃m


,
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where Q̃n×n is the n×n skew-symmetric gaussian matrix; Gn×n, G′n×2m

are independent Gaussian matrices, and

∆̃k =

(
0 gk
−gk 0

)
with independent N(0, 1) random variables g1, . . . , gm. Recall that

E detWΓ = #Matchings(Γ)

the number of perfect matchings of the graph Γ. Any vertex from
[n + 1 : 2n] has to be matched to a vertex from the center, which
can be done in n! ways. hence, for k > n, any vertex 2k − 1 has to
be matched to its peripheral neighbor 2k, which can be done in the
unique way. Thus,

#Matchings(Γ) = n! > 0.

Consider detWΓ. Let c > 0 be a constant to be chosen later. A simple
pigeonhole argument shows that

detWΓ = F (Gn×n,G
′
n×2m) ·

m∏
j=1

g2
j ,

where F (Gn×n,G
′
n×2m) is a homogeneous polynomial of degree 2n of

entries of Gn×n and G′n×2m). Hence, for α = 4
δ

+ 1, we have

P
(

det(WΓ)

Edet(WΓ)
≥ e−cM

)
= P

(
det(WΓ)

Edet(WΓ)
≥ exp (−cαm)

)
≤ P

(
F (Gn×n,G

′
n×2m)

EF (Gn×n,G′n×2m)
≥ exp (cαm)

)
+ P

( ∏m
j=1 g

2
j

E
∏m

j=1 g
2
j

≥ exp (−2cαm)

)
The first term above is smaller than exp (−cαm) by the Chebyshev
inequality. The second term also does not exceed exp(−c′m) if the
constant c is chosen small enough.

This proves the part of the proposition related to the error of the
Barvinok estimator.

It remains to check that the condition (1.11) is satisfied. Let J ⊂ [M ]
be a set of cardinality |J | ≤M/2. If J contains a vertex from the center,
then |Con(J)| = 1 and ∂(J) = [M ] \ J , so condition (1.11) holds.

Assume that J ∩ [n] = ∅. Then |Con(J)| ≤ m + n = M/2. Also,
∂(J) ⊃ [n], so

|∂(J)| ≥ n ≥ 1

1 + δ/2
· M

2
.
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Therefore, since δ < 1/6,

|∂(J)| − (1− δ)|Con(J)| ≥
(

1

1 + δ/2
− (1− δ)

)
·M

2
≥ δ

8
·M

2
≥ κ · |J |

if we choose κ = δ/8. This completes the proof of the proposition. �

References
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